首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary A system for the continuous cultivation of plant cells has been developed, based on a commercially available 3–1 turbine-stirred fermentor. A special device was constructed to provide for homogeneous effluent from the culture at low dilution rates. Two steady states with Catharanthus roseus cells growing under glucose limitation are described with respect to biomass yield on the carbon and energy source glucose, specific oxygen consumption, specific carbon dioxide production and (by)product formation. From a carbon balance for each steady state it is shown that the flow of carbon to the culture (as glucose) practically equalled the flow of carbon from the culture (as biomass, carbon dioxide and (by)product). Biomass yields on glucose were 0.31 g/g and 0.35 g/g at dilution rates of 0.0060 l/h and 0.0081 l/h respectively. The striking difference between the obtained yield coefficients and biomass yield commonly found for batch-cultured plant cells is discussed.  相似文献   

2.
Monitoring and control of production processes for biopharmaceuticals have become standard requirements to support consistency and quality. In this paper, a constant specific growth rate in fed-batch cultivation of Bordetella pertussis is achieved by a newly designed specific growth rate controller. The performance of standard control methods is limited because of the time-varying characteristics due to the exponentially increasing biomass and volume. To cope with the changing dynamics, a stable model reference adaptive controller is designed which adapts the controller settings as volume and biomass increase. An important asset of the design is that dissolved oxygen is the only required online measurement. An original design without considering the dissolved oxygen dynamics resulted experimentally in oscillatory behaviour. Hence, in contrast to common believes, it is essential to include dissolved oxygen dynamics. The robustness of this novel design was tested in simulation. The validity of the design was confirmed by laboratory experiments for small-scale production of B. pertussis. The controller was able to regulate the specific growth rate at the desired set point, even during a long fed-batch cultivation time with exponentially increasing demands for substrates and oxygen.  相似文献   

3.
Measurements of the heat produced by Saccharomyces cerevisiae CBS 426 were used in conjunction with elemental and enthalpic balances to control fed-batch fermentations. A proportional control using the ratio of carbon dioxide evolution rate to heat production resulted in high biomass yields and minimal ethanol production. For the special case where the carbon source contains no nitrogen, biomass production estimated from heat measurements agreed well with measured values. When the controller gain was set below the maximum specific cellular growth rate, stable control was achieved, even in response to large upsets in feed concentrations.  相似文献   

4.
The scope of this research work was to investigate biogas production and purification by a two-step bench-scale biological system, consisting of fed-batch pulse-feeding anaerobic digestion of mixed sludge, followed by methane enrichment of biogas by the use of the cyanobacterium Arthrospira platensis. The composition of biogas was nearly constant, and methane and carbon dioxide percentages ranged between 70.5–76.0% and 13.2–19.5%, respectively. Biogas yield reached a maximum value (about 0.4 m3biogas/kgCODi) at 50 days-retention time and then gradually decreased with a decrease in the retention time. Biogas CO2 was then used as a carbon source for A. platensis cultivation either under batch or fed-batch conditions. The mean cell productivity of fed-batch cultivation was about 15% higher than that observed during the last batch phase (0.035 ± 0.006 gDM/L/d), likely due to the occurrence of some shading effect under batch growth conditions. The data of carbon dioxide removal from biogas revealed the existence of a linear relationship between the rates of A. platensis growth and carbon dioxide removal from biogas and allowed calculating carbon utilization efficiency for biomass production of almost 95%.  相似文献   

5.
In order to guarantee the quality of recombinant therapeutic proteins produced in mammalian cell systems, the straightforward approach in industry is to run the processes as reproducible as possible. It is first shown that considerable distortions in the currently operated processes appear when the initial cell density deviates from its nominal value. Small deviations in the initial cell mass may lead to severe deviations from the desired biomass trajectory. Next, it is shown how to design a fed-batch production process in such a way that it is robust with respect to variations in the viable cell density. A simple open loop strategy is proposed for that purpose. Here we show for the first time at animal cell cultures (CHO cells) that by means of an appropriate glutamine feed rate profile F(t), which keeps the specific growth rate of the cells on a predefined value below its maximal value while maintaining the viabilities on a high level, the diverging viable cell count profiles change over into a robust converging set of profiles. The CHO cells used to validate the procedure could be focused to any specific growth rates below μmax.  相似文献   

