首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
While saltwort (Batis maritima L.) is common in the fringe mangrove forests of southwest Florida, its role in regeneration of degraded mangrove communities is not known. Given the potential encroachment and subsequent degradation of mangrove communities by sea-level rise, it is important to quantify the effect of early-colonizing vegetation to early mangrove seedling survival. A greater number of mangrove seedlings were observed in existing B. maritima patches compared to surrounding mudflats. A planting experiment was designed to determine whether B. maritima was responsible for the observed pattern. Black mangrove (Avicennia germinans L.) seedlings, raised in a nursery, were planted in previously established B. maritima patches and on mudflats with and without nursery-raised B. maritima. There was significantly lower mortality of A. germinans seedlings when planted in existing B. maritima patches (69%), compared to seedlings planted on the mudflats (93%), demonstrating that existing B. maritima improved A. germinans seedling survival. Nursery-raised B. maritima had lower mortality on open mudflats (28%), suggesting that it can tolerate conditions, which make it an early colonizer of newly available habitats. The primary mechanism proposed for improving seedling success is a slight increase in elevation provided by the dense root network of established B. maritima. These findings have implications for scientists and managers anticipating the response of mangroves to sea-level rise.  相似文献   

2.
福建漳江口红树林区秋茄幼苗生长动态   总被引:12,自引:0,他引:12  
通过福建漳江口红树林自然保护区内8个样方24个小样方人工种植600个秋茄胚轴,在3a时间内对秋茄胚轴建立、幼苗生长以及环境因子进行定期观测。研究结果表明:林缘空地的秋茄生长状况良好,白骨壤林内最不利于秋茄幼苗的生长。潮位、盐度、底质土壤理化因子不是造成该样地各样方间秋茄幼苗生长差异的主要原因。动物取食、光照状况以及种间竞争是限制秋茄生长的主要环境因子。秋茄胚轴在长根前易于随潮水漂走,底质土壤中自骨壤致密的根系抑制了秋茄胚轴的定植,导致白骨壤林内秋茄幼苗漂走的数量最多。昆虫和螃蟹等动物的取食是导致林内已经固着生长的秋茄幼苗大量死亡的最主要原因,而林外被取食的幼苗个体极少。此后秋茄幼苗能否继续成长,主要取决于幼苗所接受到的光照条件。3a后,在荫蔽的树冠下,秋茄幼苗无法存活;而在林外,秋茄幼苗已经长成幼树。在林外滩涂上迅速生长的互花米草,也将影响秋茄幼苗的更新和生长。  相似文献   

3.
无瓣海桑与乡土红树植物混交对林地大型底栖动物的影响   总被引:1,自引:0,他引:1  
选择广东省雷州市附城镇和珠海市淇澳岛沿海1年生无瓣海桑人工林,分别在林下混种乡土红树植物红海榄或木榄幼苗,对混交林和无瓣海桑纯林林地大型底栖动物群落进行比较,探讨无瓣海桑与乡土红树植物混交对林地大型底栖动物的影响。结果显示,混交林和无瓣海桑纯林之间大型底栖动物群落的优势种存在差异;相似性分析检验(One-Way ANOSIM)、等级聚类和非参数多变量标序结果均表明1年无瓣海桑+红海榄混交林、1年无瓣海桑+木榄混交林和1年无瓣海桑纯林之间大型底栖动物群落结构差异显著。研究还发现在无瓣海桑人工林林下混交红海榄或木榄这两种乡土红树植物,可提高林地底栖动物的生物量和物种多样性。BIOENV分析说明大型底栖动物分布与红海榄或木榄这两种混交的乡土树种的凋落物量密切相关,这进一步证实了混交乡土红树植物对林地底栖动物多样性和分布的影响。两个研究地实验结果均显示,在无瓣海桑林下种植木榄的效果要优于红海榄,表现在木榄的平均苗高、凋落物量、凋落物量占群落凋落物总量百分比和幼苗成活率均高于红海榄,其对提高林地大型底栖动物生物量和物种多样性的效果也明显优于红海榄。  相似文献   

