首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phytophthora capsici inflicts damage on numerous crop plants by secreting a series of pectinase including pectate lyase (PEL). Here, we report a pectate lyase gene (Pcpel1) from a genomic library of a highly virulent P. capsici strain SD33. Pcpel1 was identified as an open reading frame of 1233 bp encoding a protein of 410 amino acids with a predicted amino‐terminal signal sequence of 21 amino acids. The predicted protein of Pcpel1 has a calculated molecular mass of 43.8 kDa and a pI value of 6.8. Analysis of the amino acid sequence suggested that it was a member of the polysaccharide lyase family 1 that shows pectate lyase activity. Moreover, heterologous expression of Pcpel1 in Pichia pastoris produced proteins with molecular mass 66 kDa, very likely due to differential glycosylation by the yeast. By western blotting and northern blotting analysis, Pcpel1 was strongly expressed during interaction of P. capsici with the host plant, suggesting its involvement in the process of host infection. The role of Pcpel1 in cell wall disassembly and host/parasite interaction is discussed.  相似文献   

2.
Integrative and replicative plasmids for the expression driven by the P43 promoter and secretion of recombinant proteins in Bacillus subtilis were constructed. The plasmids named pInt and pRep respectively were tested for the production of recombinant human interferon gamma (rhIFN-γ). A synthetic hIFN-γ gene employing the optimized B. subtilis codon usage was fused with the Bacillus licheniformis α-amylase signal peptide (sp-amyL) encoding sequence. The integrative construct produced 2.5 ± 0.2 mg l−1 and the replicative system produced 20.3 ± 0.8 mg l−1 of total recombinant rhIFN-γ. The results showed that secretion of hIFN-γ was the bottleneck for the overexpression of mature rhIFN-γ by B. subtilis.  相似文献   

3.
To gain insight into the metabolic design of the amino acid carrier systems in fish, we injected a bolus of 15N amino acids into the dorsal aorta in mature rainbow trout (Oncorhynchus mykiss). The plasma kinetic parameters including concentration, pool size, rate of disappearance (R d), half-life and turnover rate were determined for 15 amino acids. When corrected for metabolic rate, the R d values obtained for trout for most amino acids were largely comparable to human values, with the exception of glutamine (which was lower) and threonine (which was higher). R d values ranged from 0.9 μmol 100 g−1 h−1 (lysine) to 22.1 μmol 100 g−1 h−1 (threonine) with most values falling between 2 and 6 μmol 100 g−1 h−1. There was a significant correlation between R d and the molar proportion of amino acids in rainbow trout whole body protein hydrolysate. Other kinetic parameters did not correlate significantly with whole body amino acid composition. This indicates that an important design feature of the plasma-free amino acids system involves proportional delivery of amino acids to tissues for protein synthesis.  相似文献   

4.
The translocation of secretory proteins derived from a Gram-positive (Staphylococcus hyicus prolipase) or a Gram-negative (Escherichia coli pre-OmpA protein) bacterium across the cytoplasmic membrane was studied in E. coli and Bacillus subtilis. in both microorganisms, the prolipase was found to be secreted across the plasma membrane when either the pre-prolipase signal peptide (38 amino acids in length) or the pre-OmpA signal peptide (21 amino acids in length) was used. Expression of the gene encoding the authentic pre-OmpA protein in B. subtilis resulted in the translocation of mature OmpA protein across the plasma membrane. Processing of the OmpA precursor in B. subtilis required the electrochemical potential and was sensitive to sodium azide, suggesting that the B. subtilis SecA homologue was involved in the translocation process. The mature OmpA protein, which was most likely present in an aggregated state, was fully accessible to proteases in protoplasted cells. Therefore, our results clearly demonstrate that an outer membrane protein can be secreted by B. subtilis, supporting the notion that the basic mechanism of protein translocation is highly conserved in Gram-positive and Gram-negative bacteria.  相似文献   

