首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Li M  Ou X  Yang X  Guo D  Qian X  Xing L  Li M 《Biotechnology letters》2011,33(9):1823-1830
A novel gene (IgASE2) encoding a C18-Δ9 polyunsaturated fatty acids specific (C18-Δ9-PUFAs-specific) elongase was isolated and characterized from DHA-rich microalga, Isochrysis galbana H29. The IgASE2 gene was 1,653 bp in length, contained a 786 bp ORF encoding a protein of 261 amino acids that shared 87% identity with Δ9 elongase, IgASE1, and possessed a 44 bp 5′-untranslated region (5′-UTR) and a 823 bp 3′-untranslated region (3′-UTR). IgASE2, by its heterologous expression in Saccharomyces cerevisiae, elongated linoleic acid (LA, 18:2n−6) and α-linolenic (ALA, 18:3n−3) to eicosadienoic acid (EDA, 20:2n−6) and eicosatrienoic acid (ETrA, 20:3n−3), respectively. The conversions of LA to EDA and ALA to ETrA were 57.6 and 56.1%, respectively. Co-expression of this elongase with Δ8 desaturase required for the synthesis of C20-polyunsaturated fatty acids resulted in the accumulation of dihomo-γ-linolenic acid (20:3n−6) from LA and eicosatetraenoic acid (20:4n−6) from ALA. These results demonstrated that IgASE2 exhibited C18-Δ9-PUFAs-specific elongase activity and the alternative Δ8 pathway was reconstituted.  相似文献   

2.
Efficient transformation of leaf disc-derived callus of Codonopsis lanceolata was obtained using Agrobacterium tumefaciens strain LBA4404 harboring a binary vector, pYBI121, that carries the neomycin phosphotransferase (npt II) gene as a selectable marker. The green shoots recovered from agroinfected explants on selection medium (containing 0.1 mg/l α-naphthaleneacetic acid (NAA), 1 mg/l 6-benzylaminopurine (BAP), 100 mg/l kanamycin, and 250 mg/l cefotaxime) were rooted on Murashige and Skoog (MS) medium supplemented with 2 mg/l IBA and 10 mg/l kanamycin. To optimize the transformation conditions, several factors were assessed, including the co-cultivation period, the duration of pre- and post-culture in darkness and light, the kanamycin concentration, and the Agrobacterium densities. We produced transgenic Codonopsis lanceolata overexpressing γ-tocopherol methyltransferase (γ-TMT) by this protocol. Moreover, the α-tocopherol content of the plants was enhanced by the overexpression of this gene. Bimal Kumar Ghimire and Eun Soo Seong contributed equally to this work.  相似文献   

3.
4.
Strigolactones (SLs) are a recently discovered type of plant hormone that controls various developmental processes. The DWARF53 (D53) protein in rice and the SMAX1-LIKE (SMXL) family in Arabidopsis repress SL signaling. In this study, bioinformatics analyses were performed, and 236 SMXL proteins were identified in 28 sequenced plants. A phylogenetic analysis indicated that all potential SMXL proteins could be divided into three groups and that the SMXL proteins may have originated in Bryophytes. An analysis of the SMXL chromosomal locations suggested that gene duplication events at different times led to expansion of the SMXL family members in Angiospermae. Subsequently, the gene structure and protein modeling of MdSMXLs showed that they are highly conserved. The expression patterns of MdSMXLs indicated that they were expressed in different organs of apple (stems, roots, leaves, flowers, and fruits) at varying levels and that MdSMXLs may participate in the SL signaling pathway and the response to abiotic stress. This study provides a valuable foundation for additional investigations into the function of the SMXL gene family in plants.  相似文献   

5.
6.
The molecular mechanism of the unique cis to trans isomerization of unsaturated fatty acids in the solvent-tolerant bacterium Pseudomonas putida S12 was studied. For this purpose, the carbon isotope fractionation of the cistrans isomerase was estimated. In resting cell experiments, addition of 3-nitrotoluene for activation of the cistrans isomerase resulted in the conversion of the cis-unsaturated fatty acids into the corresponding trans isomers. For the conversion of C16:1 cis to its corresponding trans isomer, a significant fractionation was measured. The intensity of this fractionation strongly depended on the rate of cistrans isomerization and the added concentration of 3-nitrotoluene, respectively. The presence of a significant fractionation provides additional indication for a transition from the sp2 carbon linkage of the cis-double bond to an intermediate sp3 within an enzyme–substrate complex. The sp2 linkage is reconstituted after rotation to the trans configuration has occurred. As cytochrome c plays a major role in the catabolism of Cti polypeptide, these findings favour a mechanism for the enzyme in which electrophilic iron (Fe3+), provided by a heme domain, removes an electron of the cis double bond thereby transferring the sp2 linkage into sp3.  相似文献   

7.