4.
The growth performance of Rhizophora apiculata Blume (mangrove) seedlings in the presence and absence of exogenous gibberellic acid (GA3) under different combinations of salinity and light was analyzed. Root and shoot growth responses of 75-day old seedlings in liquid-culture, were measured. It was concluded that light exhibited a significant inhibitory effect on all the growth parameters-number of primary roots, primary root length, shoot elongation, number of leaves, total leaf area; and, the GA3 treatment singly or in combinations with light, showed a significant influence on the total leaf area and primary root length.  相似文献   

5.
Allometry, biomass, and productivity of mangrove forests: A review   总被引:15,自引:8,他引:7  
We review 72 published articles to elucidate characteristics of biomass allocation and productivity of mangrove forests and also introduce recent progress on the study of mangrove allometry to solve the site- and species-specific problems. This includes the testing of a common allometric equation, which may be applicable to mangroves worldwide. The biomass of mangrove forests varies with age, dominant species, and locality. In primary mangrove forests, the above-ground biomass tends to be relatively low near the sea and increases inland. On a global scale, mangrove forests in the tropics have much higher above-ground biomass than those in temperate areas. Mangroves often accumulate large amounts of biomass in their roots, and the above-ground biomass to below-ground biomass ratio of mangrove forests is significantly low compared to that of upland forests (ANCOVA, P < 0.01). Several studies have reported on the growth increment of biomass and litter production in mangrove forests. We introduce some recent studies using the so-called “summation method” and investigate the trends in net primary production (NPP). For crown heights below 10 m, the above-ground NPP of mangrove forests is significantly higher (ANOVA, P < 0.01) than in those of tropical upland forests. The above-ground litter production is generally high in mangrove forests. Moreover, in many mangrove forests, the rate of soil respiration is low, possibly because of anaerobic soil conditions. These trends in biomass allocation, NPP, and soil respiration will result in high net ecosystem production, making mangrove forests highly efficient carbon sinks in the tropics.  相似文献   

6.
Nutrient, light, salinity, soil redox potentials, and other soil characteristics were determined across a range of mangrove forest heights across the South Florida peninsula encompassing large-stature trees (> 10 m) on the west coast and dwarf forms (< 1 m) in the southeast Everglades. Relationships were established between abiotic factors and Rhizophora mangle seedling growth rates in four height (cm) classes, 25-40, > 40-55, > 55–70, and > 70–85. Light in open canopy gaps was an important determinant of seedling growth. Growth rates in gaps (0.32 ± 0.04 to 1.89 ± 0.18 mm/d) were two- to five-fold greater than adjacent closed canopy forests (0.14 ± 0.01 to 0.40 ± 0.07 mm/d). Among open canopy sites, labile soil phosphorus and soil redox potentials were significantly correlated to growth (P < 0.05; r= 0.98 and 0.89, respectively). Interstitial salinity ranged from 0 to 27 ppt across sites, well below hypersaline conditions. Thus, under low salinity stress and high light availabiliry, soil fertility is proposed to be the dominant factor controlling R. mangle seedling development to a sapling stage (> 85 cm) in South Florida mangrove forests. In addition, soil anoxia is hypothesized to be an important stressor in lagoonal-bay estuaries and marsh-mangrove ecotones with minimal tidal exchange.  相似文献   

7.
Toledo  Gerardo  Rojas  Adriana  Bashan  Yoav 《Hydrobiologia》2001,444(1-3):101-109
Black mangrove (Avicennia germinans) seedlings (n=555) were grown from field-collected propagules for 3 months in a new type of terrestrial nursery. They were grown in clusters of five plants, and then they were transplanted to a clear-cut zone in a lagoon fringed by a mangrove forest at Laguna de Balandra, Baja California Sur, Mexico. Survival and plant development of transplants were monitored at 6-monthly intervals for 2 years. After 1 month, the survival of seedlings was 96%, later stabilizing at approximately 77%. After 24 months, 74% of the plants were still alive. The best cluster, showing maximum growth under mangrove swamp conditions in this arid zone, was a two-plant cluster. The lagoon has a low natural regeneration rate of 48 plants per 350 m2 per 6 years of monitoring. This study shows the feasibility of restoring destroyed arid-coast lagoons with black mangroves.  相似文献   