5.
An isolated gene from Bacillus subtilis str. 168 encoding a putative isomerase was proposed as an L-arabinose isomerase (L-AI), cloned into Escherichia coli, and its nucleotide sequence was determined. DNA sequence analysis revealed an open reading frame of 1,491 bp, capable of encoding a polypeptide of 496 amino acid residues. The gene was overexpressed in E. coli and the protein was purified using nickel-nitrilotriacetic acid chromatography. The purified enzyme showed the highest catalytic efficiency ever reported, with a k cat of 14,504 min−1 and a k cat/K m of 121 min−1 mM−1 for L-arabinose. A homology model of B. subtilis L-AI was constructed based on the X-ray crystal structure of E. coli L-AI. Molecular dynamics simulation studies of the enzyme with the natural substrate, L-arabinose, and an analogue, D-galactose, shed light on the unique substrate specificity displayed by B. subtilis L-AI only towards L-arabinose. Although L-AIs have been characterized from several other sources, B. subtilis L-AI is distinguished from other L-AIs by its high substrate specificity and catalytic efficiency for L-arabinose.  相似文献   

6.
The aguA gene encoding α-glucuronidase was isolated from the thermophilic fungus Talaromyces emersonii by degenerate PCR. AguA has no introns and consists of an open reading frame of 2511 bp, encoding a putative protein of 837 amino acids. The N-terminus of the protein contains a putative signal peptide of 17 amino acids yielding a mature protein of 820 amino acids with a predicted molecular mass of 91.6 kDa. Twenty putative N-glycosylation sites and four O-glycosylation were identified. The T. emersonii α-glucuronidase falls into glycosyl hydrolase family 67, showing approximately 63% identity to similar enzymes from other fungi. Analysis of the aguA promoter revealed several possible regulatory motifs including two XlnR and a CreA binding site. Enzyme activity was optimal at 50 °C and pH 5. Enzyme production was investigated on a range of carbon sources and showed induction on beechwood, oat spelt and birchwood xylan, and repression by glucose or glucuronic acid.  相似文献   

7.
A novel fibrinolytic enzyme, subtilisin BSF1, from a newly isolated Bacillus subtilis A26 was purified, characterized and the gene was isolated and sequenced. The subtilisin BSF1 was purified to homogeneity by five-step procedure with a 4.97-fold increase in specific activity and 6.28% recovery. The molecular weight of the purified enzyme was estimated to be 28 kDa by SDS-PAGE and gel filtration. The purified enzyme exhibited high fibrinolytic activity on fibrin agar plates.Interestingly, the enzyme was highly active over a wide range of pH from 7.0 to 12.0, with an optimum at pH 9.0. The relative activities at pH 10.0 and 11.0 were 97.8% and 85.2% of that at pH 9.0. The optimum temperature for enzyme activity was 60 °C. The activity of subtilisin BSF1 was totally lost in the presence of PMSF, suggesting that the purified enzyme is a serine protease. The N-terminal amino acid sequence of the first 11 amino acids (aa) of the purified fibrinolytic enzyme was AQSVPYGISQI.The bsf1 gene encoding the subtilisin BSF1 was isolated and its DNA sequence was determined. The bsf1 gene consisted of 1146 bp encoding a pre-pro-protein of 381 amino acids organized into a signal peptide (29 aa), a pro-peptide (77 aa) and a mature domain (275 aa). The deduced amino acids sequence of the mature enzyme (BSF1) differs from those of nattokinase from B. subtilis natto and subtilisin DFE from Bacillus amyloliquefaciens DC-4 by 5 and 39 amino acids, respectively.  相似文献   

8.
9.
A bacterium (strain A1) isolated from a ditch synthesized three types of intracellular alginate lyases: A1-I (molecular weight [M.W.] 60,000), A1-II-2 (M.W. 25,000) and A1-III (M.W. 38,000). The nucleotide sequence of the gene for A1-I lyase, which has been cloned in Escherichia coli DH1 was determined. The open reading frame of the gene encoded 622 amino acids with a calculated M.W. of 69,153. The N-terminal amino acid sequence of A1-I lyase purified from strain A1 or E. coli DH1 cells transformed with the A1-I lyase gene was consistent with the deduced sequence from 55His to 74Ala, indicating that the A1-I lyase was synthesized as a precursor with a M.W. of 69,153 and then processed to a mature form with a M.W. of 63,681. The N-terminal sequence of the first twenty amino acids of A1-III lyase was found to match that of A1-I lyase. The N-terminal sequence of the first twenty amino acids of A1-II-2 lyase was consistent with the deduced amino acid sequence from 414Ala to 433Val in the nucleotide sequence of the A1-I lyase gene. These results indicated that the A1-I lyase was further processed to generate A1-II-2 and A1-III lyase species.  相似文献   

