首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of gamma-radiation on the mutagenicity potential of wood-smoked fish (Rastrelliger sp.) was investigated. Smoked fish were irradiated with radiation doses of 2.0, 4.0, 6.0 and 8.0 kGy. The DMSO extracts of non-radiated and irradiated smoked fish were tested for mutagenicity using the Ames plate incorporation assay, host-mediated assay, and the micronucleus test. It was observed that gamma-irradiation did not induce any significant increase in the number of revertants of TA98, TA100 and TA104 as compared with the non-radiated smoked fish. Results of the host-mediated assay and the micronucleus test showed no difference in the mutagenic response of non-radiated and irradiated smoked fish. The results indicate that gamma-radiation does not introduce mutagens in smoked fish.  相似文献   

2.
Female BALB/c mice were fed a low fat diet (1% safflower oil, by weight) or one supplemented with 25% (by weight) of beef fat or olive oil. The abilities of these diets to modify the in vitro and in vivo hepatic conversion of the dietary carcinogens aflatoxin B1, 2-amino-3, 4-dimethylimidazo[4,5-f]quinoline (MeIQ) and 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2) to bacterial mutagens was evaluated. Dietary olive oil appeared to increase the metabolism of both MeIQ and Trp-P-2 to bacterial mutagens in vivo using the intrasanguineous host-mediated assay. Feeding mice either of the high-fat diets increased hepatic conversion of these two compounds to bacterial mutagens in vitro. Dietary fat had no effect on the metabolism of aflatoxin B1. Subsequent experiments suggested that the in vivo effects of dietary olive oil on MeIQ and Trp-P-2 mutagenesis were due to the induction of hepatic enzyme activities rather than to increased rates of uptake of the carcinogen from the gut-lumen.  相似文献   

3.
A host-mediated assay is described for induction of 8-azaguanine-resistant (azgr) and ouabain-resistant (ouar) mutants in Chinese hamster V79 cells cultured in diffusion chambers (DC) in C3H mice. Injection of the hosts with the indirect mutagen/carcinogen cyclophosphamide (CPP) or 1-(pyridyl-3)-3,3-dimethyltriazene (PyDT) caused a dose-dependent increase in mutation frequency at the loci of azgr and ouar in the V79 target cells. Plating efficiency of V79 cells in DC in mice was decreased depending upon the dose of CPP or PyDT given to the hosts. In addition, the relationship between expression time and mutation frequency was examined and discussed. The data support the use of this system as an effective screening procedure for suspected environmental mutagens or carcinogens, especially those that need to be metabolically activated in vivo.  相似文献   

4.
A host-mediated assay in the mouse was tested, in which strains of S. typhimurium (TA 98, TA 1535) were used as indicator organisms and administered intrasanguinally. The bacterial suspension was injected intravenously at a cell density of 1011/ml in a volume of 0.2 ml. The test substances were administered three times at intervals of one hour, orally, intraperitoneally or subcutaneously, the last dose being given immediately before the injection of the indicator organisms. The bacteria were re-isolated one hour later from the liver, and the total bacterial counts and mutation rates were determined. The mutagenic activity of the substances was assessed by reference to the quotients of the mutation rates in the various dosage groups over the control rate. The compounds tested were diethylnitrosamine, cyclophosphamide, dimethylaminoazobenzene, thiotepa and EMS.The bacterial recovery rates in the controls and treated groups ranged from 2.72 to 23.5%, which proved entirely adequate. All the known mutagens tested caused a measurable mutagenic effect in this assay.Comparison of the results with already published data reveals that the intrasanguine host-mediated assay is more sensitive than the intraperitoneal assay system, and that the chosen strains of S. typhimurium are well suited for this method.  相似文献   

5.
The mutagenicity of safrole, eugenol, the secondary amines, with which they combine during metabolism, and the ninhydrin positive urinary metabolites of safrole and eugenol was tested. The panel of tests included the direct bacterial assay, a microsomal mutagenesis assay and a host-mediated assay. With the direct bacterial assay employing four mutant strains of Salmonella typhimurium (TA1530, TA1531, TA1532, TA1964), all the compounds gave negative results. In the microsomal mutagenesis assay, employing the same four mutant strains, safrole and safrole metabolite II were mutagenic with strains TA1530 and TA1532. Dimethylamine was also found to be a weak mutagen in the microsomal mutagenesis assay with strain TA1530. Safrole and safrole metabolite II were also mutagenic in the host-mediated assay with strains TA1950 and TA1952. Negative results were observed for safrole metabolites I and III, eugenol, eugenol metabolites I and II, piperidine, pipecolic acid, proline, and pyrrolidine in all three assay systems.  相似文献   