Background  

Coffee is an important crop and is crucial to the economy of many developing countries, generating around US70 billion per year. There are 115 species in the < i > Coffea < /i > genus, but only two, < i > C. arabica < /i > and < i > C. canephora < /i > , are commercially cultivated. Coffee plants are attacked by many pathogens and insect-pests, which affect not only the production of coffee but also its grain quality, reducing the commercial value of the product. The main insect-pest, the coffee berry borer ( < i > Hypotheneumus hampei < /i > ), is responsible for worldwide annual losses of around US70 billion per year. There are 115 species in the Coffea genus, but only two, C. arabica and C. canephora, are commercially cultivated. Coffee plants are attacked by many pathogens and insect-pests, which affect not only the production of coffee but also its grain quality, reducing the commercial value of the product. The main insect-pest, the coffee berry borer (Hypotheneumus hampei), is responsible for worldwide annual losses of around US500 million. The coffee berry borer exclusively damages the coffee berries, and it is mainly controlled by organochlorine insecticides that are both toxic and carcinogenic. Unfortunately, natural resistance in the genus Coffea to H. hampei has not been documented. To overcome these problems, biotechnological strategies can be used to introduce an α-amylase inhibitor gene (α-AI1), which confers resistance against the coffee berry borer insect-pest, into C. arabica plants.  相似文献   

8.
TNFalpha and TNFbeta, or linfotoxin (LTalpha), are two molecules playing an important role in inflammation. Their genes map on Chromosome 6, between the HLA class II and class I loci. Polymorphisms in, or near, TNF genes have been associated with susceptibility to several autoimmune diseases. Studies of TNF genes in celiac disease (CD) have presented contradictory results. We have assessed the role of TNFalpha and linfotoxin alpha (TNFbeta) in CD and their relative value as CD markers in addition to the presence of DQ2. The TNFA -308 polymorphism and the polymorphism at the first intron of the LTA gene were typed in CD patients and healthy controls and the results were correlated with the presence of DQ2. Significant differences were found in genotype and allele frequencies for the TNFA and LTA genes between CD patients and controls, with an increase in the presence of the TNFA*2 and LTA*1 alleles in CD patients. These differences increase when DQ2-positive CD patients and DQ2-positive controls are compared. In DQ2-positive individuals, allele 2 (A) in position -308 of the promoter of TNFA and allele 1 (G) of the NcoI RFLP in the first intron of LTA are additional risk markers for CD.  相似文献   

9.
Morphologically identical transgenic mint (Mentha arvensis L.) with bacterial glutathione synthetase gene has been developed. Transformed plants were obtained by co-cultivation of leaf disks with Agrobacterium tumefaciens strain LBA 4404 harbouring a binary vector pCAMBIA-CpGS that carried E. coli glutathione synthetase (GS), β-glucuronidase as reporter gene and nptII as selective marker gene for kanamycin resistance. Using a constitutive double CaMV 35S promoter and an rbcS transit peptide, we successfully addressed CpGS to the chloroplasts through pJIT 117 vector. Preculture and the presence of AS in the co-cultivation medium played a significant role in enhancing transformation frequency. The highest transformation frequency was achieved with MS selection medium supplemented with 25% coconut water, 1.12 mg l−1 BAP, 0.2 mg l−1 NAA, 50 mg l−1 kanamycin and 125 mg l−1 cefotaxime. Robust rooting of regenerated shoots was obtained in half-strength liquid MS medium containing 0.2 mg l−1 NAA and 50 mg l−1 kanamycin. The presence and expression of transgenes in transgenics (T0) was evidenced by GUS histoenzymatic assay, PCR and RT-PCR analysis of nptII and the gene of interest, i.e., GS of putative transgenic leaves. Chromosomal integration of GS gene was confirmed by Southern blot analysis. Transgenic plants were successfully acclimatized in the greenhouse. An overall transformation frequency of 15% was achieved in approximately 3 months of time period. These results are discussed in relation to heavy metal trafficking pathways in higher plants and to the interest of using plastid expression of PCS for biotechnological applications. Akhilesh Kumar and Amrita Chakraborty contributed equally.  相似文献   

