首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A detailed study of lipid fluidity and organization in the mitochondria of the brown adipose tissue from warm- and cold-adapted rats (nonhibernators) and hamsters (hibernators) is made in order to delineate any relationship between lipid properties and the ability to lower body temperature after cold-adaptation. Complete phospholipid analyses are presented; the data are very similar for cold- and warm-adapted rats, and for cold- and warm-adapted hamsters, but the rat lipids have a higher degree of unsaturation than those of the hamsters. Spin probe analogs of stearic acid and cholestane were used to investigate at the molecular level the fluidity and order of the mitochondrial lipids. Studies were made on intact mitochondria, and in liposomes and oriented multibilayers of extracted lipids. In no case was evidence found for a phase transition in the lipids, or for a relationship between the lipid fluidity in brown adipose tissue mitochondria and the ability to survive at lowered body temperatures. The spin probes generally had a decreased mobility in mitochondria relative to extracted lipids. The electron spin resonance spectra were analyzed to include order- and time-dependent phenomena by a recent stochastic method. The results show that more approximate analyses for order parameters and correlation times can yield incorrect conclusions. As segmental motion decreases in rate, order parameters will be overestimated. Decreasing rates of pseudoisotropic motion lead to incorrect estimates of rotational correlation times. Either of the above can result in the inference of an artifactual phase transition in the lipids.  相似文献   

2.
Steady-state flow rates and exudate osmotic potentials were measured from complete root systems from warm- (28/23 C) or cold-(17/11 C) grown soybean or broccoli (Brassica oleracea) plants at various pressures or different temperatures.  相似文献   

3.
HÉLÈNE CYR 《Freshwater Biology》2008,53(12):2414-2425
1. Unionid mussels often account for a large portion of benthic biomass and contribute to nutrient cycling and sediment processes, but are thought to be limited to shallow areas (<2–3 m). 2. The depth distribution and body size of Elliptio complanata were compared in seven Canadian Shield lake basins of different sizes to test what factors determine the upper and lower limit of their depth range. Specifically, I tested whether (i) the upper range of their distribution is limited by exposure to winds and wave action and (ii) the lower range of their distribution is limited by the depth of the thermocline or by the boundary of mud deposition. 3. The average depth distribution of E. complanata shifted to greater depths in larger lake basins. When comparing individual transects, maximum mussel density was found deeper at more exposed sites. Mussel size decreased with increasing depth and was larger, on average, in larger lake basins. These results suggest that physical forces limit the upper range of mussel distribution in lakes. 4. The maximum depth at which mussels were found in different lakes was closely related to thermocline depth. However, mussels were commonly observed below the predicted depth of the mud deposition boundary. The thermocline limits the lower range of mussel distribution in lakes, probably by limiting food availability and by determining water temperature. Substratum type does not limit the lower distribution of mussels. 5. These results suggest that unionid mussels are present in the deeper parts of the littoral zone, especially in large lakes. Therefore, comparisons of mussel populations between sites and between lakes would be biased unless the full depth distribution of these mussels is considered. These results also suggest that long‐term changes in the thermal structure of lakes could affect the range of unionid mussel populations and their functional role in littoral ecosystems.  相似文献   

4.
Marine phytoplankton show complex community structures and biogeographic distributions, the net results of physiological and ecological trade-offs of species responses to fluctuating, heterogeneous environments. We analysed photosynthesis, responses to variable light and macromolecular allocations across a size panel of marine centric diatoms. The diatoms have strong capacities to withstand and exploit fluctuating light, when compared with picophytoplankton. Within marine diatoms, small species show larger effective cross-sections for photochemistry, and fast metabolic repair of photosystem II after photoinactivation. In contrast, large diatoms show lower susceptibility to photoinactivation, and therefore incur lower costs to endure short-term exposures to high light, especially under conditions that limit metabolic rates. This size scaling of key photophysiological parameters thus helps explain the relative competitive advantages of larger versus smaller species under different environmental regimes, with implications for the function of the biogenic carbon pump. These results provide a mechanistic framework to explain and predict shifts in marine phytoplankton community size structure with changes in surface irradiance and mixed layer depth.  相似文献   

