首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The population densities of the gypsy moth (Lymantria dispar; Lepidoptera: Lymantriidae) may reach outbreak levels that pose considerable economic and environmental impacts to forests in Europe, Asia, Africa and North America. Compared with the situation in its native European range feeding damage by gypsy moth is often found to be more severe in North America and other parts of the world. Thus, the release from natural enemies can be interpreted as an important cause for high feeding damages. Natural enemies, especially parasitoids, can cause delayed density‐dependent mortality, which may be responsible for population cycles. In North America where only few parasitoids have been introduced and the parasitism rates are considerably lower than in Europe, generalist predators play a larger role than in Europe. Many other factors seem to influence the population dynamics of the gypsy moth such as the host plants and weather. Nevertheless, much of the variability in population densities of the gypsy moth may be attributed to interacting effects of weather conditions and attack by natural enemies. In spite of the considerable number of studies on the ecology and population dynamics of the gypsy moth and the impact of their natural enemies, more quantitative information is required to predict the population dynamics of this pest species and to control its economic and ecologic impact.  相似文献   

2.
Allee effects have been applied historically in efforts to understand the low-density population dynamics of rare and endangered species. Many biological invasions likewise experience the phenomenon of decreasing population growth rates at low population densities because most founding populations of introduced nonnative species occur at low densities. In range expansion of established species, the initial colonizers of habitat beyond the organism’s current range are usually at low density, and thus could be subject to Allee dynamics. There has been consistent empirical and theoretical evidence demonstrating, and in some cases quantifying, the role of Allee dynamics in the gypsy moth, Lymantria dispar (L.), invasion of North America. In this review, we examine the potential causes of the Allee effect in the gypsy moth and highlight the importance of mate-finding failure as a primary mechanism behind an Allee effect, while the degree to which generalist predators induce an Allee effect remains unclear. We then explore the role of Allee effects in the establishment and spread dynamics of the gypsy moth system, which conceptually could serve as a model system for understanding how Allee effects manifest themselves in the dynamics of biological invasions.  相似文献   

3.
Characterizing the current population structure of potentially invasive species provides a critical context for identifying source populations and for understanding why invasions are successful. Non‐native populations inevitably lose genetic diversity during initial colonization events, but subsequent admixture among independently introduced lineages may increase both genetic variation and adaptive potential. Here we characterize the population structure of the gypsy moth (Lymantria dispar Linnaeus), one of the world's most destructive forest pests. Native to Eurasia and recently introduced to North America, the current distribution of gypsy moth includes forests throughout the temperate region of the northern hemisphere. Analyses of microsatellite loci and mitochondrial DNA sequences for 1738 individuals identified four genetic clusters within L. dispar. Three of these clusters correspond to the three named subspecies; North American populations represent a distinct fourth cluster, presumably a consequence of the population bottleneck and allele frequency change that accompanied introduction. We find no evidence that admixture has been an important catalyst of the successful invasion and range expansion in North America. However, we do find evidence of ongoing hybridization between subspecies and increased genetic variation in gypsy moth populations from Eastern Asia, populations that now pose a threat of further human‐mediated introductions. Finally, we show that current patterns of variation can be explained in terms of climate and habitat changes during the Pleistocene, a time when temperate forests expanded and contracted. Deeply diverged matrilines in Europe imply that gypsy moths have been there for a long time and are not recent arrivals from Asia.  相似文献   

4.
The gypsy moth has been present in North America for more than 100 years, and in many of the areas where it has become established outbreaks occur with varying degrees of periodicity. There also exists extensive spatial synchrony in the onset of outbreaks over large geographic regions. Density-dependent mortality clearly limits high-density populations, but there is little evidence for strong regulation of low-density populations. Predation by small mammals appears to be the major source of mortality affecting low-density populations, but because these are generalist predators and gypsy moths are a less preferred food item, mammals do not appear to regulate populations in a density-dependent fashion. Instead, predation levels appear to be primarily determined by small mammal abundance, which is in turn closely linked to the production of acorns that are a major source of food for overwintering predator populations. Mast production by host oak trees is typically variable among years, but considerable spatial synchrony in masting exists over large geographic areas. Thus, it appears that the temporal and spatial patterns of mast production may be responsible for the episodic and spatially synchronous behavior of gypsy moth outbreaks in North America. This multitrophic relationship among mast, predators, and gypsy moths represents a very different explanation of forest insect outbreak dynamics than the more widely applied theories based upon predator–prey cycles or feedbacks with host foliage quality. Received: September 8, 1999 / Accepted: September 20, 2000  相似文献   

