首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cyclic uniaxial stretching of adherent nonmuscle cells induces the gradual reorientation of their actin stress fibers perpendicular to the stretch direction to an extent dependent on stretch frequency. By subjecting cells to various temporal waveforms of cyclic stretch, we revealed that stress fibers are much more sensitive to strain rate than strain frequency. By applying asymmetric waveforms, stress fibers were clearly much more responsive to the rate of lengthening than the rate of shortening during the stretch cycle. These observations were interpreted using a theoretical model of networks of stress fibers with sarcomeric structure. The model predicts that stretch waveforms with fast lengthening rates generate greater average stress fiber tension than that generated by fast shortening. This integrated approach of experiment and theory provides new insight into the mechanisms by which cells respond to matrix stretching to maintain tensional homeostasis.  相似文献   

2.
A kinetic model based on constrained mixture theory was developed to describe the reorganization of actin stress fibers in adherent cells in response to diverse patterns of mechanical stretch. The model was based on reports that stress fibers are pre-extended at a “homeostatic” level under normal, non-perturbed conditions, and that perturbations in stress fiber length destabilize stress fibers. In response to a step change in matrix stretch, the model predicts that stress fibers are initially stretched in registry with the matrix, but that these overly stretched fibers are gradually replaced by new fibers assembled with the homeostatic level of stretch in the new configuration of the matrix. In contrast, average fiber stretch is chronically perturbed from the homeostatic level when the cells are subjected to cyclic equibiaxial stretch. The model was able to describe experimentally measured time courses of stress fiber reorientation perpendicular to the direction of cyclic uniaxial stretch, as well as the lack of alignment in response to equibiaxial stretch. The model also accurately described the relationship between stretch magnitude and the extent of stress fiber alignment in endothelial cells subjected to cyclic uniaxial stretch. Further, in the case of cyclic simple elongation with transverse matrix contraction, stress fibers orient in the direction of least perturbation in stretch. In summary, the model predicts that the rate of stretch-induced stress fiber disassembly determines the rate of alignment, and that stress fibers tend to orient toward the direction of minimum matrix stretch where the rate of stress fiber turnover is a minimum.  相似文献   

3.
Mechanical force is known to modulate the activity of the Jun N-terminal kinase (JNK) signaling cascade. However, the effect of mechanical stresses on JNK signaling activation has previously only been analyzed by in vitro detection methods. It still remains unknown how living cells activate the JNK signaling cascade in response to mechanical stress and what its functions are in stretched cells.We assessed in real-time the activity of the JNK pathway in Drosophila cells by Fluorescence Lifetime Imaging Microscopy (FLIM), using an intramolecular phosphorylation-dependent dJun-FRET (Fluorescence Resonance Energy Transfer) biosensor. We found that quantitative FRET-FLIM analysis and confocal microscopy revealed sustained dJun-FRET biosensor activation and stable morphology changes in response to mechanical stretch for Drosophila S2R+ cells. Further, these cells plated on different substrates showed distinct levels of JNK activity that associate with differences in cell morphology, integrin expression and focal adhesion organization.These data imply that alterations in the cytoskeleton and matrix attachments may act as regulators of JNK signaling, and that JNK activity might feed back to modulate the cytoskeleton and cell adhesion. We found that this dynamic system is highly plastic; at rest, integrins at focal adhesions and talin are key factors suppressing JNK activity, while multidirectional static stretch leads to integrin-dependent, and probably talin-independent, Jun sensor activation. Further, our data suggest that JNK activity has to coordinate with other signaling elements for the regulation of the cytoskeleton and cell shape remodeling associated with stretch.  相似文献   