8.
To examine the natural colonisation of native mangrove species into remediated exotic mangrove stands in Leizhou Bay, South China, we compared soil physical–chemical properties, community structure and recruitments of barren mangrove areas, native mangrove species plantations, and exotic mangrove species—Sonneratia apetala Buch.Ham—between plantations and natural forest. We found that severely degraded mangrove stands could not regenerate naturally without human intervention due to severely altered local environments, whereas some native species had been recruited into the 4–10 year S. apetala plantations. In the first 10 years, the exotic species S. apetala grew better than native species such as Rhizophora stylosa Griff and Kandelia candel (Linn.) Druce. The mangrove plantation gradually affected soil physical and chemical properties during its recovery. The exotic S. apetala was more competitive than native species and its plantation was able to restore soil organic matter in about 14 years. Thus, S. apetala can be considered as a pioneer species to improve degraded habitats to facilitate recolonisation by native mangrove species. However, removal to control proliferation may be needed at late stages to facilitate growth of native species. To ensure sustainability of mangroves in South China, the existing mangrove wetlands must be managed as an ecosystem, with long-term scientific monitoring program in place.  相似文献   

9.
Field observations of seedlings and saplings of Avicennia marina showed patterns that correlated with salinity, light and sediment. Models that account for these observations were subsequently tested in a series of field experiments. Establishment varied within an estuary under controlled conditions but was not related to salinity or sediment type. Seedling survival was uniform over 3 years regardless of position in estuary and sediment type. Seedling densities and survival under canopies or in canopy gaps were not significantly different. However, seedling growth and density of saplings were greater in canopy gaps. Experiments involving manipulations of canopies showed no differences in seedling survival under canopies or in light gaps, but addition of slow-release fertilizer enhanced growth and survival in canopy gaps and under canopies. Long-term comparison of areas denuded of a canopy and with sediment disturbance showed enhanced establishment and survival when compared with areas with canopy gaps but with undisturbed sediments. Overall there appears to be no restriction to establishment of propagules within mangrove stands other than the supply of propagules and tidal or wave action. In contrast, recruitment to the sapling stage appears to be restricted by light and sediment resources. We suggest that propagules need to establish in a regeneration niche for seedling recruitment to the sapling stage. This differs from the view that seedlings in the under-storey are analogous to a seed pool in the soil.  相似文献   

10.
We have studied the interactive effects of salinity and light on Avicennia germinans mangrove seedlings in greenhouse and field experiments. We hypothesized that net photosynthesis, growth, and survivorship rates should increase more with an increase in light availability for plants growing at low salinity than for those growing at high salinity. This hypothesis was supported by our results for net photosynthesis and growth. Net daily photosynthesis did increase more with increasing light for low-salinity plants than for high-salinity plants. Stomatal conductance, leaf-level transpiration, and internal CO2 concentrations were lower at high than at low salinity. At high light, the ratio of leaf respiration to assimilation was 2.5 times greater at high than at low salinity. Stomatal limitations and increased respiratory costs may explain why, at high salinity, seedlings did not respond to increased light availability with increased net photosynthesis. Seedling mass and growth rates increased more with increasing light availability at low than at high salinity. Ratios of root mass to leaf mass were higher at high salinity, suggesting that either water or nutrient limitations may have limited seedling growth at high salinity in response to increasing light. The interactive effects of salinity and light on seedling size and growth rates observed in the greenhouse were robust in the field, despite the presence of other factors in the field—such as inundation, nutrient gradients, and herbivory. In the field, seedling survivorship was higher at low than at high salinity and increased with light availability. Interestingly, the positive effect of light on seedling survivorship was stronger at high salinity, indicating that growth and survivorship rates are decoupled. In general, this study demonstrates that environmental effects at the leaf-level also influence whole plant growth in mangroves.  相似文献   