5.
Abstract 1 Predation by small mammals has previously been shown to be the largest source of mortality in low‐density gypsy moth, Lymantria dispar (L.), populations in established populations in north‐eastern North America. Fluctuations in predation levels are critical in determining changes in population densities. 2 We compared small mammal communities and levels of predation on gypsy moth pupae among five different oak‐dominated forest types along this insect's western expanding population front in Wisconsin. Comparisons of predator impact can provide critical information for predicting variation in susceptibility among forest types. 3 The results indicated that small mammals caused more mortality than did invertebrates. 4 Both abundance of Peromyscus sp. predators and predation levels were lower in urban and xeric forest types than in mesic sites. 5 These results suggest that, because predation pressures will probably be greater in the mesic sites, gypsy moths may be less likely to develop outbreaks in these habitats, and that defoliation will probably be more frequent in urban and xeric oak‐dominated sites.  相似文献   

6.
7.
Observed changes in the cyclicity of herbivore populations along latitudinal gradients and the hypothesis that shifts in the importance of generalist versus specialist predators explain such gradients has long been a matter of intense interest. In contrast, elevational gradients in population cyclicity are largely unexplored. We quantified the cyclicity of gypsy moth populations along an elevational gradient by applying wavelet analysis to spatially referenced 31-year records (1975–2005) of defoliation. Based on geographically weighted regression and nonlinear regression, we found either a hump-shaped or plateauing relationship between elevation and the cyclicity of gypsy moth populations and a positive relationship between cyclicity and the density of the gypsy moth’s preferred host-tree species. The potential effects of elevational gradients in the density of generalist predators and preferred host-tree species on the cyclicity of gypsy moth populations were evaluated with mechanistic simulation models. The models suggested that an elevational gradient in the densities of preferred host tree species could partially explain elevational patterns of gypsy moth cyclicity. Results from a model assuming a type-III functional response of generalist predators to changes in gypsy moth density were inconsistent with the observed elevational gradient in gypsy moth cyclicity. However, a model with a more realistic type-II functional response gave results roughly consistent with the empirical findings. In contrast to classical studies on the effects of generalist predators on prey population cycles, our model with a type-II functional response predicts a unimodal relationship between generalist-predator density and the cyclicity of gypsy moth populations.  相似文献   

8.
Gypsy moth, Lymantria dispar L., is one of the most important pests of deciduous trees in Europe. In regular cycles, it causes large‐scale defoliation mostly of oak, Quercus spp., forests. Government authorities in the most infested countries in Europe conduct large‐scale applications of pesticides against gypsy moth. In 1999, a new natural enemy, the entomopathogenic fungus Entomophaga maimaiga, was successfully introduced into a gypsy moth population in Bulgaria. Recent investigations suggest that now E. maimaiga is quickly spreading in Europe. Herein, past studies are reviewed regarding this fungus with special emphasis on its potential for becoming an important factor regulating gypsy moth populations in Europe, focusing on the host's population dynamics in relation to the fungus, the influence of environmental conditions on fungal activity, the influence of E. maimaiga on the native entomofauna, including other gypsy moth natural enemies, and spread of the fungus. Based on this analysis, the potential of E. maimaiga for providing control in European gypsy moth populations is estimated.  相似文献   

9.
The gypsy moth is a global pest that has not yet established in New Zealand despite individual moths having been discovered near ports. A climate-driven phenology model previously used in North America was applied to New Zealand. Weather and elevation data were used as inputs to predict where sustainable populations could potentially exist and predict the timing of hatch and oviposition in different regions. Results for New Zealand were compared with those in the Canadian Maritimes (New Brunswick, Nova Scotia, and Prince Edward Island) where the gypsy moth has long been established. Model results agree with the current distribution of the gypsy moth in the Canadian Maritimes and predict that the majority of New Zealand’s North Island and the northern coastal regions of the South Island have a suitable climate to allow stable seasonality of the gypsy moth. New Zealand’s climate appears more forgiving than that of the Canadian Maritimes, as the model predicts a wider range of oviposition dates leading to stable seasonality. Furthermore, we investigated the effect of climate change on the predicted potential distribution for New Zealand. Climate change scenarios show an increase in probability of establishment throughout New Zealand, most noticeably in the South Island.  相似文献   