4.
The role of the actin cytoskeleton in regulating mechanotransduction in response to external forces is complex and incompletely understood. Here, we develop a mathematical model coupling the dynamic disassembly and reassembly of actin stress fibers and associated focal adhesions to the activation of c-jun N-terminal kinase (JNK) in cells attached to deformable matrices. The model is based on the assumptions that stress fibers are pre-extended to a preferred level under static conditions and that perturbations from this preferred level destabilize the stress fibers. The subsequent reassembly of fibers upregulates the rate of JNK activation as a result of the formation of new integrin bonds within the associated focal adhesions. Numerical solutions of the model equations predict that different patterns of matrix stretch result in distinct temporal patterns in JNK activation that compare well with published experimental results. In the case of cyclic uniaxial stretching, stretch-induced JNK activation slowly subsides as stress fibers gradually reorient perpendicular to the stretch direction. In contrast, JNK activation is chronically elevated in response to cyclic equibiaxial stretch. A step change in either uniaxial or equibiaxial stretch results in a short, transient upregulation in JNK that quickly returns to the basal level as overly stretched stress fibers disassemble and are replaced by fibers assembled at the preferred level of stretch. In summary, the model describes a mechanism by which the dynamic properties of the actin cytoskeleton allow cells to adapt to applied forces through turnover and reorganization to modulate intracellular signaling.  相似文献   

5.
Regulation of JNK signaling by GSTp   总被引:1,自引:0,他引:1       下载免费PDF全文
  相似文献   

6.
It has been documented that mitosis orientation (MO) is guided by stress fibers (SFs), which are perpendicular to exogenous cyclic uniaxial stretch. However, the effect of mechanical forces on MO and the mechanism of stretch-induced SFs reorientation are not well elucidated to date. In the present study, we used murine 3T3 fibroblasts as a model, to investigate the effects of uniaxial stretch on SFO and MO utilizing custom-made stretch device. We found that cyclic uniaxial stretch induced both SFs and mitosis directions orienting perpendicularly to the stretch direction. The F-actin and myosin II blockages, which resulted in disoriented SFs and mitosis directions under uniaxial stretch, suggested a high correlation between SFO and MO. Y27632 (10 μM), ML7 (50 μM, or 75 μM), and blebbistatin (50 μM, or 75 μM) treatments resulted in SFO parallel to the principle stretch direction. Upon stimulating and inhibiting the phosphorylation of myosin light chain (p-MLC), we observed a monotonic proportion of SFO to the level of p-MLC. These results suggested that the level of cell contraction is crucial to the response of SFs, either perpendicular or parallel, to the external stretch. Showing the possible role of cell contractility in tuning SFO under external stretch, our experimental data are valuable to understand the predominant factor controlling SFO response to exogenous uniaxial stretch, and thus helpful for improving mechanical models.  相似文献   

7.
Stress fiber realignment is an important adaptive response to cyclic stretch for nonmuscle cells, but the mechanism by which such reorganization occurs is not known. By analyzing stress fiber dynamics using live cell microscopy, we revealed that stress fiber reorientation perpendicular to the direction of cyclic uniaxial stretching at 1 Hz did not involve disassembly of the stress fiber distal ends located at focal adhesion sites. Instead, these distal ends were often used to assemble new stress fibers oriented progressively further away from the direction of stretch. Stress fiber disassembly and reorientation were not induced when the frequency of stretch was decreased to 0.01 Hz, however. Treatment with the Rho-kinase inhibitor Y27632 reduced stress fibers to thin fibers located in the cell periphery which bundled together to form thick fibers oriented parallel to the direction of stretching at 1 Hz. In contrast, these thin fibers remained diffuse in cells subjected to stretch at 0.01 Hz. Cyclic stretch at 1 Hz also induced actin fiber formation parallel to the direction of stretch in cells treated with the myosin light chain kinase (MLCK) inhibitor ML-7, but these fibers were located centrally rather than peripherally. These results shed new light on the mechanism by which stress fibers reorient in response to cyclic stretch in different regions of the actin cytoskeleton.  相似文献   

