首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background  

Normalization in real-time qRT-PCR is necessary to compensate for experimental variation. A popular normalization strategy employs reference gene(s), which may introduce additional variability into normalized expression levels due to innate variation (between tissues, individuals, etc). To minimize this innate variability, multiple reference genes are used. Current methods of selecting reference genes make an assumption of independence in their innate variation. This assumption is not always justified, which may lead to selecting a suboptimal set of reference genes.  相似文献   

2.

Background  

Considering the broad variation in the expression of housekeeping genes among tissues and experimental situations, studies using quantitative RT-PCR require strict definition of adequate endogenous controls. For glioblastoma, the most common type of tumor in the central nervous system, there was no previous report regarding this issue.  相似文献   

3.
4.

Background  

Adequate stress response is a critical factor during athlete horses' training and is central to our capacity to obtain better performances while safeguarding animal welfare.  相似文献   

5.

Background  

Usually the reference genes used in gene expression analysis have been chosen for their known or suspected housekeeping roles, however the variation observed in most of them hinders their effective use. The assessed lack of validated reference genes emphasizes the importance of a systematic study for their identification. For selecting candidate reference genes we have developed a simple in silico method based on the data publicly available in the wheat databases Unigene and TIGR.  相似文献   

6.
7.
Embryonic stem (ES) cells are pluripotent stem cells and give rise to a variety of differentiated cell types including neurons. To study a molecular basis for differentiation from ES cells to neural cells, we searched for proteins involved in mouse neurogenesis from ES cells to neural stem (NS) cells and neurons by two-dimensional gel electrophoresis (2-DE) and peptide mass fingerprinting, using highly homogeneous cells differentiated from ES cells in vitro. We newly identified seven proteins with increased expression and one protein with decreased expression from ES cells to NS cells, and eight proteins with decreased expression from NS cells to neurons. Western blot analysis confirmed that a tumor-specific transplantation antigen, HS90B, decreased, and an extracellular matrix and membrane glycoprotein (such as laminin)-binding protein, galectin 1 (LEG1), increased in NS cells, and LEG1 and a cell adhesion receptor, laminin receptor (RSSA), decreased in neurons. The results of RT-PCR showed that mRNA of LEG1 was also up-regulated in NS cells and down-regulated in neurons, implying an important role of LEG1 in regulating the differentiation. The differentially expressed proteins identified here provide insight into the molecular basis of neurogenesis from ES cells to NS cells and neurons.  相似文献   

8.
Adult bone marrow mesenchymal stem cells (MSCs) can differentiate into several types of mesenchymal cells, including osteocytes, chondrocytes, and adipocytes, but can also differentiate into non-mesenchymal cells, such as neural cells, under appropriate experimental conditions. Until now, many protocols for inducing neuro-differentiation in MSCs in vitro have been reported. But due to the differences in MSCs' isolation and culture conditions, the results of previous studies lacked consistency and comparability. In this study, we induced differentiation into neural phenotype in the same MSCs population by three different treatments: beta-mercaptoethanol, serum-free medium and co-cultivation with fetal mouse brain astrocytes. In all of the three treatments, MSCs could express neural markers such as NeuN or GFAP, associating with remarkable morphological modifications. But these treatments led to neural phenotype in a non-identical manner. In serum-free medium, MSCs mainly differentiated into neuron-like cells, expressing neuronal marker NeuN, and BME can promote this process. Differently, after co-culturing with astrocytes, MSCs leaned to differentiate into GFAP(+) cells. These data confirmed that MSCs can exhibit plastic neuro-differentiational potential in vitro, depending on the protocols of inducement.  相似文献   

9.
10.
11.
12.
13.
The capacity of mesenchymal stem cells for neural differentiation in vitro   总被引:4,自引:0,他引:4  
It has been shown that mesenchymal stem cells (MSCs) of bone marrow from newborn rabbits can be induced for neuronal differentiation. The epidermal growth factor (EGF) introduced in the culture at the rate of 2 ng/ml is able to promote differentiation of neurons from bone marrow mesenchymal stem cells in 27 days of cultivation. Differentiated cells were marked by monoclonal antibodies to 70 kDa neurofilaments. The data obtained show a possibility of using bone marrow stem cells in therapy of neurodegenerative diseases.  相似文献   