6.
Styrene and its presumed metabolite, styrene oxide, were tested for their mutagenic effect on a forward mutation system of yeast and of Chinese hamster cells, and on a gene-conversion system of yeast. Experiments with liver microsomal preparations and host-mediated assay with yeast were also carried out.Styrene oxide was mutagenic in all test systems. Styrene was mutagenic only in the host-mediated assay.  相似文献   

7.
Developmental changes in hepatic activation of dietary mutagens by mice   总被引:1,自引:0,他引:1  
Metabolic activation of the food mutagens 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ), 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2) and aflatoxin B1 by female BALB/c mice of different ages (2-24 weeks) was investigated in vivo and in vitro using Salmonella typhimurium TA98 as the indicator organism. The in vivo activation of the three mutagens was investigated in 4- and 24-week-old mice using an intrasanguineous host-mediated assay. All three compounds showed reduced levels of activation with the older hosts. Hepatic S9 fractions from female mice of varying ages between 2 and 24 weeks were used in the in vitro mutagenicity assay. To achieve optimal activation to bacterial mutagens, 5% S9 was required for aflatoxin B1 and Trp-P-2 and 10% S9 for MeIQ; age of donor generally had little effect on the profile of these protein activation curves. Under these optimal conditions MeIQ and Trp-P-2 both exhibited, as before, age-dependent decreases in activation over a wide range of mutagen concentrations, however the in vitro activation of aflatoxin showed no consistent change with age. Spectrophotometric measurements of S9 cytochrome P-450 content showed a decrease in concentration with increasing age, but this was not sufficient to account for changes observed in hepatic mutagen activation. However, changes in the activities of certain cytochrome P-450 isoenzymes and cytosolic GSH-transferases, which in turn result in changes in the activation and detoxification capacity of the liver, would appear to explain age-dependent changes in the activity of mutagens in vivo.  相似文献   

8.
The induction of mutation by a variety of mutagens has been measured utilizing the hypoxanthine-guanine phosphoribosyl transferase (HGPRT) locus in Chinese hamster ovary (CHO) cells (CHO/HGPRT) system). These mutagens include physical agents such as UV light and X-rays, and chemicals such as alkylating agents, ICR-191, and metallic compounds. This system can also be modified for study of the mutagenicity of promutagens such as dimethylnitrosamine (DMN) which require biotransformation for mutagenic action, either through the addition of a rat liver microsomal activation preparation or through a host-mediated activation step using Balb/c athymic mice.  相似文献   

9.
Dinitropyrenes (DNP), present in polluted air, are potent direct-acting mutagens in Salmonella typhimurium TA98. This mutagenicity is markedly reduced in the presence of rat-liver S9 or microsomes. This has now been confirmed using mouse hepatic fractions. Since most in vitro test systems do not adequately simulate conditions encountered in the intact animal, we have investigated dinitropyrene mutagenicity to Salmonella in the host-mediated assay. 1,8-Dinitropyrene (1,8-DNP) given p.o. to BALB/c mice induced a weak mutagenic effect in S. typhimurium TA98 recovered from the liver 1 h after i.v. administration (optimum time). Over the entire dose range tested no toxicity to bacterial cells was detected. Mutation induction in vivo was dose-related with maximum response at 1 mg DNP/kg body weight. This optimum dose, however, was non-mutagenic to strains TA98/1,8-DNP6 (O-transacetylase-deficient) or TA98NR/1,8-DNP6 (nitroreductase- and O-transacetylase-deficient). 1,3-Dinitropyrene and 1,6-dinitropyrene were weakly mutagenic to TA98 at doses similar to 1,8-DNP. Studies with [14C]1,8-DNP showed that 1 h after oral dosing (1 mg/kg), over 100 ng of 1,8-DNP equivalents were present in the liver (= 0.73% dose). However, only about 5.5 ng were present in the bacterial pellet, suggesting that hepatic components in vivo, as in vitro, bind to DNP, thus interfering with its interaction with Salmonella.  相似文献   

