首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
The use of plant biomass as substrate for biogas production has recently become of major interest in Europe. Winter Brassica rapa produces high early biomass and could be grown as a pre-crop harvested early in the year followed by a second crop such as maize. The objectives of this study were to estimate heterosis and combining ability of 15 European winter B. rapa cultivars for biomass yield at end of flowering. A half-diallel without reciprocals was conducted among cultivars to produce 105 crosses. These crosses and their parents were evaluated in two years at two locations in Northern Germany. Data collected were days to flowering (DTF), fresh biomass yield (FBY), dry matter content (DMC) and dry biomass yield (DBY). The mean DBY was 5.3 t/ha for the parental cultivars and 5.6 t/ha for their crosses. The crosses surpassed on average their parents by 7.6% for FBY and 5.9% for DBY whereas DMC was 1.4% higher in the parents. Maximum mid parent heterosis was 21.0% for FBY and 30.4% for DBY. Analysis of variance showed that genetic variance was mainly due to specific combining ability (SCA). The correlation between parental performance and general combining ability (GCA) was 0.42** for FBY and 0.53** for DBY. In conclusion, the amount of heterosis in crosses between European winter B. rapa cultivars is not very high on average, but can be up to 30% in the best crosses. Selection of parental combinations with high specific combining ability to produce synthetic cultivars can rapidly improve biomass yield.  相似文献   

2.
Hybrid breeding relies on the combination of parents from two differing heterotic groups. However, the genetic diversity in adapted oilseed rape breeding material is rather limited. Therefore, the use of resynthesized Brassica napus as a distant gene pool was investigated. Hybrids were derived from crosses between 44 resynthesized lines with a diverse genetic background and two male sterile winter oilseed rape tester lines. The hybrids were evaluated together with their parents and check cultivars in 2 years and five locations in Germany. Yield, plant height, seed oil, and protein content were monitored, and genetic distances were estimated with molecular markers (127 polymorphic RFLP fragments). Resynthesized lines varied in yield between 40.9 dt/ha and 21.5 dt/ha, or between 85.1 and 44.6% of check cultivar yields. Relative to check cultivars, hybrids varied from 91.6 to 116.6% in yield and from 94.5 to 103.3% in seed oil content. Mid-parent heterosis varied from −3.5 to 47.2% for yield. The genetic distance of parental lines was not significantly correlated with heterosis or hybrid yield. Although resynthesized lines do not meet the elite rapeseed standards, they are a valuable source for hybrid breeding due to their large distance from present breeding material and their high heterosis when combined with European winter oilseed rape.  相似文献   

3.
Brassica rapa L. is an important vegetable crop in eastern Asia. The objective of this study was to investigate the genetic variation in leaf Zn, Fe and Mn accumulation, Zn toxicity tolerance and Zn efficiency in B. rapa. In total 188 accessions were screened for their Zn-related characteristics in hydroponic culture. In experiment 1, mineral assays on 111 accessions grown under sufficient Zn supply (2 μM ZnSO4) revealed a variation range of 23.2–155.9 μg g−1 dry weight (d. wt.) for Zn, 60.3–350.1 μg g−1 d. wt. for Fe and 20.9–53.3 μg g−1 d. wt. for the Mn concentration in shoot. The investigation of tolerance to excessive Zn (800 μM ZnSO4) on 158 accessions, by using visual toxicity symptom parameters (TSPs), identified different levels of tolerance in B. rapa. In experiment 2, a selected sub-set of accessions from experiment 1 was characterized in more detail for their mineral accumulation and tolerance to excessive Zn supply (100 μM and 300 μM ZnSO4). In this experiment Zn tolerance (ZT) determined by relative root or shoot dry biomass varied about 2-fold. The same six accessions were also examined for Zn efficiency, determined as relative growth under 0 μM ZnSO4 compared to 2 μM ZnSO4. Zn efficiency varied 1.8-fold based on shoot dry biomass and 2.6-fold variation based on root dry biomass. Zn accumulation was strongly correlated with Mn and Fe accumulation both under sufficient and deficient Zn supply. In conclusion, there is substantial variation for Zn accumulation, Zn toxicity tolerance and Zn efficiency in Brassica rapa L., which would allow selective breeding for these traits.  相似文献   