10.
Spread of the invasive cactus-feeding moth Cactoblastis cactorum has been well documented since its export from Argentina to Australia as a biocontrol agent, and records suggest that all non-native populations are derived from a single collection in the moth’s native range. The subsequent global spread of the moth has been complex, and previous research has suggested multiple introductions into North America. There exists the possibility of additional emigrations from the native range in nursery stock during the late twentieth century. Here, we present mitochondrial gene sequence data (COI) from South America (native range) and North America (invasive range) to test the hypothesis that the rapid invasive spread in North America is enhanced by unique genetic combinations from isolated portions of the native range. We found that haplotype richness in the native range of C. cactorum is high and that there was 90% lower richness in Florida than in Argentina. All Florida C. cactorum haplotypes are represented in a single, well-defined clade, which includes collections from the reported region of original export from Argentina. Thus, our data are consistent with the documented history suggesting a single exportation of C. cactorum from the eastern region of the native range. Additionally, the presence of geographic structure in three distinct haplotypes within the same clade across Florida supports the hypothesis of multiple introductions into Florida from a location outside the native range. Because the common haplotypes in Florida are also known to occur in the neighboring Caribbean Islands, the islands are a likely source for independent North American colonization events. Our data show that rapid and successful invasion within North America cannot be attributed to unique genetic combinations. This suggests that successful invasion of the southeastern US is more likely the product of a fortuitous introduction into favorable abiotic conditions and/or defense responses of specific Opuntia hosts, rapid adaptation, or a release from native enemies.  相似文献   

11.
The European gypsy moth (Lymantria dispar L.) was first introduced to Massachusetts in 1869 and within 150 years has spread throughout eastern North America. This large‐scale invasion across a heterogeneous landscape allows examination of the genetic signatures of adaptation potentially associated with rapid geographical spread. We tested the hypothesis that spatially divergent natural selection has driven observed changes in three developmental traits that were measured in a common garden for 165 adult moths sampled from six populations across a latitudinal gradient covering the entirety of the range. We generated genotype data for 91,468 single nucleotide polymorphisms based on double digest restriction‐site associated DNA sequencing and used these data to discover genome‐wide associations for each trait, as well as to test for signatures of selection on the discovered architectures. Genetic structure across the introduced range of gypsy moth was low in magnitude (FST = 0.069), with signatures of bottlenecks and spatial expansion apparent in the rare portion of the allele frequency spectrum. Results from applications of Bayesian sparse linear mixed models were consistent with the presumed polygenic architectures of each trait. Further analyses indicated spatially divergent natural selection acting on larval development time and pupal mass, with the linkage disequilibrium component of this test acting as the main driver of observed patterns. The populations most important for these signals were two range‐edge populations established less than 30 generations ago. We discuss the importance of rapid polygenic adaptation to the ability of non‐native species to invade novel environments.  相似文献   

12.
American chestnut (Castanea dentata [Marsh.] Borkh.) was once the dominant hardwood species in Eastern North America before an exotic fungal pathogen, Cryphonectria parasitica (Murrill) Barr, functionally eliminated it across its range. One promising approach toward restoring American chestnut to natural forests is development of blight‐tolerant trees using genetic transformation. However, transformation and related processes can result in unexpected and unintended phenotypic changes, potentially altering ecological interactions. To assess unintended tritrophic impacts of transgenic American chestnut on plant–herbivore interactions, gypsy moth (Lymantria dispar L.) caterpillars were fed leaf disks excised from two transgenic events, Darling 54 and Darling 58, and four control American chestnut lines. Leaf disks were previously treated with an LD50 dose of either the species‐specific Lymantria dispar multiple nucleopolyhedrovirus (LdMNPV) or the generalist pathogen Bacillus thuringiensis subsp. kurstaki (Btk). Mortality was quantified and compared to water blank controls. Tree genotype had a strong effect on the efficacies of both pathogens. Larval mortality from Btk‐treated foliage from only one transgenic event, Darling 54, differed from its isogenic progenitor, Ellis 1, but was similar to an unrelated wild‐type American chestnut control. LdMNPV efficacy was unaffected by genetic transformation. Results suggest that although genetic modification of trees may affect interactions with other nontarget organisms, this may be due to insertion effects, and variation among different genotypes (whether transgenic or wild‐type) imparts a greater change in response than transgene presence.  相似文献   