5.
The warm oligo-eurytherm diatomsRhizosolenia robusta Norman andRhizosolenia imbricata Brightwell were cultured to determine the temperature range for the best competitive position by growth. Comparison of their generation times with those of other diatoms indicate thatR. robusta reaches this position around 20 °C andR. imbricata above 25 °C. The temperature ranges for growth were 12 °C up to 28 °C forR. robusta and 12 °C to above 30 °C forR. imbricata. The use of both species as indicator species for warm water currents is discussed on account of their lower temperature limit. The cold oligo-eurytherm diatomRhizosolenia shrubsolei had a temperature range for growth of below –1.0 °C to 25 °C. Our experimental results demonstrate thatR. imbricata andR. shrubsolei can be considered separate species.  相似文献   

6.
Plasma glucagon concentration increased in 2 weeks cold-acclimated rats, but it returned to normal value in 4 weeks cold-acclimated ones. Plasma free fatty acid (FFA) and β-hydroxybutyrate concentrations also showed the similar pattern of changes. Plasma glucagon and FFA concentrations decreased in both 2 weeks and 4 weeks heat-acclimated animals. Plasma β-hydroxybutyrate concentration was not changed by heat acclimation. Plasma glucose concentration decreased in heat-acclimated animals, while it was not affected by cold acclimation. There was a significant positive correlation between plasma glucagon and FFA levels as a whole in 2 weeks warm-, cold- and heat-acclimated rats, and in 4 weeks warm- and heat-acclimated ones. These findings would appear to indicate that in both cold and heat acclimation glucagon is closely involved as one member of a hormonal team through regulating lipid and carbohydrate metabolism.  相似文献   

7.
Cold temperature generally induces an enhancement of oxidative capacities, a greater content of intracellular lipids, and a remodeling of lipids in biological membranes. These physiological responses may pose a heightened risk of lipid peroxidation (LPO), while warm temperature could result in greater risk of LPO since rates involving reactive oxygen species and LPO will be elevated. The current study examines responses of the glutathione system of antioxidant defense after temperature acclimation. We measured total glutathione (tGSH), and protein levels of GPx1, GPx4, and GST (cardiac and skeletal muscles), and enzymatic activity (skeletal muscle) of glutathione-dependent antioxidants (GPx, GPx4, and GST) in tissues from striped bass (Morone saxatilis) acclimated for six weeks to 7 °C or 25 °C. tGSH of cardiac muscle from cold-acclimated animals was 1.2-times higher than in warm-bodied counterparts, but unchanged with temperature acclimation in skeletal muscle. A second low molecular weight antioxidant, ascorbate was 1.4- and 1.5-times higher in cardiac and skeletal muscle, respectively in warm- than cold-acclimated animals. Despite 1.2-times higher oxidative capacities (as indicated by citrate synthase activity), in skeletal muscle from cold- versus warm-acclimated fish, levels and activities of antioxidant enzymes were similar between acclimation groups. Lipid peroxidation products (as indicated by TBARS), normalized to tissue wet weight, were more than 2-times higher in skeletal muscle from cold- than warm-acclimated animals, however, when normalized to phospholipid content there was no statistical difference between acclimation groups. Our results demonstrate that the physiological changes, associated with acclimation to low temperature in the eurythermal striped bass, are not accompanied by an enhanced antioxidant defense in the glutathione-dependent system.  相似文献   

8.
厦门潮间滩涂小型底栖硅藻和叶绿素的分布   总被引:1,自引:0,他引:1  
陈兴群  陈其焕  张明 《生态学报》1991,11(4):372-376
  相似文献   