8.
9.
Amplified in breast cancer 1 (AIB1) is a member of the p160 family of nuclear receptor coactivator protein. Recent studies have reported that high-level AIB1 production is involved in the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway for progression to malignant carcinoma in a steroid-independent manner. Here we demonstrate that, in AIB1-knockout DT40 chicken B-lymphocytes, loss of AIB1 results in induction of phosphorylation of c-Jun N-terminal kinase (JNK) and c-Jun, in addition to the inhibition of DNA replication. In contrast, high-level AIB1 production prevents proapoptotic activation of the JNK/c-Jun signal transduction pathway and induces DNA replication through phosphorylation of the Akt/p65 NF-kappaB subunit RelA under cellular stresses such as UV irradiation or serum deprivation. Moreover, we have found that AIB1 is essential for the phosphorylation of histone H3 at serine 10, which is associated with the signal transduction to chromatin, leading to the transient expression of immediate-early genes in response to UV stimulation. Our results therefore suggest that AIB1 directly links to cell cycle control mechanisms in concern with the balance between apoptosis and proliferation.  相似文献   

10.
We studied stress fiber orientation under a wide range of uniaxial cyclic deformations. We devised and validated a hypothesis consisting of two parts, as follows: (1) a stress fiber aligns to avoid a mechanical stimulus in the fiber direction under cyclic deformation. This means that, among all allowable directions, a stress fiber aligns in the direction which minimizes the stimulus, i. e., the summation of the changes in length of the stress fiber over one stretch cycle; and (2) there is a limit in the sensitivity of the cellular response to the mechanical stimulus. Due to this sensing limit, the orientation angle in stress fibers is distributed around the angle corresponding to the minimum stimulus. To validate this hypothesis, we approximated an anisotropic deformation of the membrane on which cells were to be cultured. We then obtained the relationships between the stretch range and the fiber angle in the undeformed state which minimize the mechanical stimuli, assuming that the membrane on which stress fibers and cells adhered was homogeneous and incompressible. Numerical simulation results showed that the proposed hypothesis described our previous experimental results well and was consistent with the experimental results in the literature. The simulation results, taking account of the second part of the hypothesis with a small value for the limit in sensitivity to the mechanical stimulus, could explain why cell orientation is distributed so widely with cyclic stretch ranges of <10%. The proposed hypothesis can be applied to various types of deformation because the mechanical stimulus is always sensed and accumulates under cyclic deformation without the necessity of a reference state to measure the stimulus.  相似文献   

11.
12.
The relative contribution of increases in fiber area to stretch-induced muscle enlargement was evaluated in the slow tonic fibers of the anterior latissimus dorsi of adult Japanese quails. A weight corresponding to 10% of the bird's body mass was attached to one wing. Thirty days of stretch in 34 birds averaged 171.8 +/- 13.5% increase in muscle mass and 23.5 +/- 0.8% increase in muscle fiber length. The volume density of noncontractile tissue increased in middle and distal regions of stretch-enlarged muscles. Mean fiber cross-sectional area increased 56.7 +/- 12.3% in the midregion of stretched muscles. Further analysis indicated slow beta-fiber hypertrophy occurred in proximal, middle, and distal regions; however, fast alpha-type fiber hypertrophy was limited to middle regions of stretched muscles. Stretched muscles had a significant increase in the frequency of slow beta-fibers that were less than 500 microns 2 in all regions and fast alpha-type fibers in middle and distal regions. Total fiber number was determined after nitric acid digestion of connective tissue in 10 birds. Fiber number increased 51.8 +/- 19.4% in stretched muscle. These results are the first to clearly show that muscle fiber proliferation contributes substantially to adult skeletal muscle stretch-induced enlargement, although we do not know whether the responses of the slow tonic anterior latissimus dorsi might be similar or different from mammalian twitch muscle.  相似文献   