13.
The gypsy moth is considered one of the most harmful invasive forest insects in North America. It has been suggested that gypsy moth may indirectly impact native caterpillar communities via shared parasitoids. However, the impact of gypsy moth on forest insect food webs in general remains unstudied. Here we assess such potential impacts by surveying forest insect food webs in Ontario, Canada. We systematically collected caterpillars using burlap bands at sites with and without histories of gypsy moth outbreak, and then reared these caterpillars until potential parasitoid emergence. This procedure allowed us to generate quantitative food webs describing caterpillar-parasitoid interactions. We estimated the degree of parasitoid sharing between gypsy moth and native caterpillars. We also statistically modeled the effect of gypsy moth outbreak history and current gypsy moth abundance on standard indices of quantitative food web structure and the diversity of parasitoid communities. Rates of gypsy moth parasitism were very low and gypsy moth shared very few parasitoids with native caterpillars, suggesting limited potential for indirect interactions. We did not detect any significant effects of gypsy moth on either food web structure or parasitoid diversity, and the small amount of parasitoid sharing strongly implies that this lack of significance is not merely due to low statistical power. Our study suggests that gypsy moth has limited impact on native host-parasitoid food webs, at least for species that use burlap bands. Our results emphasize that extrapolations of theoretical and experimental conclusions on the impacts of invasive species should be tested in natural settings.  相似文献   

14.
A programme to collect, import and release into Canada the gypsy moth parasitoid,Ceranthia samarensis (Diptera: Tachinidae) is described. The parasitoid's potential for biological control in Canada is also discussed. The parasitoid was collected in Europe by exposing experimental gypsy moth larvae in areas where local gypsy moth populations were at low densities. Following field exposure, the host larvae were returned to the laboratory and parasitoids reared from them. This technique has shown thatC. samarensis is the suffers 7–16% hyperparasitism. From 83–90% of theC. samarensis typically enter diapause as pharate adults within the puparia. Laboratory tests of post-exposure host rearing conditions indicate that constant temperatures disrupt the normal parasitoid diapause and that this effect can not be offset by use of either static long or short photoperiods or natural daylengths. Shipping and cold-storage procedures for puparia are described. Post-storage time to emergence of adultC. samarensis decreased with longer cold storage periods and with higher post-storage incubation temperatures. Emergence requires 112 degree-days above a threshold of 8°C after a period of at least 8 months cold storage. Releases of adultC. samarensis into field cages at four locations in southern Ontario are documented. While dissection of host larvae from the field cages has failed so far to demonstrate evidence of parasitism, we remain hopeful that some establishment of the parasitoid has occurred.   相似文献   

15.
Abstract.
  • 1 Gypsy moth egg masses were collected from innocuous, release and outbreak populations and reared in the laboratory on synthetic diet under identical conditions.
  • 2 Outbreak population gypsy moths hatched sooner, were smaller and less fecund than innocuous or release gypsy moths, but had a higher concentration of total carbohydrates in their haemolymph.
  • 3 Pupae from each population source were submitted to parasitization by two pupal parasitoids. Emerging B.intermedia, an established parasitoid of the gypsy moth associated with outbreak populations, were largest on outbreak source gypsy moths. C. turionellae, not a usual parasitoid of the gypsy moth, were largest when emerging from innocuous or release population gypsy moths. Implications for population dynamics of the gypsy moth are discussed.
  相似文献   