9.
Temperature affects all biological functions and will therefore modulate ecologically significant interactions between animals and their environment. Here, we examined the effect of ambient temperature (Ta) on the thermal biology and energy budget in striped hamsters acclimated to cold (5°C), warm (21°C) and hot temperatures (31°C). Thermoneutral zone (TNZ) was 22.5–32.5°C, 25–32.5°C and 30–32.5°C in the cold-, warm- and hot-acclimated hamsters, respectively. The cold acclimation decreased the lower critical temperature and made the TNZ wider, and hot exposure elevated the lower critical temperature, resulting in a narrow TNZ. Within the TNZ, cold-acclimated hamsters showed a significantly higher rate of metabolism and thermogenesis than those acclimated to hot temperature. Digestive enzymes activities, including intestinal sucrase, maltase, L-alanine aminopeptidase-N and leucine aminopeptidase were higher in the cold than in the hot. The changes in metabolic rate and thermogenesis at different temperatures were in parallel with cytochrome c oxidase activity and uncoupling protein 1 gene expression of brown adipose tissue. This suggests that the shift of the lower critical temperature of TNZ is possibly associated with the rate of metabolism and thermogenesis, as well as with the digestive capacity of the gastrointestinal tract at different Ta. The upper critical temperature of TNZ may be independent of the changes in Ta. The changes of lower critical temperature of TNZ are an important strategy in adaption to variations of Ta.  相似文献   

10.
The hydrography and seasonal changes in the standing stock of diatoms and dinoflagellates were studied in 9 stations located in Southern Aegean Sea. The logarithms of the measurements of each stock in each station were subjected to analysis of variance with the factors “station” and “season”. The results suggested a uniform distribution of phytoplankton at all stations within every season. On the other hand there was a significant effect of season upon phytoplankton growth. The annual temperature range (14.2 d̀C-25.6 d̀C) and the phytoplankton cycle (maxima in spring and autumn) provided evidence of the temperate character of this area.  相似文献   

11.
1. Larvae of Pseudochironomus richardsoni were reared to pupation in individual enclosures, in one of three thermal habitats in a northern California stream. The average temperature range in cold seeps was 15–21 °C, while the main channel ranged from 20 to 27 °C, and side pools ranged from 18 to 33 °C. Diet consisted of either diatoms or algal detritus.
2. Specific growth rate ranged from 0.057 to 0.267 day–1. Specific growth and developmental rates were highest on a diatom diet, and increased with temperature. Regressions of growth rate on mean microsite temperature were also significantly altered by diet. Differences in specific growth rate due to diet are magnified at higher temperatures.
3. Pupae reared on diatoms were larger than those reared on detritus. The mass of pupae reared on detritus decreased with increasing temperature. However, there was no significant relationship between pupal mass and temperature for larvae reared on diatoms.
4. The combined effects of food quality and thermal environment on growth of the midge P. richardsoni are significantly different from the independent effects of diet and temperature. Interactive effects of food quality and temperature may influence the contribution of certain aquatic habitats (algal mats) to invertebrate secondary production.  相似文献   

12.
The photosynthetic activities of benthic diatoms in response to temperature changes were assessed by measuring chlorophyll fluorescence kinetics. Small benthic diatom species with large surface area to volume (SA/V) ratios responded to increasing temperature differently from large diatoms, since larger ratios caused lower photosynthetic activity under high-temperature conditions. The small SA/V ratios of large cells may be advantageous in benthic environments under adverse conditions such as high temperature and/or strong light. A size-dependent differential response of benthic diatoms to changes in environmental factors such as temperature may result in an altered distribution of the different diatom communities.  相似文献   

13.
The upper and poleward limit of tree distribution are usually determined by abiotic factors such as low temperature and strong winds. Thus, cold resistance is a key element for survival in high altitudes and latitudes where conditions can reduce plant growth. A trade-off between resource allocation to cold resistance and growth could emerge in populations frequently exposed to low temperatures like those in the treeline zone. We studied annual height growth and ice nucleation temperature in Nothofagus pumilio (Nothofagaceae) populations growing in its extremes of altitudinal distribution and in 3 sites situated on a latitudinal gradient in the Chilean Andes. Additionally, gas exchange, water and nitrogen use efficiency and total soluble sugar (TSS) were also measured as possible mechanisms for survival in high altitudes. Individuals from the treeline populations showed lower annual height growth and lower ice nucleation temperatures compared with those from lower populations. In the same way, individuals from more poleward populations showed lower annual height growth and lower ice nucleation temperatures. Gas exchange, water and nitrogen use efficiency and TSS were also higher in the high altitude populations. The results obtained support the hypothesis of trade-off, because the upper and poleward populations showed more cold resistance but a lower height growth. Additionally, we show that cold resistance mechanisms do not impact the physiological performance, suggesting possible adaptation of the high altitude populations. Low temperatures may be affecting cellular growth instead of photosynthesis, creating a pool of carbohydrates that could participate in cold tolerance. Other abiotic and biotic factors should be also assessed to fully understand the distributional range of Nothofagus species.  相似文献   