11.
Summary Although insects are known to be important seed predators in most terrestrial forests, their role in marine tidal (mangrove) forests has not been examined. Surveys at 12 sites in tropical Australia showed that between 3.1 and 92.7 percent of the seeds or propagules of 12 mangrove tree species had been attacked by insects. Seeds/propagules of six species (Avicennia marina, Bruguiera gymnorrhiza, B. parviflora, Heritiera littoralis, Xylocarpus australasicus and X. granatum) showed consistently high (>40%) levels of insect damage. Greater than 99% of H. littoralis seeds were attacked by insect predators. The survival and subsequent growth in height and biomass of insect-damaged and non-damaged control seeds/propagules of eight mangrove species were compared in shadehouse experiments. Mangrove species fell into 4 groups with regard to the effect of insect predators on their seeds and seedlings. Xylocarpus australasicus and X. granatum had significantly decreased survival (X 48 and 70%) and growth in height (X 61 and 96%) and biomass (X 66 and 85%). Bruguiera parviflora showed decreased survival (X 59%), but there was no effect of insects on the growth of surviving propagules. In contrast, there was no effect of insect damage on the survival of seedlings of Avicennia marina and Bruguiera exaristata, but decreased growth in height (X 22 and 25%) and biomass (X 22 and 26%). Survival and growth of seedlings of Rhizophora stylosa and Bruguiera gymnorrhiza were not affected. The influence of insect seed predators on the survival and growth of seeds of mangrove species in forests will depend on the relative abundance of seed-eating crabs and intertidal position in mangrove forests.This is Contribution No 499 from the Australian Institute of Marine Science  相似文献   

12.
Abstract The upper and lower limits of the distribution of mature Avicennia marina lie between mean high water and mean sea level in open estuaries in southeastern Australia. Newly established seedlings are highly variable in abundance, but are rarely found in the saltmarsh or on mudflats. Their distribution is unlikely to be limited by dispersal because propagules disperse into the saltmarsh and to intertidal mudflats, but their establishment may be limited by physicochemical conditions, interspecific competition and predation. The model that physicochemical conditions control the intertidal limits of establishment of seedlings was accepted for propagules stranding in the saltmarsh but rejected for those stranding on mudflats. No seedlings established on saltmarsh sediments but similar numbers of seedlings established within light gaps in adult mangrove stands and on intertidal mudflats. The model that interspecific interaction with freeliving macroalgae (Hormosira banksii) reduces the establishment of seedlings on mudflats covered with macroalgae or in stands with a ground cover of macroalgae was accepted. Under controlled conditions five times as many propagules established on cleared ground compared with ground covered with macroalgae. Predators also reduce seedling establishment, but the model that they preferentially act on propagules stranding on the mudflat was rejected. The low number of seedlings found on mudflats without macroalgae appears to relate to wave and current effects on establishment and the effects of waterlogging or fouling on survival.  相似文献   

13.
The ecological impact of sewage discharges to a mangrove wetland in Futian National Nature Reserve, the People's Republic of China was assessed by comparing the plant community, plant growth and nutrient status of soils and vegetation of a site treated with settled municipal wastewater (Site A) with those of a control adjacent site (Site B) which did not receive sewage. During the one year study, the total and available N and P, and organic carbon concentrations of mangrove soils in Site A did not significantly differ from those of Site B. In both sites, the soil organic C, total N, NH4 }-N and total P content exhibited a descending trend from landward to seaward regions, with the lowest measurements obtained from the most foreshore location. Seasonal variation in N content of soil samples was more obvious than any difference between wastewater treated and the control sites. The soil N content was lower in spring and summer. This was attributed to the higher temperature in these seasons which facilitated degradation of organic matter and absorption of nitrogen by the plants for growth. No significant difference in plant community structure, plant growth (in terms of tree height and diameter) and biomass was found between Sites A and B. Leaf samples of the two dominant plant species, Kandelia candel and Aegiceras corniculatum collected from Site A had comparable content of organic carbon, N, P and K to those Site B. These preliminary results indicated that the discharge of a total volume of 2600 m3 municipal wastewater to an area of 1800 m2 mangrove plants over the period of a year did not produce any apparent impact on growth of the plants. The soils and plant leaves of Site A were not contaminated, in terms of nutrient content, by the discharged sewage.  相似文献   