4.
Seeds, i.e. embryos, may be genetically different from either of their parents and moreover may express their own heterosis. The objective was to genetically analyse embryo heterosis for their own weight (i.e. seed weight) in comparison with their seedlings’ heterosis, taking the large-seeded crop (Vicia faba L.) as model. A specific diallel mating scheme was used, based on four parental lines, creating 76 seed genotypes in generations P, F1, F2 and BC. Mature seed weight was assessed for these embryo genotypes in 3 years at one German location, and young plant biomass yield of seedlings emerging from these seeds in two greenhouse experiments. The quantitative genetic analysis showed an average of 10.6% mid-parent heterosis for mature seed weight and 14.5% mid-parent heterosis for juvenile biomass. In both traits, the embryos contributed markedly and significantly via their own genes to the genetic variation. For mature embryo weight heterosis, apparently the parental difference in seed weight was decisive, whereas for juvenile biomass heterosis, genetic unrelatedness of parents had priority.  相似文献   

5.
Chinese semi-winter rapeseed is genetically diverse from Canadian and European spring rapeseed. This study was conducted to evaluate the potential of semi-winter rapeseed for spring rapeseed hybrid breeding, to assess the genetic effects involved, and to estimate the correlation of parental genetic distance (GD) with hybrid performance, heterosis, general combining ability (GCA) and specific combining ability (SCA) in crosses between spring and semi-winter rapeseed lines. Four spring male sterile lines from Germany and Canada as testers were crossed with 13 Chinese semi-winter rapeseed lines to develop 52 hybrids, which were evaluated together with their parents and commercial hybrids for seed yield and oil content in three sets of field trials with 8 environments in Canada and Europe. The Chinese parental lines were not adapted to local environmental conditions as demonstrated by poor seed yields per se. However, the hybrids between the Chinese parents and the adapted spring rapeseed lines exhibited high heterosis for seed yield. The average mid-parent heterosis was 15% and ca. 50% of the hybrids were superior to the respective hybrid control across three sets of field trials. Additive gene effects mainly contributed to hybrid performance since the mean squares of GCA were higher as compared to SCA. The correlation between parental GD and hybrid performance and heterosis was found to be low whereas the correlation between GCA(f + m) and hybrid performance was high and significant in each set of field trials, with an average of r = 0.87 for seed yield and r = 0.89 for oil content, indicating that hybrid performance can be predicted by GCA(f + m). These results demonstrate that Chinese semi-winter rapeseed germplasm has a great potential to increase seed yield in spring rapeseed hybrid breeding programs in Canada and Europe.  相似文献   

6.
In spite of its short history of being an oil crop in China, the Chinese semi-winter rapeseed (Brassica napus L., 2n = 38, AACC) has been improved rapidly by intentional introgression of genomic components from Chinese B. rapa (2n = 20, AA). As a result, the Chinese semi-winter rapeseed has diversified genetically from the spring and winter rapeseed grown in the other regions such as Europe and North America. The objectives of this study were to investigate the roles of the introgression of the genomic components from the Chinese B. rapa in widening the genetic diversity of rapeseed and to verify the role of this introgression in the evolution of the Chinese rapeseed. Ten lines of the new type of rapeseed, which were produced by introgression of Chinese B. rapa to Chinese normal rapeseed, were compared for genetic diversity using amplified fragment length polymorphism (AFLP) with three groups of 35 lines of the normal rapeseed, including 9 semi-winter rapeseed lines from China, 9 winter rapeseed lines from Europe and 17 spring rapeseed lines from Northern Europe, Canada and Australia. Analysis of 799 polymorphic fragments revealed that within the groups, the new type rapeseed had the highest genetic diversity, followed by the semi-winter normal rapeseed from China. Spring and winter rapeseed had the lowest genetic diversity. Among the groups, the new type rapeseed group had the largest average genetic distance to the other three groups. Principal component analysis and cluster analysis, however, could not separate the new type rapeseed group from Chinese normal rapeseed group. Our data suggested that the introgression of Chinese B. rapa could significantly diversify the genetic basis of the rapeseed and play an important role in the evolution of Chinese rapeseed. The use of new genetic variation for the exploitation of heterosis in Brassica hybrid breeding is discussed  相似文献   