6.
The gas environment is solid-substrate fermentations of rice significantly affected levels of biomass and enzyme formation by a fungal species screened for high amylase production. Constant oxygen and carbon dioxide partial pressures were maintained at various levels in fermentations by Aspergillus oryzae. Control of the gas phase was maintained by a “static” aeration system admitting oxygen on demand and stripping excess carbon dioxide during fermentation. Constant water vapor pressures were also maintained by means of saturated salt solutions. High Oxygen pressures stimulated amylase productivity significantly. On the other hand, amylase production was severely inhibited at high carbon dioxide pressures. While relatively insensitive to oxygen pressure, maximum biomass productivities were obtained at an intermediate carbon dioxide pressure. High oxygen transfer rates were obtained at elevated oxygen pressures, suggesting, in view of the stimulatory effect of oxygen on amylase production, a stringent oxygen requirement for enzyme synthesis. Solid-substrate fermentations were highly advantageous as compared with submerged cultures in similar gas environments. Not only were amylase productivities significantly higher, but the enzyme was highly concentration in the aqueous phase of the semisolid substrate particles and could be extracted in a small volume of liquid. Results of this work suggest that biomass and product formation in microbial processes may be amenable to control by the gas environment. This is believed to offer an interesting potential for optimizing selected industrial fermentation processes with respect to productivity and energy consumption.  相似文献   

7.
A morphologically structured model for penicillin production.   总被引:5,自引:0,他引:5  
A morphologically structured model is proposed to describe penicillin production in fed-batch cultivations. The model accounts for the effects of dissolved oxygen on cell growth and penicillin production and variations in volume fractions of abiotic and biotic phases due to biomass formation. Penicillin production is considered to occur in the subapical hyphal cell compartment and to be affected by availability of glucose and oxygen. As it stands, the model provides a wide range of applicability in terms of operating conditions. The model has been tested for various conditions and has given satisfactory results. A series of glucose feeding profiles have been considered to demonstrate the capabilities of the proposed model. It is concluded that the model may be valuable for the interpretation of experimental data collected specifically for metabolic flux analysis during fed-batch cultivation because the elements of measured specific production rates are determined from measurements of the concentrations of the components and their mass balances. The proposed model may be further used for developing control strategies and model order reduction algorithms.  相似文献   

8.
Multi-wavelength fluorescence spectroscopy was evaluated as a tool for on-line monitoring of recombinant Escherichia coli cultivations expressing human basic fibroblast growth factor (hFGF-2). The data sets for the various combinations of the excitation and emission spectra from batch cultivations were analyzed using principal component analysis. Chemometric models (the partial least squares method) were developed for correlating the fluorescence data and the experimentally measured variables such as the biomass and glucose concentrations as well as the carbon dioxide production rate. Excellent correlations were obtained for these variables for the calibration cultivations. The predictability of these models was further tested in batch and fed-batch cultivations. The batch cultivations were well predicted by the PLS models for biomass, glucose concentrations and carbon dioxide production rate (RMSEPs were respectively 5%, 7%, 9%). However, when tested for biomass concentrations in fed-batch cultivations (with final biomass three times higher than the highest calibration data) the models had good predictability at high growth rates (RMSEPs were 3% and 4%, respectively for uninduced and induced fed-batch cultivations), which was as good as for the batch cultivations used for developing the models (RMSEPs were 3% and 5%, respectively for uninduced and induced batch cultivations). The fed-batch cultivations performed at low growth rates exhibited much higher fluorescence for fluorophores such as flavin and NAD(P)H as compared to fed-batch cultivations at high growth rate. Therefore, the PLS models tended to over-predict the biomass concentrations at low growth rates. Obviously the cells changed their concentration of biogenic fluorophores depending on the growth rate. Although multi-wavelength fluorescence spectroscopy is a valuable tool for on-line monitoring of bioprocess, care must be taken to re-calibrate the PLS models at different growth rates to improve the accuracy of predictions.  相似文献   