14.
Sousa WP  Quek SP  Mitchell BJ 《Oecologia》2003,137(3):436-445
Current theory predicts that in low-density, seed-limited plant populations, seed predation will be more important than competition in determining the number of individuals that reach maturity. However, when plant density is high, competition for microsites suitable for establishment and growth is expected to have a relatively greater effect. This dichotomous perspective does not account for situations in which the risk of seed predation differs inside versus outside recruitment microsites. We report the results of a field experiment and sampling studies that demonstrate such an interaction between microsite quality and the risk of propagule predation in mangrove forests on the Caribbean coast of Panama, where it appears to play a key role in shaping the demography and dynamics of the mangrove, Rhizophora mangle. Rhizophora's water-borne propagules establish wherever they strand, but long-term sampling revealed that only those that do so in or near lightning-created canopy gaps survive and grow to maturity. These microsites afford better growth conditions than the surrounding understory and, as importantly, provide a refuge from predation by the scolytid beetle, Coccotrypes rhizophorae. This refuge effect was confirmed with a field experiment in which Rhizophora seedlings were planted at different positions relative to gap edges, from 5 m inside to 20 m outside the gap. Mortality due to beetle attack increased linearly from an average of 10% inside a gap to 72% at 20 m into the forest. The interaction between canopy disturbance and propagule predation may be having a large impact on the composition of our study forests. Being shade-tolerant, Rhizophora seedlings that escape or survive beetle attack can persist in the understory for years. However, the high rate of beetle-induced mortality effectively eliminates the contribution of advance regeneration by Rhizophora saplings to gap succession. This may explain why the shade-intolerant mangrove, Laguncularia racemosa, is able to co-dominate the canopy in low intertidal forests at our study sites.  相似文献   

15.
Ovassiminea brevicula (Pfeiffer) (Assimineidae: Gastropoda) was oneof the most abundant and representative benthic invertebrates in the SamutSongkhram mangrove swamp, Thailand. It lived mainly in the mangrove forest with high average densities ranging from 44 to 340 snails·m-2and abundant in the sites where much litter, dead branches and seedlingswere present. Average shell length in the mature forest ranged from 4.73to 5.74 mm (range: 2.26–8.30 mm) and size structures showeddifferent patterns among the stations. In the seaward mudflat, O. breviculaappeared immediately after the saplings of Avicennia alba Blume1826 were planted. Thereafter, its densities increased with the growth of A. alba trees, probably due to provision of favourable microhabitats underthe canopies. In the mudflat with only small saplings and outside the canopyof the young forest 2 years after planting, mean shell lengths were 3.45 and3.19 mm respectively. Under the canopy of the young forest, however,mean shell length was 4.34 mm with a few larger snails. Three cohortswere separated for snail populations in the mature forest and larval recruitmentseemed to occur from February to May.  相似文献   

16.
Lindera melissifolia (Walt.) Blume seedlings were raised in a growth chamber to determine the effects of light availability on shoot growth pattern, and basic leaf and stem growth. Lindera melissifolia seedlings exhibited a sympodial shoot growth pattern for 3 months following emergence from the soil medium, but this pattern was characterized by a reduction in leaf blade area approximately 30 days after emergence, followed by increases in leaf blade area. Seedlings receiving low light were 76% taller than seedlings receiving high light. Seedlings receiving low light also had larger leaf blade dimensions, blade area, seedling leaf area, and greater mass. Seedlings raised in high light had a greater proportional distribution of biomass in the roots, suggesting possible water stress from greater vapor pressure deficits. Furthermore, these seedlings displayed sharp angles of blade inclination and blade folding – acclimation that reduces exposure to light and subsequent higher leaf temperatures in open environments. These differences in morphological response to light resulted in high phenotypic variability in L. melissifolia seedlings. Lindera melissifolia seedling development showed a brief period of phenotypic plasticity, followed by ontogenetic plasticity. The short period of phenotypic plasticity may, however, have profound ecological implications for the conservation and recovery of this federally endangered shrub. Further experimentation should take into account the development of ontogenetic standards for comparisons of plant traits in addition to temporal standards.  相似文献   