13.
Exposure to particulate air pollution is linked to increased incidences of cardiovascular diseases. Ambient ultrafine particles (UFP) from diesel vehicle engines have been shown to be proatherogenic in ApoE knockout mice and may constitute a major cardiovascular risk in humans. We posited that circulating nano-sized particles from traffic pollution sources induce vascular oxidative stress via JNK activation in endothelial cells. Diesel UFP were collected from a 1998 Kenworth truck. Intracellular superoxide assay revealed that these UFP dose-dependently induced superoxide (O2?) production in human aortic endothelial cells (HAEC). Flow cytometry showed that UFP increased MitoSOX red intensity specific for mitochondrial superoxide. Protein carbonyl content was increased by UFP as an indication of vascular oxidative stress. UFP also up-regulated heme oxygenase-1 (HO-1) and tissue factor (TF) mRNA expression, and pretreatment with the antioxidant N-acetylcysteine significantly decreased their expression. Furthermore, UFP transiently activated JNK in HAEC. Treatment with the JNK inhibitor SP600125 and silencing of both JNK1 and JNK2 with siRNA inhibited UFP-stimulated O2? production and mRNA expression of HO-1 and TF. Our findings suggest that JNK activation plays an important role in UFP-induced oxidative stress and stress response gene expression.  相似文献   

14.
We previously reported that herpes simplex virus type 1 (HSV-1) can activate the stress-activated protein kinases (SAPKs) p38 and JNK. In the present study, we undertook a comprehensive and comparative analysis of the requirements for viral protein synthesis in the activation of JNK and p38. Infection with the UL36 mutant tsB7 or with UV-irradiated virus indicated that both JNK and p38 activation required viral gene expression. Cycloheximide reversal or phosphonoacetic acid treatment of wild-type virus-infected cells as well as infection with the ICP4 mutant vi13 indicated that only the immediate-early class of viral proteins were required for SAPK activation. Infection with ICP4, ICP27, or ICP0 mutant viruses indicated that only ICP27 was necessary. Additionally, we determined that in the context of virus infection ICP27 was sufficient for SAPK activation and activation of the p38 targets Mnk1 and MK2 by infecting with mutants deleted for various combinations of immediate-early proteins. Specifically, the d100 (0-/4-) and d103 (4-/22-/47-) mutants activated p38 and JNK, while the d106 (4-/22-/27-/47-) and d107 (4-/27-) mutants did not. Finally, infections with a series of ICP27 mutants demonstrated that the functional domain of ICP27 required for activation was located in the region encompassing amino acids 20 to 65 near the N terminus of the protein and that the C-terminal transactivation activity of ICP27 was not necessary.  相似文献   

15.
Acute ethanol loading causes oxidative stress to activate cell-death signaling via c-Jun NH2-terminal kinase (JNK) in livers. JNK are stimulated under conditions of endoplasmic reticulum (ER) stress which causes programmed cell death. However, no remarked cell death was observed in acute ethanol intoxication. Akt, one of the cell survival protein kinases, may be activated under ethanol loading. The aim of this study was to estimate activation of JNK and ER stress, role of ethanol metabolism on the activation, and association of JNK with Akt under acute ethanol loading using the perfused rat liver system. Activation of JNK or Akt and association of JNK and Akt with JNK interacting protein 1 were estimated by immunoprecipitation and immunoblotting. Expression of 78 kDa glucose-regulated protein (GRP78) mRNA, a biomarker of ER stress, was detected by quantitative real-time RT-PCR. Activations of JNK and Akt were enhanced by co-treatment with ethanol and a classical inhibitor of alcohol dehydrogenase (ADH). Addition of an antioxidant reduced the activation of JNK. Ethanol loading with ADH inhibition causes down-regulation of GRP78 mRNA levels. Therefore, these findings suggest first revelation that inhibition of ethanol metabolism complicates oxidative and ER stresses produced by ethanol.  相似文献   