7.
A total of 286 genotypes were collected from 39 countries of the world and were evaluated to determine the phenotypic diversity for 17 quantitative traits. Higher degree of coefficient of variation were recorded for grain yield−5 (52.46%), biomass−5 (45.73%), fresh pod width-10 (47.24%), dry pod weight−10 (40.33%), plant height−1 (35.25%), harvest index (32.70%) and number of branches−5. Cluster-II clearly reflected that late genotypes were having lightest pods weight, shortest pod width, and pod length; low grain yield, biomass and harvest index. Width, and pod length; low grain yield, biomass and harvest index. While genotypes in Cluster-III were in contrast to Cluster-II having heaviest pods weight, longest pods width and length, highest grain yield, biomass and harvest index. Higher PC−1 values have been determined for days to flower initiation which consequently were contributing weighed positive to days to pods picking, days to flower completion, days to dry pod appearance, days to plant harvesting while negatively contributed to yield producing traits, indicating that late flowering pea germplasm emphasizes more on the vegetative growth and was low yielding. However, higher PC−2 values have been obtained for number of branches−5, grain yield and biomass while lower values for days to flowering, days to pods picking, days to flower completion, days to dry pod appearance and days to plant harvesting confirming the fact that early genotypes were high yielding.  相似文献   

8.
Amplified fragment length polymorphism (AFLP) markers were employed to assess the genetic diversity amongst two large collections of Brassica rapa accessions. Collection A consisted of 161 B. rapa accessions representing different morphotypes among the cultivated B. rapa, including traditional and modern cultivars and breeding materials from geographical locations from all over the world and two Brassica napus accessions. Collection B consisted of 96 accessions, representing mainly leafy vegetable types cultivated in China. On the basis of the AFLP data obtained, we constructed phenetic trees using mega 2.1 software. The level of polymorphism was very high, and it was evident that the amount of genetic variation present within the groups was often comparable to the variation between the different cultivar groups. Cluster analysis revealed groups, often with low bootstrap values, which coincided with cultivar groups. The most interesting information revealed by the phenetic trees was that different morphotypes are often more related to other morphotypes from the same region (East Asia vs. Europe) than to similar morphotypes from different regions, suggesting either an independent origin and or a long and separate domestication and breeding history in both regions.  相似文献   

9.
Eighteen microsatellite markers were used to determine the genetic distances between the parental gametophyte clones of 14 Laminaria hybrids, which were then used to establish a linear relationship with the heterosis (hybrid vigor) of economic traits including yield, mean blade try weight, mean blade fresh weight, blade length, blade width and mean blade thickness using regression analysis. Significant regression was found between the genetic distance (x) and the heterosis (y) of yield (y = 115.10x − 77.97, r = 0.8151, p = 0.00038), mean blade dry weight (y = 115.23x  −77.97, r = 0.8154, p = 0.00038), mean blade fresh weight (y = 100.08x − 57.85, r = 0.7306, p = 0.0030) and blade length (y = 204.11x − 46.77, r = 0.6963, p = 0.00566). The prediction of the heterosis of Laminaria hybrids with the genetic distance between parental gametophyte clones will facilitate the selection of elite Laminaria hybrids by avoiding the time-consuming and labor-intensive trait evaluation of a large number of hybridization combinations.  相似文献   

10.
Bansal P  Banga S  Banga SS 《PloS one》2012,7(2):e29607
Fixed heterosis resulting from favorable interactions between the genes on their homoeologous genomes in an allopolyploid is considered analogous to classical heterosis accruing from interactions between homologous chromosomes in heterozygous plants of a diploid species. It has been hypothesized that fixed heterosis may be one of the causes of low classical heterosis in allopolyploids. We used Indian mustard (Brassica juncea, 2n = 36; AABB) as a model system to analyze this hypothesis due to ease of its resynthesis from its diploid progenitors, B. rapa (2n = 20; AA) and B. nigra (2n = 16; BB). Both forms of heterosis were investigated in terms of ploidy level, gene action and genetic diversity. To facilitate this, eleven B. juncea genotypes were resynthesized by hybridizing ten near inbred lines of B. rapa and nine of B. nigra. Three half diallel combinations involving resynthesized B. juncea (11×11) and the corresponding progenitor genotypes of B. rapa (10×10) and B. nigra (9×9) were evaluated. Genetic diversity was estimated based on DNA polymorphism generated by SSR primers. Heterosis and genetic diversity in parental diploid species appeared not to predict heterosis and genetic diversity at alloploid level. There was also no association between combining ability, genetic diversity and heterosis across ploidy. Though a large proportion (0.47) of combinations showed positive values, the average fixed heterosis was low for seed yield but high for biomass yield. The genetic diversity was a significant contributor to fixed heterosis for biomass yield, due possibly to adaptive advantage it may confer on de novo alloploids during evolution. Good general/specific combiners at diploid level did not necessarily produce good general/specific combiners at amphiploid level. It was also concluded that polyploidy impacts classical heterosis indirectly due to the negative association between fixed heterosis and classical heterosis.  相似文献   