17.
We evaluated effects of soil texture and disturbance size on the successional dynamics of a semiarid grassland dominated by the perennial bunchgrass, Bouteloua gracilis (H.B.K.) Lag. ex Griffiths. A spatially-explicit gap dynamics simulation model was used to evaluate recovery patterns. The model simulates establishment, growth, and mortality of individual plants on an array of small plots through time at an annual time step. Each simulated disturbance consisted of a grid of plots of the same soil texture interconnected by processes associated with dispersal of B. gracilis seeds. Soil texture was incorporated into the model as effects on seed germination, seedling establishment, and subsequent growth of B. gracilis. Five soil texture classes and five disturbance sizes were simulated.Soil texture was more important to recovery of B. gracilis than either size of a disturbance or location of plots within a disturbance. Constraints on recruitment of seedlings had a greater effect on recovery than constraints associated with plant growth. Fastest recovery occurred on soils with the largest silt content, the variable that affects seedling establishment. Disturbances with slowest recovery were on soils with low silt contents, and either high or low water-holding capacity, the variable that affects plant growth. Biomass and recovery decreased as disturbance size increased, and as distance from a disturbed plot to the edge of the disturbance increased. In most cases, important interactions between soil texture and disturbance size on recovery were not found.  相似文献   

18.
Foliar phosphorus content and mycorrhizal infection of dipterocarp seedlings growing in a 61-year-old forest plantation (site A) and a selectively logged forest (site B) were determined. Mycorrhizal infection levels were high–83.7% forShorea bracteolata and 95.0% forS. leprosula at site A, and 77.8% forS. leprosula and 86.3% forS. curtisii at site B. The seedlings all had similar foliar phosphorus contents although available soil phosphorus at site B was half that at site A. Significant correlations were obtained between foliar phosphorus content and percentage mycorrhizal infection at site B only.  相似文献   

19.
Plant community composition can impact ecosystem processes via litter feedbacks. Species variation in litter quality may generate different patterns of nutrient supply for plants that are dependent on litter inputs. However, it is not known whether plants grow faster in their own litter, litter from other species, or in litter mixtures from multiple species. To test whether litter identity and mixture status influenced mangrove seedling growth, biomass allocation, and stoichiometry, we performed mesocosm experiments. Two species of mangrove seedlings, Avicennia germinans, black mangrove and Rhizophora mangle, red mangrove, were exposed to all possible combinations of three mangrove litter types and were isolated from all other nutrient inputs. Litter treatments significantly altered seedling growth. Seedlings from both mangrove species grew most rapidly in litter from a different species rather than their own, irrespective of litter chemical quality, decomposition rate, and nitrogen release. Litter mixtures from white and black mangroves caused black mangroves to grow 65% more than expected. Litter treatments did not impact seedling root:shoot ratios or tissue C:N. Our finding that seedlings grow best in litter from other species may indicate a mechanism that helps sustain the coexistence of dominant species.  相似文献   

20.
在香港的3个红树森样地即黄竹湾(沙土)、西径(沙壤土)和米埔(粘壤土)进行了土壤结构对秋茄(Kandelia candel(L.)Durce)生长和生理影响的研究,并在米埔比较了林内和林外秋茄幼苗的生长和生理参数以观察光照水平的效应。在沙土和沙壤土生长的1.5年秋茄幼苗比粘壤土具有较粗的基径的较高的总生物量,说明秋茄幼苗在沙土和沙壤土中比在粘壤土中生长更好。沙土1.5 茄幼苗的叶片厚度分别为沙壤土和粘壤土的1.75和2.05倍,表明沙土中的秋茄幼苗具有旱生结构以维持体内水分。然而,沙土和沙壤土4.5年秋茄幼树的叶片厚度无显著差异,沙土和沙壤土中1.5年秋茄幼苗分配于根系的生物量比例约为50%,高于粘壤土的值(约40%)。沙土和沙壤土中1.5年的秋茄比粘壤土具有较低的叶绿素含量、根系活力、硝酸盐还原酶活性、过氧化物酶(POX)活性、超氧化物歧化酶(SOD)活性及较高的丙二醛(MDA)含量。米埔1.5年秋茄幼苗在红树林外比林内有更好的长势,具有更大的叶面积、特殊叶面积、叶片数量及生物量。林内幼苗具有较高叶绿素含量,较低叶绿素a/b比值,较高硝酸盐还原酶活性和较强的根系活力,林外幼苗的叶片POX和SOD活性比林内的值稍高,MDA含量比林内显著要高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号