14.
miRNAs have recently been reported to modulate somatic embryogenesis (SE), a key pathway of plant regeneration in vitro. For expression level detection and subsequent function dissection of miRNAs in certain biological processes, qRT-PCR is one of the most effective and sensitive techniques, for which suitable reference gene selection is a prerequisite. In this study, three miRNAs and eight non-coding RNAs (ncRNA) were selected as reference candidates, and their expression stability was inspected in developing citrus SE tissues cultured at 20, 25, and 30?°C. Stability of the eight non-miRNA ncRNAs was further validated in five adult tissues without temperature treatment. The best single reference gene for SE tissues was snoR14 or snoRD25, while for the adult tissues the best one was U4; although they were not as stable as the optimal multiple references snoR14?+?U6 for SE tissues and snoR14?+?U5 for adult tissues. For expression normalization of less abundant miRNAs in SE tissues, miR3954 was assessed as a viable reference. Single reference gene snoR14 outperformed multiple references for the overall SE and adult tissues. As one of the pioneer systematic studies on reference gene identification for plant miRNA normalization, this study benefits future exploration on miRNA function in citrus and provides valuable information for similar studies in other higher plants. Key message Three miRNAs and eight non-coding RNAs were tested as reference candidates on developing citrus SE tissues. Best single references snoR14 or snoRD25 and optimal multiple references snoR14?+?U6, snoR14?+?U5 were identified.  相似文献   

15.
Quantitative real-time polymerase chain reaction (qRT-PCR) is currently the most sensitive method used for quantitative gene expression studies. However, minimal variation in the amount of material and presence of inhibitors affecting enzyme efficiency can lead to significant quantification errors. Accurate data normalization is vital using reference genes as internal controls. Many so-called housekeeping genes or reference genes with assumed stable expression can exhibit either up- or downregulation depending on the developmental stage or other environmental conditions. We have evaluated six reference genes (actin, APRT, 18S rRNA, ef1α, β-tubulin and ribosomal protein L2) for qRT-PCR profiling experiments in potato tuber tissues of five varieties during cold storage at different temperatures and treatment periods. Genes were ranked according to their expression stability by BestKeeper, geNorm and NormFinder software tools in the same order. This means that any of them can be used for this purpose. The results indicated that ef1α and APRT were the most stably expressed genes in the potato tuber tissues under different cold storage regimes. We therefore recommend use of this pair of genes as internal controls for gene expression studies under the described conditions.  相似文献   

16.
17.
Neural stem cells (NSCs) could be very useful for the "cell therapy" treatment of neurological disorders. For this reason basic studies aiming to well characterize the biology of NSCs are of great interest. We carried out a molecular and immunocytochemical analysis of EGF-responsive NSCs obtained from rat pups. After the initial growth of NSCs as floating neurospheres in EGF-containing medium, cells were plated on poly-L-ornithine-coated dishes either in the presence or absence of EGF. We followed cell differentiation and apoptosis for 21 days in vitro and analyzed the expression levels of some genes having a major role in these processes, such as pRB, pRB2/p130, p27, and p53. We observed that EGF impairs neuronal differentiation. Furthermore, in the absence of mitogens, apoptosis, which appeared to proceed through the "p53 network," was significantly lower than in the presence of EGF. The cyclin kinase inhibitor p27, while important for cell cycle exit, seemed dispensable for cell survival and differentiation.  相似文献   

18.
19.
The limited capacity of nervous system to promote a spontaneous regeneration and the high rate of neurodegenerative diseases appearance are keys factors that stimulate researches both for defining the molecular mechanisms of pathophysiology and for evaluating putative strategies to induce neural tissue regeneration. In this latter aspect, the application of stem cells seems to be a promising approach, even if the control of their differentiation and the maintaining of a safe state of proliferation should be troubled. Here, we focus on adipose tissue-derived stem cells and we seek out the recent advances on the promotion of their neural differentiation, performing a critical integration of the basic biology and physiology of adipose tissuederived stem cells with the functional modifications that the biophysical, biomechanical and biochemical microenvironment induces to cell phenotype. The pre-clinical studies showed that the neural differentiation by cell stimulation with growth factors benefits from the integration with biomaterials and biophysical interaction like microgravity. All these elements have been reported as furnisher of microenvironments with desirable biological, physical and mechanical properties. A critical review of current knowledge is here proposed, underscoring that a real advance toward a stable, safe and controllable adipose stem cells clinical application will derive from a synergic multidisciplinary approach that involves material engineer, basic cell biology, cell and tissue physiology.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号