11.
Maize (Zea mays L.) breeders are concerned about the narrowing of the genetic base of elite germplasm. To reverse this trend, elite germplasm from other geographic regions can be introgressed, but due to lack of adaptation it is difficult to assess their breeding potential in the targeted environment. The objectives of this study were to (1) investigate the relationship between European and US maize germplasm, (2) examine the suitability of different mega-environments and measures of performance to assess the breeding potential of exotics, and (3) study the relationship of genetic distance with mid-parent heterosis (MPH). Eight European inbreds from the Dent and Flint heterotic groups, 11 US inbreds belonging to Stiff Stalk (SS), non-Stiff Stalk (NSS), and CIMMYT Pool 41, and their 88 factorial crosses in F1 and F2 generations were evaluated for grain yield and dry matter concentration. The experiments were conducted in three mega-environments: Central Europe (target mega-environment), US Cornbelt (mega-environment where donor lines were developed), and Southeast Europe (an intermediate mega-environment). The inbreds were also fingerprinted with 266 SSR markers. Suitable criteria to identify promising exotic germplasm were F1 hybrid performance in the targeted mega-environment and F1 and parental performance in the intermediate mega-environment. Marker-based genetic distances reflected relatedness among the inbreds, but showed no association with MPH. Based on genetic distance, MPH, and F1 performance, we suggest to introgress SS germplasm into European Dents and NSS into European Flints, in order to exploit the specific adaptation of European flint germplasm and the excellent combining ability of US germplasm in European maize breeding programs.  相似文献   

12.
 Prediction of the means and genetic variances in segregating generations could help to assess the breeding potential of base populations. In this study, we investigated whether the testcross (TC) means and variances of F3 progenies from F1 crosses in European maize can be predicted from the TC means of their parents and F1 crosses and four measures of parental genetic divergence: genetic distance (GD) determined by 194 RFLP or 691 AFLPTM 1 markers, mid-parent heterosis (MPH), and absolute difference between the TC means of parents (∣P1−P2∣). The experimental materials comprised six sets of crosses; each set consisted of four elite inbreds from the flint or dent germplasm and the six possible F1 crosses between them, which were evaluated for mid-parent heterosis. Testcross progenies of these materials and 20 random F3 plants per F1 cross were produced with a single-cross tester from the opposite heterotic group and evaluated in two environments. The characters studied were plant height, dry matter content and grain yield. The genetic distance between parent lines ranged between 0.17 and 0.70 for RFLPs and between 0.14 and 0.57 for AFLPs in the six sets. Testcross-means of parents, F1 crosses, and F3 populations averaged across the six crosses in a particular set generally agreed well for all three traits. Bartlett’s test revealed heterogeneous TC variances among the six crosses in all sets for plant height, in four sets for grain yield and in five sets for dry matter content. Correlations among the TC means of the parents, F1 crosses, and F3 populations were highly significant and positive for all traits. Estimates of the TC variance among F3 progenies for the 36 crosses showed only low correlations with the four measures of parental genetic divergence for all traits. The results demonstrated that for our material, the TC means of the parents or the parental F1 cross can be used as predictors for the TC means of F3 populations. However, the prediction of the TC variance remains an unsolved problem. Received: 4 August 1997 / Accepted: 17 November 1997  相似文献   