10.
The gene for a highly alkaline pectate lyase, Pel-4A, from alkaliphilic Bacillus sp. strain P-4-N was cloned, sequenced, and overexpressed in Bacillus subtilis cells. The deduced amino acid sequence of the mature enzyme (318 amino acids, 34 805 Da) showed moderate homology to those of known pectate lyases in the polysaccharide lyase family 1. The purified recombinant enzyme had an isoelectric point of pH 9.7 and a molecular mass of 34 kDa, and exhibited a very high specific activity compared with known pectate lyases reported so far. The enzyme activity was stimulated 1.6 fold by addition of NaCl at an optimum of 100 mM. When Pel-4A was stored at 50°C for 60 h, striking stabilization by 100 mM NaCl was observed in a pH range from 5 to 11.5, whereas it was stable only around pH 11 in the absence of NaCl. Received: June 10, 2000 / Accepted: October 3, 2000  相似文献   

11.
A bacterial strain with high cellulase activity (0.26 U/ml culture medium) was isolated from hot spring, and classified and named as B. subtilis DR by morphological and 16SrDNA gene sequence analysis. A thermostable endocellulase, CelDR, was purified from the isolated strain. The optimum temperature of the enzyme reaction was 50°C, and CelDR retained 70% of its maximum activity at 75°C after incubation for 30 min. The putative gene celDR, consisting an open reading frame (ORF) of 1,524 nucleotides and encoding a protein of 508 amino acids with a molecular weight of 55 kDa, was purified from B. subtilis DR and cloned into pET-28a for expression. The cellulase production in E. coli BL21 (DE3) was enhanced to approximately three times that of the wild-type strain.  相似文献   

12.
After 24 h of incubation with only purified pectate lyase isolated from Bacillus pumilus DKS1 (EF467045), the weight loss of the ramie fibre was found to be 25%. To know the catalytic residue of pectate lyase the pel gene encoding a pectate lyase from the strain Bacillus pumilus DKS1 was cloned in E. coli XL1Blue and expressed in E. coli BL21 (DE3) pLysS. The pel gene was sequenced and showed 1032 bp length. After purification using CM-Sepharose the enzyme showed molecular weight of 35 kDa and maximal enzymatic activity was observed at 60°C and a pH range of 8.5–9.0. Both Ca2+ and Mn2+ ions were required for activity on Na-pectate salt substrates, while the enzyme was strongly inhibited by Zn2+ and EDTA. The deduced nucleotide sequence of the DKS1 pectate lyase (EU652988) showed 90% homology to pectate lyases from Bacillus pumilus SAFR-032 (CP000813). The 3D structure as well as the catalytic residues was predicted using EasyPred software and Catalytic Site Atlas (CSA), respectively. Site directed mutagenesis confirmed that arginine is an essential catalytic residue of DKS1 pectate lyase.  相似文献   

13.
Adenylosuccinate lyase (ADSL) is a bifunctional enzyme acting in de novo purine synthesis and purine nucleotide recycling. In the present study, we have constructed a grass carp (Ctenopharyngodon idella) intestinal cDNA library that has over 2.3 × 105 primary clones. An expressed sequence tag (EST) of grass carp adenylosuccinate lyase (gcADSL) gene was screened from this library. Both 5′-RACE and 3′-RACE were carried out in order to obtain the complete cDNA sequence, which contains a 1,446 bp open reading frame encoding 482 amino acids about 54.552 kDa. The deduced amino acid sequence shares high homology with its vertebrate counterparts, which shares 94% similarity with zebrafish, 81% with African clawed frog as well as chicken, 77% with human and 76% with mouse. This gcADSL genomic sequence, consisted of 13 exons and 12 introns, is 8,557 bp in size. Real-time quantitative PCR analysis revealed that the highest expression level of gcADSL was detected in muscle and the lowest in gill. In western blotting analysis, His6-tagged gcADSL protein expressed in Escherichia coli could be recognized not only by an anti-His6-tag monoclonal antibody but also by an anti-human ADSL polyclonal antibody, indicating immunological crossreactivity occurs between grass carp and human ADSL protein. 1,082 bp 5′-flanking region sequence was cloned and analyzed.  相似文献   