10.
A host-mediated assay is described for induction of 8-azaguanine-resistant (azgr) and ouabain-resistant (ouarr) mutants in Chinese hamster V79 cells cultured in diffusion chambers (DC) in C3H mice. Injection of the hosts with the indirect mutagen/carcinogen cyclophosphamide (CPP) or 1-(pyridyl-3)-3,3-dimethyltriazene (PyDT) caused a dose-dependent increase in mutation frequency at the loci of azgr and ouar in the V79 target cells. Plating efficiency of V79 cells in DC in mice was decreased depending upon the dose of CPP or PyDT given to the hosts. In addition, the relationship between expression time and mutation frequency was examined and discussed. The data support the use of this system as an effective screening procedure for suspected environmental mutagens or carcinogens, especially those that need to be metabolically activated in vivo.  相似文献   

11.
The antimutagenic properties of South African herbal teas were investigated using the Salmonella typhimurium mutagenicity assay. Aqueous extracts of fermented and unfermented rooibos tea (Aspalathus linearis) and honeybush tea (Cyclopia intermedia) both possess antimutagenic activity against 2-acetylaminofluorene (2-AAF) and aflatoxin B(1) (AFB(1))-induced mutagenesis using tester strains TA98 and TA100 in the presence of metabolic activation. A far less inhibitory effect was noticed against the direct acting mutagens, methyl methanesulfonate (MMS), cumolhydroperoxide (CHP), and hydrogen peroxide (H(2)O(2)) using TA102, a strain designed to detect oxidative mutagens and carcinogens. Depending on the mutagen used, the unfermented tea exhibited the highest protective effect. A similar response regarding the protection against mutagenesis was obtained when utilising different variations of the double layer Salmonella assay. The double layer technique proved to be more effective to detect the protective effect of the different tea preparations against the direct acting mutagens. With respect to indirect mutagens, the highest protection was noticed when the carcinogen was metabolically activated in the presence of the tea extract as compared with when the tea extract was incubated in a separate layer with the bacteria. The current data suggest that two mechanisms seem to be involved in the antimutagenicity of the tea extracts towards carcinogens that require metabolic activation: (i) the tea components may interfere with cytochrome P450-mediated metabolism of these mutagens and (ii) the direct interaction between the tea constituents, presumably the polyphenolic compounds, with the promutagens and/or the active mutagenic metabolites. However, the mild and/or lack of protection and in some cases even enhancement of mutagenesis induced by direct acting or oxidative mutagens, provide new perspectives regarding the role of the polyphenolic compounds known to exhibit antioxidant properties, in the protection against mutagenesis in the Salmonella assay. The present study provides the first evidence on the antimutagenic activity of honeybush tea and further evidence on the antimutagenicity of rooibos tea.  相似文献   

12.
In the present study, DNA-damage and clastogenic or aneugenic effects of genotoxic compounds were examined in a metabolically competent human cell line (HepG2 cells) using the micronucleus and the comet assays. Compounds with various action mechanisms were tested: direct mutagens such as 4-nitroquinoline-N-oxide (4-NQO) and methyl methanesulfonate (MMS) and indirect mutagens requiring biotransformation to be active such as N-nitrosodimethylamine (NDMA), benzo[a]pyrene (B[a]P) and 2-acetylaminofluorene (2-AAF). The compounds were first tested for cytotoxicity by measuring their effects on RNA synthesis inhibition in HepG2 cells. 4-NQO, B[a]P and 2-AAF were the most potent compounds; their IC(50) values were, respectively, 1.9 micro M (4h contact), 3.4 and 112 micro M after 20 h. MMS was mildly cytotoxic (IC(50)=0.9 mM) and NDMA had a weak effect (IC(50)=110 mM) after 4h contact. In the micronucleus and comet assays, concentrations required to obtain a significant genotoxic effect in HepG2 cells varied over a broad range, NDMA being active only at very high concentrations. To compare the sensitivity of the two assays, we measured the so-called FIC(2)-the concentration necessary to induce a 2-fold increase of the measured genotoxicity parameter. The data show that genotoxic effects were consistently observed at lower concentrations in the micronucleus test, except in the case of MMS. The measured FIC(2) values were 0.12 micro M (4-NQO), 0.17 micro M (2-AAF), 0.26 micro M (B[a]P) and 6.4mM (NDMA). MMS had such a weak effect in the HepG2 cells that we could not calculate its FIC(2) value. In the comet assay, FIC(2) values were observed, respectively, at 1.48 micro M (4-NQO), 3.67 micro M (B[a]P), 13.42 micro M (MMS) and 27 mM (NDMA). 2-AAF failed to induce DNA-damage in this assay. The present study shows that HepG2 cells could be a suitable tool for assessing the genotoxicity of direct and indirect mutagens and for establishing the lowest genotoxic concentration.  相似文献   