16.
ABSTRACT.
  • 1 Numbers of gypsy moth larvae feeding on each of 922 randomly sampled trees in a Quercus—Acer—Fraxinus forest in southwestern Quebec, Canada were counted in 1979 and in 1980 to quantify the larval feeding preferences as observed in the field for eighteen deciduous and one coniferous tree species at the northern range limit of the gypsy moth.
  • 2 Both the diameter at breast height (dbh) and the estimated foliage biomass of the sampled trees were used to calculate the relative proportions of foliage represented by each of the nineteen tree species in the forest canopy. With these data on availability and utilization of the tree species by the gypsy moth larvae an Ivlev-type electivity index was used to quantify the larval feeding preferences. These preferences observed in the field define the susceptibility of a tree species to attack by the gypsy moth.
  • 3 The feeding preferences calculated using estimated foliage biomass were comparable to the simpler calculation based on dbh (Spearman's rho = 0.79; P= 0.0001). The dbh-based feeding preferences remained almost unchanged in 1979 and 1980 (Spearman's rho = 0.83; P= 0.0001).
  • 4 The composite 1979—80, dbh-based feeding preferences show Quercus rubra, Populus grandidentata, Ostrya virginiana, Amelanchier spp. and Acer saccharum were preferentially attacked by gypsy moth. Prunus serotina, Betula lutea, Acer rubrum, A. pensylvanicum, Fraxinus americana, Ulmus rubra, P. pensylvanicum and B. papyrifera were avoided. All nineteen tree species were, however, utilized to at least some degree by gypsy moth larvae.
  • 5 These results quantitatively affirm and clarify earlier reports of gypsy moth feeding preferences in North America and Eurasia. The advantages and limitations of using an electivity index to estimate the susceptibility of different tree species to attack by folivores like the gypsy moth are discussed.
  相似文献   

17.
Haynes KJ  Liebhold AM  Johnson DM 《Oecologia》2009,159(2):249-256
Outbreaks of many forest-defoliating insects are synchronous over broad geographic areas and occur with a period of approximately 10 years. Within the range of the gypsy moth in North America, however, there is considerable geographic heterogeneity in strength of periodicity and the frequency of outbreaks. Furthermore, gypsy moth outbreaks exhibit two significant periodicities: a dominant period of 8–10 years and a subdominant period of 4–5 years. In this study, we used a simulation model and spatially referenced time series of outbreak intensity data from the Northeastern United States to show that the bimodal periodicity in the intensity of gypsy moth outbreaks is largely a result of harmonic oscillations in gypsy moth abundance at and above a 4 km2 scale of resolution. We also used geographically weighted regression models to explore the effects of gypsy moth host-tree abundance on the periodicity of gypsy moths. We found that the strength of 5-year cycles increased relative to the strength of 10-year cycles with increasing host tree abundance. We suggest that this pattern emerges because high host-tree availability enhances the growth rates of gypsy moth populations.  相似文献   

18.
There is ample evidence that host shifts in plant‐feeding insects have been instrumental in generating the enormous diversity of insects. Changes in host use can cause host‐associated differentiation (HAD) among populations that may lead to reproductive isolation and eventual speciation. The importance of geography in facilitating this process remains controversial. We examined the geographic context of HAD in the wide‐ranging generalist yucca moth Prodoxus decipiens. Previous work demonstrated HAD among sympatric moth populations feeding on two different Yucca species occurring on the barrier islands of North Carolina, USA. We assessed the genetic structure of P. decipiens across its entire geographic and host range to determine whether HAD is widespread in this generalist herbivore. Population genetic analyses of microsatellite and mtDNA sequence data across the entire range showed genetic structuring with respect to host use and geography. In particular, genetic differentiation was relatively strong between mainland populations and those on the barrier islands of North Carolina. Finer scale analyses, however, among sympatric populations using different host plant species only showed significant clustering based on host use for populations on the barrier islands. Mainland populations did not form population clusters based on host plant use. Reduced genetic diversity in the barrier island populations, especially on the derived host, suggests that founder effects may have been instrumental in facilitating HAD. In general, results suggest that the interplay of local adaptation, geography and demography can determine the tempo of HAD. We argue that future studies should include comprehensive surveys across a wide range of environmental and geographic conditions to elucidate the contribution of various processes to HAD.  相似文献   

19.
20.
The gypsy moth, a polyphagous herbivore species, infests mainly deciduous trees in the northern hemisphere, being invasive in North America. In Croatia, gypsy moth is infesting both continental and coastal forests, with the Dinaric Alps posing a physical migratory barrier between two regions. During outbreaks, caterpillars cause severe damages in both regions, though with different outbreak dynamics, which suggests genetic differences between populations. Representative populations from these two regions were screened by sequencing a region of the mitochondrial COI gene. Ninety‐nine sequences resulted in seventeen haplotypes, and analyses revealed a significant genetic differentiation between coastal and continental populations, quite likely attributed to geographic isolation and post‐glacial history. This differentiation arises from significantly higher genetic variability in Mediterranean population, indicating their higher adaptability, an intriguing fact in case of possible northward range shift of gypsy moth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号