14.
A high-alkaline, salt-activated alginate lyase is produced by Agarivorans sp. JAM-A1m from a deep-sea sediment off Cape Nomamisaki on Kyushu Island, Japan. Purified to homogeneity, as judged by SDS-PAGE, the enzyme (A1m) had a molecular mass of approximately 31 kDa. The optimal pH was around 10 in glycine–NaOH buffer, and the activity was increased to 1.8 times by adding 0.2 M NaCl. However, when the optimal pH in the presence of 0.2 M NaCl was shifted to pH 9.0, the activity was more than 10 times compared with that at pH 9 in the absence of NaCl. A1m showed the optimal temperature at around 30°C and was stable to incubation between pH 6 and 9. The enzyme degraded favorably mannuronate–guluronate and guluronate-rich fragments in alginate. Shotgun cloning and sequencing of the gene for A1m revealed a 930-bp open reading frame, which encoded a mature enzyme of 289 amino acids (32,295 Da) belonging to polysaccharide lyase family 7. The deduced amino acid sequence showed the highest similarity to that of a Klebsiella enzyme, with only 54% identity.  相似文献   

15.
In this study, we isolated and characterized a novel feather-degrading bacterium that shows keratinolytic, antifungal and plant growth-promoting activities. A bacterium S8 was isolated from forest soil and confirmed to belong to Bacillus subtilis by BIOLOG system and 16S rRNA gene analysis. The improved culture conditions for the production of keratinolytic protease were 0.1% (w/v) sorbitol, 0.3% (w/v) KNO3, 0.1% (w/v) K2HPO4, 0.06% (w/v) KH2PO4 and 0.04% (w/v) MgCl2·6H2O (pH 8.0 and 30°C), respectively. In the improved medium containing 0.1% (w/v) feather, keratinolytic protease production was around 53.3 ± 0.3 U/ml at 4 day; this value was 10-fold higher than the yield in the basal feather medium (5.3 ± 0.1 U/ml). After cultivation for 5 days in the improved medium, intact feather was completely degraded. Feather degradation resulted in free –SH group, soluble protein and amino acids production. The concentration of free –SH group in the culture medium was 15.5 ± 0.2 μM at 4 days. Nineteen amino acids including all essential amino acids were produced in the culture medium; the concentration of total amino acid produced was 3360.4 μM. Proline (2809.9 μM), histidine (371.3 μM) and phenylalanine (172.0 μM) were the major amino acids released in the culture medium. B. subtilis S8 showed the properties related to plant growth promotion: hydrolytic enzymes, ammonification, indoleacetic acid (IAA), phosphate solubilization, and broad-spectrum antimicrobial activity. Interestingly, the strain S8 grown in the improved medium produced IAA and antifungal activity, indicating simultaneous production of keratinolytic and antifungal activities and IAA by B. subtilis S8. These results suggest that B. subtilis S8 could be not only used to improve the nutritional value of feather wastes but also is useful in situ biodegradation of feather wastes. Furthermore, it could also be a potential biofertilizer or biocontrol agent applicable to crop plant soil.  相似文献   

16.
17.
The acylneuraminate lyase gene from Clostridium perfringens A99 was cloned on a 3.3 kb HindIII DNA fragment identified by screening the chromosomal DNA of this species by hybridization with an oligonucleotide probe that had been deduced from the N-terminal amino acid sequence of the purified protein, and another probe directed against a region that is conserved in the acylneuraminate lyase gene of Escherichia coli and in the putative gene of Clostridium tertium. After cloning, three of the recombinant clones expressed lyase activity above the background of the endogenous enzyme of the E. coli host. The sequenced part of the cloned fragment contains the complete acylneuraminate lyase gene (ORF2) of 864 bp that encodes 288 amino acids with a calculated molecular weight of 32.3 kDa. The lyase structural gene follows a non-coding region with an inverted repeat and a ribosome binding site. Upstream from this regulatory region another open reading frame (ORF1) was detected. The 3′-terminus of the lyase structural gene is followed by a further ORF (ORF3). A high homology was found between the amino acid sequences of the sialate lyases from Clostridium perfringens and Haemophilus influenzae (75% identical amino acids) or Trichomonas vaginalis (69% identical amino acids), respectively, whereas the similarity to the gene from E. coli is low (38% identical amino acids). Based on our new sequence data, the ‘large’ sialidase gene and the lyase gene of C. perfringens are not arranged next to each other on the chromosome of this species. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