14.
Ectotherms decrease in size with increasing ambient temperature. Temperature–size relationships (TSR) have been observed experimentally in a wide range of animals, algae, protozoans and bacteria. However, it is still unclear whether temperature is an important factor controlling the size of organisms in natural populations. In this study, we used natural variability in water temperature in the nearshore areas of a single lake to test TSR in populations of benthic diatoms. We deployed standard tile substrates at 5 m depth (similar light availability) at cold and warm sites that were exposed to different hydrodynamic forces. We compared cell sizes of three species of diatoms (Achnanthidium minutissimum, Gomphonema acuminatum and Gyrosigma acuminatum) at these sites. Counter to the TSR, diatom cells at warm sites were either larger (Achnanthidium, Gomphonema) or similar in size (Gyrosigma) compared to those at colder sites. Diatom size was also related to site exposure (hydrodynamic forces), but differently for species with different architectures. TSR were not detectable in the field for these three species of benthic diatom, even when tested within a single ecosystem at a given time of the year. The size of benthic diatoms, however, varied in a predictable way between sites, and such differences could affect the functioning of these primary producers in different parts of the littoral zone.  相似文献   

15.
The Waikato River (latitude 38°S, longitude 176°E, North Island, New Zealand) is overwhelming y dominated by diatoms (mainly Melosira species) while blue-green and green algae are of minor importance. Both laboratory and in situ nutrient enrichment experiments showed enhanced growth of natural and index blue-green and green algae by addition of phosphate and nitrate. These algae were also shown to require higher temperature and light intensity than the diatoms. On the other hand, Waikato River with its higher silica content, moderate range of temperature and running water habitat was more favourable an environment for diatoms.  相似文献   

16.
The interactive effects of NaCl concentration and growth temperature on the growth and lipid composition of the moderately halophilic eubacterium Vibrio costicola have been investigated. Vibrio costicola was shown to be capable of growth over the temperature range 4-37 degrees C. Maximum growth yields were obtained at 30 degrees C when the optimum NaCl concentration was 1.0 M NaCl. In contrast with some previous studies, at higher or lower growth temperatures both the optimum and lower limit of NaCl concentration were higher, but there was no change in the upper limit of NaCl concentration for growth. There were no differences between the lipid compositions of cultures grown in 1 M NaCl at 30 or 37 degrees C, but as the growth temperature was lowered from 30 to 10 or 4 degrees C, the ratio of phosphatidylethanolamine to phosphatidylglycerol increased significantly as a result of the conversion of phosphatidylglycerol to diphosphatidylglycerol; in addition, at the lower growth temperatures the phospholipid fatty acyl composition became more unsaturated and the mean acyl chain length was shorter. It is suggested that the altered salt dependence of V. costicola at temperatures below the optimum for growth is due to a modification in membrane lipid phase behavior and stability brought about by changes in lipid composition, whereas a different mechanism operates above the growth temperature optimum.  相似文献   

17.
The interaction of temperature and fish size on growth of juvenile turbot   总被引:4,自引:0,他引:4  
Growth rate of tagged juvenile turbot was significantly influenced by the interaction of temperature and fish size. The results suggest the optimum temperature for growth of juvenile turbot in the size range 25–75 g is between 16 and 19°C. Optimal temperature for growth decreased rapidly with increasing size, and is between 13 and 16°C for 100 g turbot. Although individual growth rates varied highly at all times within the temperature treatments, significant size rank correlations were maintained during the experimental period. The study confirms that turbot exhibit ontogenetic variation in temperature optimum, which might partly explain different spatial distribution of juvenile and adult turbot in ocean waters.  相似文献   