16.
Increased mechanical stress induced by stretch is an important growth stimulus in skeletal muscle. Heat shock proteins (HSPs) are an important family of endogenous, protective proteins. HSP90 and HSP70 families show elevated levels under beat stress. Mechanical stress, such as physical exercise, is known to induce not only muscular hypertrophy but also the elevation of HSPs expression in skeletal muscle. The purpose of this study was to determine whether heat stress facilitates the stretch-induced hypertrophy of skeletal muscle cells. Cultured rat myotubes (L6) were plated on collagenized Silastic membranes and incubated at 41 degrees C for 60 and 75 minutes (heat shock). Following the incubation, the cells were subjected two-second stretching and four-second releasing for 4 days at 37 degrees C. Protein concentrations in the homogenates and pellets of the cultured skeletal muscle cells increased under heat shock and/or mechanical stretching. The protein concentration of cells following mechanical stretching following heat shock was significantly higher than that following either heat shock or mechanical stretching alone. HSP72 in supernatants and HSP90 in pellets increased under heat shock and/or mechanical stretching. HSP90 in supernatants decreased following heat shock and/or mechanical stretching. Changes in HSPs and cellular protein concentrations in stressed cells suggest that the expression of HSPs may be closely related with muscular hypertrophy.  相似文献   

17.
18.
cJun氨基末端激酶(JNK)家族是促分裂原活化蛋白激酶(MAPK)超家族成员之一,MAPK信号通路是多级蛋白激酶的级联反应,包括三个关键的激酶:MAPK、MAPK的激酶(MAPKK)和MAPK激酶的激酶(MAPKKK).JNK信号通路中有许多支架蛋白,如:JIP、JAMP、POSH等,能够与JNK及JNK信号通路中相关成员结合成复合物,调节它们的活性和细胞内定位,JNK信号通路可被细胞因子、生长因子、应激等多种因素激活,大量实验提示JNK活化在细胞增殖、细胞凋亡、应激反应以及多种人类疾病的发生与发展中起着重要的作用.JNK信号通路与其他信号通路间也有着相互作用.现对JNK活化机制的研究进展进行综述.  相似文献   

19.
Neural cell differentiation during development is controlled by multiple signaling pathways, in which protein phosphorylation and dephosphorylation play an important role. In this study, we examined the role of pyrophosphatase1 (PPA1) in neuronal differentiation using the loss and gain of function analysis. Neuronal differentiation induced by external factors was studied using a mouse neuroblastoma cell line (N1E115). The neuronal like differentiation in N1E115 cells was determined by morphological analysis based on neurite growth length. In order to analyze the loss of the PPA1 function in N1E115, si-RNA specifically targeting PPA1 was generated. To study the effect of PPA1 overexpression, an adenoviral gene vector containing the PPA1 gene was utilized to infect N1E115 cells. To address the need for pyrophosphatase activity in PPA1, D117A PPA1, which has inactive pyrophosphatase, was overexpressed in N1E115 cells. We used valproic acid (VPA) as a neuronal differentiator to examine the effect of PPA1 in actively differentiated N1E115 cells. Si-PPA1 treatment reduced the PPA1 protein level and led to enhanced neurite growth in N1E115 cells. In contrast, PPA1 overexpression suppressed neurite growth in N1E115 cells treated with VPA, whereas this effect was abolished in D117A PPA1. PPA1 knockdown enhanced the JNK phosphorylation level, and PPA1 overexpression suppressed it in N1E115 cells. It seems that recombinant PPA1 can dephosphorylate JNK while no alteration of JNK phosphorylation level was seen after treatment with recombinant PPA1 D117A. Enhanced neurite growth by PPA1 knockdown was also observed in rat cortical neurons. Thus, PPA1 may play a role in neuronal differentiation via JNK dephosphorylation.  相似文献   

20.
The c-Jun N-terminal kinases (JNKs) are activated in response to stress, DNA damage, and cytokines by MKK4 and MKK7. We recently demonstrated that PKC can augment the degree of JNK activation by phosphorylating JNK, which requires the adaptor protein RACK1. Here we report on the conditions required for PKC-dependent JNK activation. In vitro kinase assays reveal that PKC phosphorylation of JNK is not sufficient for its activation but rather augments JNK activation by canonical JNK upstream kinases MKK4 or MKK7 alone or in combination. Further, to enhance JNK activity, PKC phosphorylation of JNK should precede its phosphorylation by MKK4/7. Inhibition of PKC phosphorylation of JNK affects both early and late phases of JNK activation following UV-irradiation and reduces the apoptotic response mediated by JNK. These data provide important insight into the requirements for PKC activation of JNK signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号