18.
Liu Z  Li X  Chi Z  Wang L  Li J  Wang X 《Antonie van Leeuwenhoek》2008,94(2):245-255
The extracellular lipase structural gene was isolated from cDNA of Aureobasidium pullulans HN2-3 by using SMARTTM RACE cDNA amplification kit. The gene had an open reading frame of 1245 bp long encoding a lipase. The coding region of the gene was interrupted by only one intron (55 bp). It encodes 414 amino acid residues of a protein with a putative signal peptide of 26 amino acids. The protein sequence deduced from the extracellular lipase structural gene contained the lipase consensus sequence (G-X-S-X-G) and three conserved putative N-glycosylation sites. According to the phylogenetic tree of the lipases, the lipase from A. pullulans was closely related to that from Aspergillus fumigatus (XP_750543) and Neosartorya fischeri (XP_001257768) and the identities were 50% and 52%, respectively. The mature peptide encoding cDNA was subcloned into pET-24a (+) expression vector. The recombinant plasmid was expressed in Escherichia coli BL21(DE3). The expressed fusion protein was analyzed by SDS-PAGE and western blotting and a specific band with molecular mass of about 47 kDa was found. Enzyme activity assay verified the recombinant protein as a lipase. A maximum activity of 0.96 U/mg was obtained from cellular extract of E. coli BL21(DE3) harboring pET-24a(+)LIP1. Optimal pH and temperature of the crude recombinant lipase were 8.0 and 35 °C, respectively and the crude recombinant lipase had the highest hydrolytic activity towards peanut oil.  相似文献   

19.
Purification of extracellular α-amylase from Bacillus subtilis KIBGE HAS was carried out by ultrafiltration, ammonium sulfate precipitation and gel filtration chromatography. The enzyme was purified to homogeneity with 96.3-fold purification with specific activity of 13011 U/mg. The molecular weight of purified α-amylase was found to be 56,000 Da by SDS-PAGE. Characteristics of extracellular α-amylase showed that the enzyme had a Km and V max value of 2.68 mg/ml and 1773 U/ml, respectively. The optimum activity was observed at pH 7.5 in 0.1 M phosphate buffer at 50°C. The amino acid composition of the enzyme showed that the enzyme is rich in neutral/non polar amino acids and less in acidic/polar and basic amino acids. The N-terminal protein sequence of 10 residues was found to be as Ser-Ser-Asn-Lys-Leu-Thr-Thr-Ser-Trp-Gly (S-S-N-K-L-T-T-S-W-G). Furthermore, the protein was not N-terminally blocked. The sequence of α-amylase from B. subtilis KIBGE HAS was a novel sequence and showed no homology to other reported α-amylases from Bacillus strain.  相似文献   

20.
A protease-producing bacterium was isolated from an alkaline wastewater of the soap industry and identified as Vibrio metschnikovii J1 on the basis of the 16S rRNA gene sequencing and biochemical properties. The strain was found to over-produce proteases when it was grown at 30°C in media containing casein as carbon source (14,000 U ml−1). J1 enzyme, the major protease produced by V. metschnikovii J1, was purified by a three-step procedure, with a 2.1-fold increase in specific activity and 33.3% recovery. The molecular weight of the purified protease was estimated to be 30 kDa by SDS-PAGE and gel filtration. The N-terminal amino acid sequence of the first 20 amino acids of the purified J1 protease was AQQTPYGIRMVQADQLSDVY. The enzyme was highly active over a wide range of pH from 9.0 to 12.0, with an optimum at pH 11.0. The optimum temperature for the purified enzyme was 60°C. The activity of the enzyme was totally lost in the presence of PMSF, suggesting that the purified enzyme is a serine protease. The kinetic constants K m and K cat of the purified enzyme using N-succinyl-l-Ala-l-Ala-l-Pro-l-Phe-p-nitroanilide were 0.158 mM and 1.14 × 105 min−1, respectively. The catalytic efficiency (K cat /K m) was 7.23 × 108 min−1 M−1. The enzyme showed extreme stability toward non-ionic surfactants and oxidizing agents. In addition, it showed high stability and compatibility with some commercial liquid and solid detergents. The aprJ1 gene, which encodes the alkaline protease from V. metschnikovii J1, was isolated, and its DNA sequence was determined. The deduced amino acid sequence of the preproenzyme differs from that of V. metschnikovii RH530 detergent-stable protease by 12 amino acids, 7 located in the propeptide and 5 in the mature enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号