10.
Glutamic acid γ-methyl ester (GAME) was used as substrate for theanine synthesis catalyzed by Escherichia coli cells possessing γ-glutamyltranspeptidase activity. The yield was about 1.2-fold higher than with glutamine as substrate. The reaction was optimal at pH 10 and 45°C, and the optimal substrate ratio of GAME to ethylamine was 1:10 (mol/mol). With GAME at 100 mmol, 95 mmol theanine was obtained after 8 h.  相似文献   

11.
12.
A novel 4-hydroxyphenylpyruvate dioxygenase gene (designated as Smhppd) was cloned from hairy roots of Salvia miltiorrhiza Bung. The full-length cDNA of Smhppd was 1,736 bp long with an ORF (open reading frame) that putatively encoded a polypeptide of 481 amino acids, with a predicted molecular mass of 52.54 kDa. The deduced amino acid sequence of the Smhppd gene shared high homology with other known HPPDs. Analysis of Smhppd genomic DNA revealed that it contained two exons and one intron. The analysis of Smhppd promoter region was also presented. Southern-blot analysis revealed that the Smhppd was a low-copy gene in S. miltiorrhiza. Real-time quantitative PCR analysis indicated that Smhppd was constitutively expressed in roots, stems and leaves of S. miltiorrhiza, with the high expression in roots. In addition, Smhppd expreession level under different stress condition was also analyzed during the hairy root culture period, including signaling components for plant defence responses, such as methyl jasmonate and salicylic acid, as well as an abiotic elicitor, Ag+ and a biotic elicitor, yeast extract. This study will enable us to further understand the role Smhppd plays in the synthesis of active pharmaceutical compounds in S. miltiorrhiza at molecular level.  相似文献   

13.

Key message

Potato StCYP86A33 complements the Arabidopsis AtCYP86A1 mutant, horst - 1.

Abstract

Suberin is a cell-wall polymer that comprises both phenolic and aliphatic components found in specialized plant cells. Aliphatic suberin is characterized by bi-functional fatty acids, typically ω-hydroxy fatty acids and α,ω-dioic acids, which are linked via glycerol to form a three-dimensional polymer network. In potato (Solanum tuberosum L.), over 65 % of aliphatics are either ω-hydroxy fatty acids or α,ω-dioic acids. Since the biosynthesis of α,ω-dioic acids proceeds sequentially through ω-hydroxy fatty acids, the formation of ω-hydroxy fatty acids represents a significant metabolic commitment during suberin deposition. Four different plant cytochrome P450 subfamilies catalyze ω-hydroxylation, namely, 86A, 86B, 94A, and 704B; though to date, only a few members have been functionally characterized. In potato, CYP86A33 has been identified and implicated in suberin biosynthesis through reverse genetics (RNAi); however, attempts to express the CYP86A33 protein and characterize its catalytic function have been unsuccessful. Herein, we describe eight fatty acid ω-hydroxylase genes (three CYP86As, one CYP86B, three CYP94As, and a CYP704B) from potato and demonstrate their tissue expression. We also complement the Arabidopsis cyp86A1 mutant horst-1 using StCYP86A33 under the control of the Arabidopsis AtCYP86A1 promoter. Furthermore, we provide preliminary analysis of the StCYP86A33 promoter using a hairy root transformation system to monitor pStCYP86A33::GUS expression constructs. These data confirm the functional role of StCYP86A33 as a fatty acid ω-hydroxylase, and demonstrate the utility of hairy roots in the study of root-specific genes.
  相似文献   

14.
15.
16.
Graptolites from the Jaeger collection at the Museum für Naturkunde (Berlin, Germany) provide important information on structural details of Silurian (Wenlock–Ludlow) retiolitids as well as for the biostratigraphic and biogeographic distribution of these magnificent graptolites. Species of the genera Cometograptus, Spinograptus and Plectograptus are described from isolated glacial boulder material, collected in northern Germany and from shale specimens found in the Lower Graptolite Shale of Thuringia. The biostratigraphic placement of material derived from glacial erratic boulders, however, is far from being precise. The fauna associated with the neotype of Plectograptus macilentus in the ‘Unterer Graptolithenschiefer’ of Thuringia is discussed and illustrated. Cometograptus alfeisenacki from the Cyrtograptus lundgreni Biozone is recognized as a new species. The genus is discovered for the first time in North German glacial erratic boulders.  相似文献   

17.