18.
Understanding how organisms adapt to complex environments lies at the very heart of ecology and evolutionary biology. Clinal variation in traits related to fitness suggests a contribution of directional selection, and analyzing such variation has consequently become a key element in investigating adaptive evolution. In this study we examine climatic adaptation in the temperate-zone butterfly Lycaena tityrus across replicated populations from low-, (mid-) and high-altitudes, each reared at two different temperatures. In common garden experiments, high- compared to low-altitude populations showed a longer development time accompanied by reduced larval growth rates, increased cold- but decreased heat-stress resistance, and increased flight duration across a range of ambient temperatures. In contrast, differences in morphological traits such as pupal mass or wing size were negligible, suggesting that morphology is not necessarily indicative of flight performance. While patterns in stress resistance traits suggest adaptation to local temperatures, development times between populations were associated with differences in season length (enabling a second generation at lower altitudes, while high-altitude populations are monovoltine) rather than with temperature per se. Mid-altitude populations showed either intermediate patterns or patterns resembling low-altitude populations. Plastic responses to different rearing temperatures resulted, as expected, in reduced larval and pupal development times at higher temperatures accompanied by higher growth rates and decreased pupal mass. Further, butterflies reared at a lower temperature showed reduced chill-coma recovery times and decreased heat knock-down resistance as compared to those reared at a higher temperature. In summary, this study demonstrates local adaptations to regional climates, and that environmentally-induced plasticity can be as important as genetic factors in mediating adaptive responses.  相似文献   

19.
A better understanding of growth-climate responses of high-elevation tree species across their distribution range is essential to devise an appropriate forest management and conservation strategies against adverse impacts of climate change. The present study evaluates how radial growth of Himalayan fir (Abies spectabilis D. Don) and its relation to climate varies with elevation in the Manaslu Mountain range in the central Himalaya. We developed tree-ring width chronologies of Himalayan fir from three elevational belts at the species’upper distribution limit (3750−3900 m), in the middle range (3500−3600 m), and at the lower distribution limit (3200−3300 m), and analyzed their associations with climatic factors. Tree growth of Himalayan fir varied synchronously across elevational belts, with recent growth increases observed at all elevations. Across the elevation gradient, radial growth correlated positively (negatively) with temperature (precipitation and standardized precipitation-evapotranspiration index, SPEI-03) during the summer (July to September) season. However, the importance of summer (July to September) temperatures on radial growth decreased with elevation, whereas correlations with winter (previous November to current January) temperatures increased. Correlations with spring precipitation and SPEI-03 changed from positive to negative from low to high elevations. Moving correlation analysis revealed a persistent response of tree growth to May and August temperatures. However, growth response to spring moisture availability has strongly increased in recent decades, indicating that intensified spring drought may reduce growth rates of Himalayan fir at lower elevations. Under sufficient moisture conditions, increasing summer temperature might be beneficial for fir trees growing at all elevations, while trees growing at the upper treeline will take additional benefit from winter warming.  相似文献   

20.
The observation that ectotherm size decreases with increasing temperature (temperature‐size rule; TSR) has been widely supported. This phenomenon intrigues researchers because neither its adaptive role nor the conditions under which it is realized are well defined. In light of recent theoretical and empirical studies, oxygen availability is an important candidate for understanding the adaptive role behind TSR. However, this hypothesis is still undervalued in TSR studies at the geographical level. We reanalyzed previously published data about the TSR pattern in diatoms sampled from Icelandic geothermal streams, which concluded that diatoms were an exception to the TSR. Our goal was to incorporate oxygen as a factor in the analysis and to examine whether this approach would change the results. Specifically, we expected that the strength of size response to cold temperatures would be different than the strength of response to hot temperatures, where the oxygen limitation is strongest. By conducting a regression analysis for size response at the community level, we found that diatoms from cold, well‐oxygenated streams showed no size‐to‐temperature response, those from intermediate temperature and oxygen conditions showed reverse TSR, and diatoms from warm, poorly oxygenated streams showed significant TSR. We also distinguished the roles of oxygen and nutrition in TSR. Oxygen is a driving factor, while nutrition is an important factor that should be controlled for. Our results show that if the geographical or global patterns of TSR are to be understood, oxygen should be included in the studies. This argument is important especially for predicting the size response of ectotherms facing climate warming.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号