13.
Predicting heterosis and F1 performance from the parental generation could largely enhance the efficiency of breeding hybrid or synthetic cultivars. This study was undertaken to determine the relationship between parental distances estimated from phenotypic traits or molecular markers with heterosis, F1 performance and general combining ability (GCA) in Ethiopian mustard (Brassica carinata). Nine inbred lines representing seven different geographic regions of Ethiopia were crossed in half-diallel. The nine parents along with their 36 F1s were evaluated in a replicated field trail at three locations in Ethiopia. Distances among the parents were calculated from 14 phenotypic traits (Euclidean distance, ED) and 182 random amplified polymorphic DNA (RAPD) markers (Jaccard’s distances, JD), and correlated with heterosis, F1 performance and GCA sum of parents (GCAsum). The correlation between phenotypic and molecular distances was low (r=0.34, P≤0.05). Parents with low molecular distance also had low phenotypic distance, but parents with high molecular distance had either high, intermediate or low phenotypic distance. Phenotypic distance was highly significantly correlated with mid-parent heterosis (r=0.53), F1 performance (r=0.61) and GCA (r=0.79) for seed yield. Phenotypic distance was also positively correlated with (1) heterosis, F1 performance and GCA for plant height and seeds plant−1, (2) heterosis for number of pods plant−1, and (3) F1 performance for 1,000 seed weight. Molecular distance was correlated with GCAsum (r=0.36, P≤0.05) but not significantly with heterosis and F1 performance for seed yield. For each parent a mean distance was calculated by averaging the distances to the eight other parents. Likewise, mean heterosis was estimated by averaging the heterosis obtained when each parent is crossed with the other eight. For seed yield, both mean ED and JD were significantly correlated with GCA (r=0.90, P≤0.01 for ED and r=0.68, P≤0.05 for JD) and mean heterosis (r=0.79, P≤0.05 for ED and r=0.77, P≤0.05 for JD). In conclusion, parental distances estimated from phenotypic traits better predicted heterosis, F1 performance and GCA than distances estimated from RAPD markers. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

14.
Quantitative trait loci (QTL) analysis of yield influencing traits was carried out in Brassica juncea (AABB) using a doubled haploid (DH) mapping population of 123 lines derived from a cross between Varuna (a line representing the Indian gene pool) and Heera (representing the east European gene pool) to identify potentially useful alleles from both the parents. The existing AFLP based map of B. juncea was further saturated with RFLP and SSR markers which led to the identification of the linkage groups belonging to the A (B. rapa) and B (B. nigra) genome components of B. juncea. For QTL dissection, the DH lines were evaluated at three different environments and phenotyped for 12 quantitative traits. A total of 65 QTL spread over 13 linkage groups (LG) were identified from the three environments. QTL analysis showed that the A genome has contributed more than the B genome to productivity (68% of the total QTL detected) suggesting a more prominent role of the A genome towards domestication of this crop. The east European line, Heera, carried favorable alleles for 42% of the detected QTL and the remaining 58% were in the Indian gene pool line, Varuna. We observed clustering of major QTL in a few linkage groups, particularly in J7 and J10 of the A genome, with QTL of different traits having agronomically antagonistic allelic effects co-mapping to the same genetic interval. QTL analysis also identified some well-separated QTL which could be readily transferred between the two pools. Based on the QTL analysis, we propose that improvement in yield could be achieved more readily by heterosis breeding rather than by pure line breeding. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
This paper reports the observation on the intersubgenomic heterosis for seed yield among hybrids between natural Brassica napus (AnAnCnCn) and a new type of B. napus with introgressions of genomic components of Brassica rapa (ArAr). This B. napus was selected from the progeny of B. napus × B. rapa and (B. napus × B. rapa) × B. rapa based on extensive phenotypic and cytological observation. Among the 129 studied partial intersubgenomic hybrids, which were obtained by randomly crossing 13 lines of the new type of B. napus in F3 or BC1F3 to 27 cultivars of B. napus from different regions as tester lines, about 90% of combinations exceeded the yield of their respective tester lines, whereas about 75% and 25% of combinations surpassed two elite Chinese cultivars, respectively. This strong heterosis was further confirmed by reevaluating 2 out of the 129 combinations in a successive year and by surveying hybrids between 20 lines of the new type of B. napus in BC1F5 and its parental B. napus in two locations. Some DNA segments from B. rapa were identified with significant effects on seed yield and yield components of the new type of B. napus in BC1F5 and intersubgenomic hybrids in positive or negative direction. It seems that the genomic components introgressed from B. rapa contributed to improvement of seed yield of rapeseed.  相似文献   