Background  

Carotenoids are a group of C40 isoprenoid molecules that play diverse biological and ecological roles in plants. Tomato is an important vegetable in human diet and provides the vitamin A precursor β-carotene. Genes encoding enzymes involved in carotenoid biosynthetic pathway have been cloned. However, regulation of genes involved in carotenoid biosynthetic pathway and accumulation of specific carotenoid in chromoplasts are not well understood. One of the approaches to understand regulation of carotenoid metabolism is to characterize the promoters of genes encoding proteins involved in carotenoid metabolism. Lycopene β-cyclase is one of the crucial enzymes in carotenoid biosynthesis pathway in plants. Its activity is required for synthesis of both α-and β-carotenes that are further converted into other carotenoids such as lutein, zeaxanthin, etc. This study describes the isolation and characterization of chromoplast-specific Lycopene β-cyclase (CYC-B) promoter from a green fruited S. habrochaites genotype EC520061.  相似文献   

18.

Objective

Glucose conversion into disaccharides was performed with β-glucosidases from Prunus dulcis (β-Pd), Aspergillus niger (β-An) and A. awamori (β-Aa), in reactions containing initial glucose of 700 and 900 g l?1.

Results

The reactions’ time courses were followed regarding glucose and product concentrations. In all cases, there was a predominant formation of gentiobiose over cellobiose and also of oligosaccharides with a higher molecular mass. For reactions containing 700 g glucose l?1, the final substrate conversions were 33, 38, and 23.5% for β-An, β-Aa, and β-Pd, respectively. The use of β-An yielded 103 g gentiobiose l?1 (15.5% yield), which is the highest reported for a fungal β-glucosidase. The increase in glucose concentration to 900 g l?1 resulted in a significant increase in disaccharide synthesis by β-Pd, reaching 128 g gentiobiose l?1 (15% yield), while for β-An and β-Aa, there was a shift toward the synthesis of higher oligosaccharides.

Conclusion

β-Pd and the fungal β-An and β-Aa β-glucosidases present quite dissimilar kinetics and selective properties regarding the synthesis of disaccharides; while β-Pd showed the highest productivity for gentiobiose synthesis, β-An presented the highest specificity.
  相似文献   

19.
Zhu G  Chen H  Wu X  Zhou Y  Lu J  Chen H  Deng J 《Transgenic research》2008,17(4):717-725
The functions of polyunsaturated fatty acids (PUFAs) have been widely investigated. In mammals, levels of n-3 PUFAs are relatively low compared to those of n-6 PUFAs. Either a lack of n-3 PUFAs or an excess of n-6 PUFAs could potentially cause health problems in humans. Hence, methods to increase the amount of n-3 PUFAs in diet have been intensely sought. In this study, we demonstrated that the n-3 fatty acid desaturase gene (sFat-1) synthesized from revised and optimized codons based on roundworm Caenorhabditis briggsae genomic gene for enhanced expression in mammals was successfully expressed in Chinese hamster ovary (CHO) cells and significantly elevated cellular n-3 PUFA contents. We generated sFat-1 transgenic mice by introducing mammal expression vector DNAs containing the sFat-1 gene into regular mice through the method of microinjection. Fatty acid compositions were then altered and the levels of docosahexaenoic acid (DHA, 22:6n-3) and docosapentaenoic acid (DPA, 22:5n-3) were greatly increased in these transgenic mice. Various types of tissues in the transgenic mice produced many types of n-3 PUFAs, such as alpha-linolenic acid (ALA; 18:3n-3), eicosapentaenoic acid (EPA, 20:5n-3), DPA, and DHA, for example, muscle tissues of the transgenic mice contained 12.2% DHA, 2.0% DPA, and 23.1% total n-3 PUFAs. These research results demonstrated that the synthesized sFat-1 gene with modified and optimized codons from C. briggsae possess functional activity and greater capability of producing n-3 PUFAs, especially DHA and DPA, in transgenic mice.  相似文献   

20.
Brn1, a reductase gene involved in the melanin biosynthetic pathway, was adopted for species delimitation among members in the “geniculata” group of Curvularia species and proved to be useful for this purpose. Phylogenetic trees of these fungal members were constructed from nucleotide sequences of this region. The so-called geniculata group of Curvularia was separated into several clusters. The conidial morphology of the members in each cluster is closely similar but clearly different among discrete clusters. The phylogenetic groups almost concurred with the morphological grouping. Thus, the synonymous treatment of Curvularia affinis, C. fallax, and C. senegalensis to C. geniculata in a previous study was supported. The isolates with warping hilum conidia were clearly different from C. geniculata and separated into two clusters. C. geniculata ATCC 6671 made an independent cluster situated near these clusters. The protuberant hilum species were located separately in the phylogenetic trees. For sound taxonomic treatment of these isolates, we should accumulate more information and retain our species determination for them. Received: September 26, 2002 / Accepted: March 12, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号