9.
A nitrate control system has been devised for the maintenance of stable nitrate concentrations throughout fed-batch fermentations of Corynebacterium glutamicum. The feedback control system was based on the use of a nitrate-ion-selective electrode to directly monitor the nitrate levels in the fermentor and an automatic controller to activate a nitrate feed pump. The electrode which was used for controlling the nitrate level was stable through-out the fermentation period. The apparent maximum specific growth rate, biomass production, protein production, biomass yields on glucose and nitrate, and amino acid production were all optimal at approximately 50mM nitrate.  相似文献   

10.
A model‐based approach for optimization and cascade control of dissolved oxygen partial pressure (pO2) and maximization of biomass in fed‐batch cultivations is presented. The procedure is based on the off‐line model‐based optimization of the optimal feeding rate profiles and the subsequent automatic pO2 control using a proposed cascade control technique. During the model‐based optimization of the process, feeding rate profiles are optimized with respect to the imposed technological constraints (initial and maximal cultivation volume, cultivation time, feeding rate range, maximal oxygen transfer rate and pO2 level). The cascade pO2 control is implemented using activation of cascades for agitation, oxygen enrichment, and correction of the preoptimized feeding rate profiles. The proposed approach is investigated in two typical fed‐batch processes with Escherichia coli and Saccharomyces cerevisiae. The obtained results show that it was possible to achieve sufficiently high biomass levels with respect to the given technological constraints and to improve controllability of the investigated processes.  相似文献   

11.
Cell cultures must tightly be kept under control in order to guarantee a sufficiently small variability in the protein product quality. A simple and efficient technique for CHO-cell cultures is presented that allows keeping the viable cell count X(v) and the specific growth rate μ of the cells on predefined trajectories. As X(v) and μ cannot directly be measured online, they are controlled indirectly via the total mass of oxygen consumed. Online values of the latter can precisely be estimated from off gas analysis, i.e. from the O? volume ratio measured in the vent line and air flow rate measurements. In glutamine-limited fed-batch cultivations, the glutamine feed rate can be manipulated in such a way that the viable cell density and the specific growth rate are kept on predefined profiles for nearly the entire cultivation time. The viability of the cells is not affected by the closed loop control actions. The technique was validated with CHO-cells cultured in a 2.5-L fully instrumented stirred tank bioreactor. It is shown that the controller is able to run the process exactly on predefined tracks with a high batch-to-batch reproducibility. By means of six fed-batch cultivations of CHO cells it was shown that a remarkable reproducibility of viable cell concentration could be achieved throughout 140 h cultivation time.  相似文献   

12.
A glucose control system is presented, which is able to control cultivations of Saccharomyces cerevisiae even at low glucose concentrations. Glucose concentrations are determined using a special flow injection analysis (FIA) system, which does not require a sampling module. An extended Kalman filter is employed for smoothing the glucose measurements as well as for the prediction of glucose and biomass concentration, the maximum specific growth rate, and the volume of the culture broth. The predicted values are utilized for feedforward/feedback control of the glucose concentration at set points of 0.08 and 0.05 g/L. The controller established well-defined conditions over several hours up to biomass concentrations of 13.5 and 20.7 g/L, respectively. The specific glucose uptake rates at both set points were 1.04 and 0.68 g/g/h, respectively. It is demonstrated that during fed-batch cultivation an overall pure oxidative metabolism of glucose is maintained at the lower set point and a specific ethanol production rate of 0.18 g/g/h at the higher set point.  相似文献   

13.
This study considers two aspects of the implementation of a biomass growth observer and specific growth rate controller in scale-up from small- to pilot-scale bioreactors towards a feasible bulk production process for whole-cell vaccine against whooping cough. The first is the calculation of the oxygen uptake rate, the starting point for online monitoring and control of biomass growth, taking into account the dynamics in the gas-phase. Mixing effects and delays are caused by amongst others the headspace and tubing to the analyzer. These gas phase dynamics are modelled using knowledge of the system in order to reconstruct oxygen consumption. The second aspect is to evaluate performance of the monitoring and control system with the required modifications of the oxygen consumption calculation on pilot-scale. In pilot-scale fed-batch cultivation good monitoring and control performance is obtained enabling a doubled concentration of bulk vaccine compared to standard batch production.  相似文献   