13.
We assessed the DNA-repair capacity of HepG2 cells, which were derived from a human hepatoma, by the unscheduled DNA synthesis assay, using the autoradiography protocol (UDS-AR). We evaluated DNA repair following exposure to direct mutagens (4-nitroquinoline-N-oxide (4-NQO), methyl methanesulfonate (MMS)), to mutagens requiring metabolic activation (benzo[a]pyrene (B[a]P), 2-acetylaminofluorene (2-AAF), N-dimethylnitrosoamine (NDMA)) or to structurally related non-mutagens such as pyrene and 4-acetylaminofluorene (4-AAF). All positive compounds tested induced UDS in HepG2 cells. With 4-NQO and MMS, a concentration-dependent increase in net nuclear grains per cell was observed, with 73 and 90% of cells, respectively, in repair at the highest concentration. B[a]P, 2-AAF and NDMA displayed similar dose-dependent UDS responses, but the percentage of cells in repair was lower (about 45%) than that for 4-NQO and MMS. We assessed the genotoxicity of the compounds tested by determining IC(5NNG): the concentration required to induce 5NNG. The compounds studied were ranked in order of IC(5NNG) as follows: 4-NQO = B[a]P > 2-AAF > MMS > NDMA. The UDS assay discriminated between mutagens and non-mutagens, as pyrene and 4-AAF failed to induce DNA repair. The present study demonstrates that UDS can be used as an endpoint for the detection of DNA damage in HepG2 cells.  相似文献   

14.
Recently numerous attempts have been made to reduce the use of vertebrate animals in laboratory experiments to evaluate general and acute toxicity, mutagenesis and teratogenesis of new drugs or chemicals. One common approach is to use established, proliferating cell lines that preserve differentiated functions such as the competence to metabolize xenobiotics. To this end a continuous Chinese hamster epithelial liver cell line (CHEL cells) was established, cultured as used for mutagenesis studies. Structurally different promutagens, such as 7,12-dimethylbenz[a]anthracene (7,12-DMBA), benzo[a]pyrene (B(a)P), aflatoxin B1 (AB1) and cyclophosphamide (CP), were used in order to check and validate the test system. anti-Chrysene-1,2-diol 3,4-epoxide (CDE) and mitomycin C (MMC) were taken as representatives of direct mutagens. The genetic change induced by the mutagens was quantified by measuring mutation frequencies at the HGPRT locus. Several parameters, such as mutant expression time for each chemical, cell density for selection of mutants and enzymatic characterization for HGPRT phenotype, were examined to establish the optimal assay conditions. All promutagens analyzed significantly affected either the cloning efficiency and/or the mutant frequency of CHEL cells after 24 h of exposure. In addition, various enzyme activities involved in the metabolism of the promutagens were determined in CHEL cells, under the experimental conditions of chemical exposure used in the mutagenesis assay. The enzyme activities were compared with those found in uninduced Chinese hamster liver.  相似文献   

15.
The yg2 assay in Zea mays detects forward mutation in somatic cells within leaf primordia of embryos and it was used in an analysis of the molecular dosimetry of ethyl methanesulfonate (EMS). Parallel genetic and molecular dosimetry experiments were conducted in which the frequency of forward mutation and the level of covalently bound ethyl DNA adducts were determined. Prepared kernels were treated for 8 h at 20 degrees C with 1-10 mM EMS. EMS induced a direct concentration-dependent increase in mutation induction proportional to the exposure concentration (slope = 0.93). The kinetics of mutation induction demonstrated in the intact maize system were consistent with the kinetics observed earlier in in vitro model systems using cultured mammalian cells, and contrasted with the exponential increase in mutation induction characteristic of microbial species. Parallel molecular dosimetry experiments were conducted using [3H]EMS. DNA was extracted and purified from embryonic tissues containing the leaf primordia, the target tissue of the yg2 assay. A linear increase in the molecular dose was observed as a function of EMS concentration. Using concentration as a common parameter between the parallel genetic and dosimetry studies, mutation induction appeared to increase nearly in a direct proportion to the molecular dose. However, studies in other genetic systems indicate that the levels of specific DNA adducts, such as O6-ethylguanine (O6-EtGua) show a better correlation with mutation induction kinetics than molecular dose. Neither molecular dose, nor O6-EtGua levels account for differences in the absolute frequencies of mutation induction observed in different genetic systems. Therefore, reliable assessment of health risks posed to humans by chemical mutagens appears to require consideration of other factors in addition to DNA dose or adduct formation, including differences in repair capabilities and in the size of the genetic targets in humans relative to the model genetic systems under study.  相似文献   