16.
Heterosis is very important for hybrid breeding and productivity of various crop plants can be increased easily by exploitation of it. However, the molecular basis of heterosis has yet to be elucidated. In this study, 51 heterosis-associated genes of different families of Arabidopsis were selected based on their high differential expression in a hybrid relative to its mid-parent value and their orthologues were identified in Brassica oleracea. The selected B. oleracea genes were then characterized based on their predicted functions and expression patterns in four parent-hybrid combinations of cabbage. Many of these genes were found to be more highly expressed in the hybrid than the mid-parent value, and some were better in the parent. Moreover, these highly expressed genes were mostly related to the yield contributing characteristics. Cotyledon and young leaf sizes of these three genotypes were also well correlated with responsive expression of genes analyzed in the parent–hybrid combinations. Thus, the identified genes might be associated with the mechanism of heterosis of B. oleracea hybrid and provide a foundation to reveal the complexity of regulatory gene networks associated with genetic mechanism of heterosis in the plant life cycle. Subsequently, these genes would be useful resources for molecular breeding of hybrid Brassica crops, as well.  相似文献   

17.
With the improvement of seed quality, Brassica rapa oilseed germplasm went through 2 major breeding bottlenecks during the introgression of genes for zero erucic acid content and low glucosinolate content, respectively. This study investigates the impact of these bottlenecks on the genetic diversity in European winter B. rapa by comparing 3 open-pollinated cultivars, each representing a different breeding period. Diversity was estimated on 32 plants per cultivar, with 16 simple sequence repeat (SSR) markers covering each of the B. rapa linkage groups. There was no significant loss of genetic diversity over the 3 cultivars as indicated by allele number (ranging from 59 to 55), mean allele number (from 3.68 to 3.50), Shannon information index (from 0.94 to 0.87) and expected heterozygosity (from 0.53 to 0.48). About 83% of the total variation was attributed to within-cultivar variation, and the remaining 17% to between-cultivar variation by analysis of molecular variance (AMOVA). Individual plants were separated into the 3 cultivars by principal coordinate analysis (PCoA). In conclusion, genetic diversity within cultivars was high and quality breeding in B. rapa did not significantly reduce the genetic diversity of B. rapa winter cultivars, so there is no risk of decline in performance due to quality improvement.  相似文献   

18.
19.
Brassica napus (AACC, 2n = 38) is an important oilseed crop grown worldwide. However, little is known about the population evolution of this species, the genomic difference between its major genetic groups, such as European and Asian rapeseed, and the impacts of historical large‐scale introgression events on this young tetraploid. In this study, we reported the de novo assembly of the genome sequences of an Asian rapeseed (B. napus), Ningyou 7, and its four progenitors and compared these genomes with other available genomic data from diverse European and Asian cultivars. Our results showed that Asian rapeseed originally derived from European rapeseed but subsequently significantly diverged, with rapid genome differentiation after hybridization and intensive local selective breeding. The first historical introgression of B. rapa dramatically broadened the allelic pool but decreased the deleterious variations of Asian rapeseed. The second historical introgression of the double‐low traits of European rapeseed (canola) has reshaped Asian rapeseed into two groups (double‐low and double‐high), accompanied by an increase in genetic load in the double‐low group. This study demonstrates distinctive genomic footprints and deleterious SNP (single nucleotide polymorphism) variants for local adaptation by recent intra‐ and interspecies introgression events and provides novel insights for understanding the rapid genome evolution of a young allopolyploid crop.  相似文献   

20.
Knowledge of the genetic diversity of a species is important for the choice of crossing parents in line and hybrid breeding. Our objective was to investigate European winter triticale using simple sequence repeat (SSR) markers and the coancestry coefficient (f) with regard to genetic diversity and grouping of germplasm. Three to five primer pairs for each of the 42 chromosomes were selected to analyse 128 European winter triticale varieties and breeding lines. SSR analysis resulted in the identification of 657 alleles with an average of 6.8 alleles per primer pair. The average polymorphism information content (PIC) for polymorphic markers was 0.54. Correlation between f and genetic similarity (GS) estimates based on Rogers Distance was low (rf×GS(ABDR)=0.33). The analysis of molecular variance (AMOVA) revealed that 84.7% of the total variation was found within breeding companies, and 15.3% among them. In conclusion, SSR markers from wheat and rye provide a powerful tool for assessing genetic diversity in triticale. Even though no distinct groups within the European winter triticale pool could be detected by principal co-ordinate analysis, this study provides basic information about the genetic relationships for breeding purposes.Electronic Supplementary Material Supplementary material is available in the online version of this article at Communicated by H.C. Becker  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号