14.
Bacillus megaterium was used as an alternative high potential microbial production system for the production of antibody fragment D1.3 scFv. The aim of the study was to follow a holistic optimization approach from medium screening in small scale microtiter platforms, gaining deeper process understanding in the bioreactor scale and implementing advanced process strategies at larger scales (5-100 L). Screening and optimization procedures were supported by statistical design of experiments and a genetic algorithm approach. The process control relied on a soft-sensor for biomass estimation to establish a μ-oscillating time-dependent fed-batch strategy. Several cycles of growth phases and production phases, equal to starving phases, were performed in one production. Flow cytometry was used to monitor and characterize the dynamics of secretion and cell viability. Besides the biosynthesis of the product, secretion was optimized by an appropriate medium design considering different carbon sources, metal ions, (NH(4))(2)SO(4), and inductor concentrations. For bioprocess design, an adapted oscillating fed-batch strategy was conceived and successfully implemented at an industrially relevant scale of 100 L. In comparison to common methods for controlling fed-batch profiles, the developed process delivered increased overall productivities. Thereby measured process parameters such as growth stagnation or productivity fluctuations were directly linked to single cell or population behavior leading to a more detailed process understanding. Above all, the importance of single cell analysis as key scale-free tool to characterize and optimize recombinant protein production is highlighted, since this can be applied to all development stages independently of the cultivation platform.  相似文献   

15.
Fed-batch production of recombinant fuculose-1-phosphate aldolase (FucA) by Escherichia coli XL1 Blue MRF′ (pTrcfuc) has been automated by using a simple feedback specific growth rate control strategy. Non-induced continuous cultures were conducted in order to characterize substrate consumption and carbon dioxide production yields and rates. In fed-batch cultures, substrate feeding rate was adjusted using on-line biomass estimation based on exhaust gas analysis and macroscopic mass balances. Overexpression of recombinant protein induced by isopropyl-β-d-thiogalactopyranoside (IPTG) under trc promoter did not affect significantly the control of specific growth rate during 7 h after induction. Growth and protein production curves were parallel until high level of protein expression started to inhibit cell growth. The proposed specific growth rate control strategy has been successfully applied to both non-induced and induced fed-batch cultures that do not exhibit severe growth rate depression.  相似文献   

16.
An optimized fed-batch cultivation process for the production of the polyoma virus capsid protein VP1 in recombinant Escherichia coli BL21 bacteria is presented. The optimization procedure maximizing the amount of desired protein is based on a mathematical model. The model distinguishes an initial cell growth phase from a protein production phase initiated by inducer injection. A new approach to model the target protein formation rate was elaborated, where product formation is primarily dependent on the specific biomass growth rate. Lower growth rates led to higher specific protein concentrations. The model was identified from a series of fed-batch experiments designed for parameter identification purposes and possesses good prediction quality. Then the model was used to determine optimal open-loop control profiles by manipulating the substrate feed rates in both phases as well as the induction time. Feed-rate optimization has been solved using Pontryagin's maximum principle. The solution was validated experimentally. A significant improvement of the process performance index was achieved.  相似文献   

17.
In this work, the time varying characteristics of microalgal cultures are investigated. Microalgae are a promising source of biofuels and other valuable chemicals; a better understanding of their dynamic behavior is, however, required to facilitate process scale-up, optimization and control. Growth and oil production rates are evaluated as a function of carbon and nitrogen sources concentration. It is found that nitrogen has a major role in controlling the productivity of microalgae. Moreover, it is shown that there exists a nitrogen source concentration at which biomass and oil production can be maximized. A mathematical model that describes the effect of nitrogen and carbon source on growth and oil production is proposed. The model considers the uncoupling between nutrient uptake and growth, a characteristic of algal cells. Validity of the proposed model is tested on fed-batch cultures.  相似文献   