16.
Asphalt fumes are complex mixtures of aerosols and vapors containing various organic compounds, including polycyclic aromatic hydrocarbons (PAHs). Previously, we have demonstrated that inhalation exposure of rats to asphalt fumes resulted in dose-dependent induction of CYP1A1 with concomitant down-regulation of CYP2B1 and increased phase II enzyme quinone reductase activity in the rat lung. In the present study, the potential genotoxic effects of asphalt fume exposure due to altered lung microsomal enzymes were studied. Rats were exposed to air or asphalt fume generated under road paving conditions at various concentrations and sacrificed the next day. Alveolar macrophages (AM) were obtained by bronchoalveolar lavage and examined for DNA damage using the comet assay. To evaluate the systemic genotoxic effect of asphalt fume, micronuclei formation in bone marrow polychromatic erythrocytes (PCEs) was monitored. Lung S9 from various exposure groups was isolated from tissue homogenates and characterized for metabolic activity in activating 2-aminoanthracene (2-AA) and benzo[a]pyrene (BaP) mutagenicity using the Ames test with Salmonella typhimurium YG1024 and YG1029. This study showed that the paving asphalt fumes significantly induced DNA damage in AM, as revealed by DNA migration in the comet assay, in a dose-dependent manner, whereas the micronuclei formation in bone marrow PCEs was not detected even at a very high exposure level (1733 mg h/m3). The conversion of 2-AA to mutagens in the Ames test required lung S9-mediated metabolic activation in a dose-dependent manner. In comparison to the controls, lung S9 from rats exposed to asphalt fume at a total exposure level of 479+/-33 mg h/m3 did not significantly enhance 2-AA mutagenicity with either S. typhimurium YG1024 or YG1029. At a higher total asphalt fume exposure level (1150+/-63 mg h/m3), S9 significantly increased the mutagenicity of 2-AA as compared to the control. However, S9 from asphalt fume-exposed rats did not significantly activate the mutagenicity of BaP in the Ames test. These results show that asphalt fume exposure, which significantly altered both phases I and II metabolic enzymes in lung microsomes, is genotoxic to AM and enhances the metabolic activation of certain mutagens through altered S9 content.  相似文献   

17.
Ethylenethiourea is metabolized in mice by oxidation of the sulfur atom to form 2-imidazolin-2-yl sulfenate. Ethylenethiourea itself is a carcinogen, goitrogen, teratogen and a weak bacterial mutagen. The mutagenicities of ethylenethiourea, 2-imidazolin-2-yl sulfenate and their nitroso derivatives were compared in direct bacterial tests and in the host-mediated assay. In all the test systems applied, 2-imidazolin-2-yl sulfenate was less mutagenic than the parent compound.  相似文献   