18.
ABSTRACT: BACKGROUND: Microbial lipids are a potential source of bio- or renewable diesel and the red yeast Rhodosporidium toruloides is interesting not only because it can accumulate over 50% of its dry biomass as lipid, but also because it utilises both five and six carbon carbohydrates, which are present in plant biomass hydrolysates. METHODS: R. toruloides was grown in batch and fed-batch cultures in 0.5 l bioreactors at pH 4 in chemically defined, nitrogen restricted (C/N 40 to 100) media containing glucose, xylose, arabinose, or all three carbohydrates as carbon source. Lipid was extracted from the biomass using chloroform-methanol, measured gravimetrically and analysed by GC. RESULTS: R. toruloides was grown on glucose, xylose, arabinose or mixtures of these carbohydrates in batch and fed-batch, nitrogen restricted conditions. Lipid production was most efficient with glucose (up to 25 g lipid L1, 48 to 75% lipid in the biomass, at up to 0.21 g lipid L1h1) as the sole carbon source, but high lipid concentrations were also produced from xylose (36 to 45% lipid in biomass). Lipid production was low (15-19% lipid in biomass) with arabinose as sole carbon source and was lower than expected (30% lipid in biomass) when glucose, xylose and arabinose were provided simultaneously. The presence of arabinose and/or xylose in the medium increased the proportion of palmitic and linoleic acid and reduced the proportion of oleic acid in the fatty acids, compared to glucose-grown cells. High cell densities were obtained in both batch (37 g L1, with 49% lipid in the biomass) and fed-batch (35 to 47 g L1, with 50 to 75% lipid in the biomass) cultures. The highest proportion of lipid in the biomass was observed in cultures given nitrogen during the batch phase but none with the feed. However, carbohydrate consumption was incomplete when the feed did not contain nitrogen and the highest total lipid and best substrate consumption were observed in cultures which received a constant low nitrogen supply. CONCLUSIONS: Lipid production in R. toruloides was lower from arabinose and mixed carbohydrates than from glucose or xylose. Although high biomass and lipid production were achieved in both batch and fed-batch cultures with glucose as carbon source, for lipid production from mixtures of carbohydrates fed-batch cultivation was preferable. Constant feeding was better than intermittent feeding. The feeding strategy did not affect the relative proportion of different fatty acids in the lipid, but the presence of C5 sugars did.  相似文献   

19.
To examine the effects of volatile components on plant cell growth, a bioreactor control system was developed to simultaneously control the dissolved concentrations of both oxygen and carbon dioxide. The first step in this work was to develop a mathematical model to account for gas-liquid mass transfer; biological utilization and production of O(2) and CO(2); and the series of chemical reactions of CO(2) in water. Using this model and dynamic measurements for dissolved O(2) and CO(2), it was observed that (1) both absorption and desorption of a volatile component could be described by a single mass transfer coefficient, K(l)a, and (2) K(l)a values for oxygen and carbon dioxide transfer were directly proportional. The second step of this work was to employ the mathematical model in an adaptive feed-forward strategy to control the dissolved O(2) and CO(2) concentrations by manipulating the inlet gas composition to the bioreactor. This strategy allowed dissolved concentrations to be controlled without the need for changing either the total gas flow rate or agitator speed. Adaptive control was required because the volumetric rates of O(2) and CO(2) consumption and production vary with time during long term operation and therefore these rates must be continually updated. As the final step, we demonstrated that this control strategy was capable of controlling the dissolved gas concentrations in both short- and long-term studies involving the cultivation of Catharanthus roseus plant cells.  相似文献   

20.
A very simple but effective process control technique is proposed that leads to a high batch-to-batch reproducibility with respect to biomass concentration as well as the specific biomass growth rate profiles in E. coli fermentations performed during recombinant protein production. It makes use of the well-established temperature controllers in currently used fermenters, but takes its information from the difference between the controlled culture temperature T (cult) and the temperature T (coolin) of the coolant fed to the fermenter's cooling jacket as adjusted by the fermenter temperature controller. For process control purposes this measured difference is corrected regarding stirrer influences and cumulated before it is used as a new process control variable. As a spin-off of this control, it becomes possible to estimate online the oxygen mass transfer rates and the corresponding k(L)a values during the real cultivation process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号