18.
The DNA-repair host-mediated assay was further calibrated by determining the genotoxic activities of 4 methylating carcinogens, namely, dimethylnitrosamine (DMNA), 1,2-dimethylhydrazine (SDMH), methyl nitrosourea (MNU) and methyl methanesulphonate (MMS) in various organs of treated mice. The ranking of the animal-mediated genotoxic activities of the compounds was compared with that obtained in DNA repair assays performed in vitro. The differential survival of strain E. coli K-12/343/113 and of its DNA-repair-deficient derivatives recA, polA and uvrB/recA, served as a measure of genotoxic potency. In the in vitro assays and at equimolar exposure concentrations, MMS and MNU are the most active chemicals, followed by DMNA, which shows a slight genotoxic effect only in the presence of mouse liver homogenate; SDMH has no activity under these conditions. In the host-mediated assays, the order of genotoxic potency of the compounds was quite different: those carcinogens which require mammalian metabolic activation, namely, DMNA and SDMH, show strong effects in liver and blood, a lesser effect in the lungs and kidneys and the least effect in the spleen. The activity of MNU, a directly acting compound, is similar in all organs investigated, but it is clearly lower than that of DMNA and SDMH. MMS, also a directly acting carcinogen, causes some (barely significant) effect at the highest dose tested. A similar order of potency was observed when the compounds were tested in intrasanguineous host-mediated assays with gene mutation as an endpoint. DMNA and SDMH induce comparable frequencies of L-valine-resistant mutants in E. coli K-12/343/113 recovered from liver and spleen of treated mice, the effect in the liver being the strongest. MNU is mutagenic only at a higher dose, while MMS shows no effect. The results are discussed with respect to the literature data on organ-specific DNA adduct formation induced by the compounds. It is concluded that qualitatively there is a good correlation between the degree of genotoxic activity found in the DNA repair host-mediated assay and DNA adduct formation in the animal's own cells. This is exemplified by the finding that the relative order of genotoxic activity of the 4 methylating agents in bacteria recovered from various organs (DMNA approximately equal to SDMH greater than MNU greater than MMS) is reflected by the same order of magnitude in DNA alkylation in corresponding mammalian organs. Quantitatively, the indirectly acting agents DMNA and SDMH seem to induce fewer genotoxic effects in bacteria present in the liver than would be expected on the basis of DNA-adduct formation data.  相似文献   

19.
The feasibility of performing tests for repairable DNA damage in animal assay procedures was investigated by using repair-proficient and repair-deficient derivatives of E. coli K12 strain 343/113, including mutations in the uvrB, recA, polA and dam genes. To avoid variations in the relative recovery of viable cells from different samples, the strains were further marked with auxotrophic growth requirements, so that mixtures could be treated and the survival of each strain determined individually on media containing the corresponding growth factors. Spot tests were performed with the various strains to re-assess the necessity of using a combination of repair deficiencies, when genotoxic agents of differing mode of action are to be detected. Liquid suspension tests on mixtures of the different strains, furthermore, confirmed that the survival of the individual strains can be determined separately on selective media after treatment with methyl methanesulfonate (MMS) and methyl nitrosourea (MNU). These tests were also used to demonstrate that dimethyl nitrosamine (DMNA) is activated by Aroclor-1254-induced rat-liver S9 fractions to genotoxic products, as measured by the low survival of a recA derivative compared with the repair-proficient wild-type strain. Intrasanguineous host-mediated assays using the present derivatives of E. coli K12/343/113 showed that the various strains, injected simultaneously into mice, could be recovered in amounts sufficient for the individual determination of the relative survival in liver, spleen, lungs, kidneys, pancreas and the blood stream of the host animals. Using a mixture of the repair-proficient parent and the recA derivative inoculated into mice that were subsequently treated with MMS, NMU or DMNA, we found that these chemicals induce a larger decrease in survival in the recA strain as compared with the wild-type in cells recovered from the liver and the spleen. The order of genotoxic potency so determined was DMNA greater than MNU greater than MMS; this is similar to the ranking of the carcinogenicity of these compounds in rodents and probably also reflects the various degrees of DNA alkylation in cells of the livers of the treated animals. The general usefulness of the host-mediated differential DNA repair assay for detecting genotoxic factors in various organs of animals remains to be assessed by using chemical mutagens of different modes of action.  相似文献   

20.
The methodologies and status of the Host-Mediated Assay were reviewed using the published literature available up to June 1980. The Working Group reviewed 274 documents, including abstracts, research articles, review articles, and publicly available contracts and grant final reports. From this group, abstracts and reviews were rejected from critical evaluation. 77 documents were accepted and reviewed by the Working Group and the test results summarized.These selected documents yielded 208 chemicals that were evaluated in the host-mediated assay. Of these chemicals, 133 were mutagenic in this assay with one or more indicators. 76 chemicals, several of which are not considered to be carcinogenic, were not detected by any of the indicators. Of the 208 chemicals, 125 had been tested in carcinogenicity assay in rodents. 90, or 71%, of the carcinogens were detected as mutagens in the Host-Mediated Assay. In several cases, those carcinogens not detected may have been negative because of improper selection of the indicator.The Working Group concluded that the Host-Mediated Assay is an important test in mutagenicity/carcinogenicity research and that, by proper selection of protocols and indicators, valuable information can be gained that otherwise would be overlooked by strict, in vitro assays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号