首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
最近的研究显示,颈动脉体(carotid body,CB)除具有缺氧等化学感受功能外,还对白细胞介素-1B(IL-1β)的刺激起反应。但是,IL-1β刺激对颈动脉体的缺氧感受功能有何影响还不清楚。本研究运用在体(in vivo)细胞外神经干电位记录的方法,利用麻醉大鼠,观察了CB局部给予IL-1β对实验性急性缺氧(experimental acute hypoxia,EAH)诱导的CB传入神经窦神经(carotid sinus nerve,CSN)放电频率的影响。结果发现,EAH可以诱导麻醉状态下大鼠的CSN放电频率增高;颈动脉体局部给予ATP(0、1mmol/L)和ACh(0,5mmol/L)在一定程度上可模拟缺氧诱导的CSN放电;局部给予ILlp(40μg/L)可诱导窦神经放电频率增加。但同时给予IL-1B和EAH,所引起的放电频率增高效应与单独给予EAH或IL-1β所诱导的放电频率的增高效应间无显著性差别,且IL-1β对ATP和ACh诱导的窦神经放电的增高效应也无显著影响。这些结果提示,IL-1β对EAH诱导的窦神经放电无调节作用。  相似文献   

2.
《生理通讯》2008,27(6)
SMUP型生物信号处理系统(复旦大学上海医学院生理学教研究研制) 系统能在80586、P2、P3等微机上使用。功能多,实时处理能力强,可对血压、心电、脑电、细胞放电、脉搏、呼吸等生物信号进行多种处理,适用于循环、神经、呼吸、感官等系统的联机实验和资料处理。系统硬件系列化,A/D转换器及信号调理器可选配不同档次(A/D转换器分8位/20微秒和12位/10微秒两档;信号调理器分4路/8倍/手调、4路/10000倍/手调和4路/8000倍/程控三档)。程控刺激器最大输出5V,选配刺激电压输出器,可将最大输出幅度提升到40V。  相似文献   

3.
《生理通讯》2008,27(4)
SMUP型生物信号处理系统(复旦大学上海医学院生理学教研究研制) 系统能在80586、P2、P3等微机上使用。功能多,实时处理能力强,可对血压、心电、脑电、细胞放电、脉搏、呼吸等生物信号进行多种处理,适用于循环、神经、呼吸、感官等系统的联机实验和资料处理。系统硬件系列化,A/D转换器及信号调理器可选配不同档次(A/D转换器分8位/20微秒和12位/10微秒两档;信号调理器分4路/8倍/手调、4路/10000倍/手调和4路/8000倍/程控三档)。程控刺激器最大输出5V,选配刺激电压输出器,可将最大输出幅度提升到40V。  相似文献   

4.
摘要 目的:探讨超声与周围神经刺激器引导技术用于上肢手术锁骨上阻滞的效果。方法:招募2019年5月~2021年4月在我院收治并接受上肢手术的100例患者为研究对象。所有患者均接受上臂丛神经阻滞。根据研究方案将患者随机均分为对照组和引导组。对照组采用神经刺激器辅助定位锁骨上臂丛神经阻滞,引导组采用超声与周围神经刺激器引导技术对上臂丛神经阻滞,统计分析临床麻醉完成时间等相关指标。结果:两组患者一般资料比较无差异(P>0.05)。引导组麻醉完成时间和神经阻滞起效时间较对照组缩短(P<0.05),引导组神经阻滞持续时间较对照组延长(P<0.05)。引导组麻醉效果优良率较对照组升高(P<0.05),引导组麻醉效果中差率较对照组低(P<0.05)。引导组总体并发症较对照组低(P<0.05)。引导组感觉评分、运动评分、应对评分和总评分较对照组升高(P<0.05)。引导组非常满意率和总满意率较对照组升高(P<0.05),引导组不满意率较对照组降低(P<0.05)。结论:与单独使用神经刺激器相比,超声引导辅助定位锁骨上臂丛神经阻滞具有起效快、阻滞完全、持续时间长等优点,超声与周围神经刺激器引导技术可提高麻醉的有效性、准确性和安全性,值得临床推广。  相似文献   

5.
孙烈云 《生理通讯》2005,24(4):111-111
SMUP型生物信号处理系统(复旦大学上海医学院生理学教研究研制).系统能在80586、P2、P3等微机上使用。功能多,实时处理能力强,可对血压、心电、脑电、细胞放电、脉搏、呼吸等生物信号进行多种处理,适用于循环、神经、呼吸、感官等系统的联机实验和资料处理。系统硬件系列化,A/D转换器及信号调理器可选配不同档次(A/D转换器分8位/20微秒和12位/10微秒两档;信号调理器分4路/8倍/手调、4路/10000倍/手调和4路/8000倍/程控三档)。程控刺激器最大输出5V,选配刺激电压输出器,可将最大输出幅度提升到40V。  相似文献   

6.
《生理通讯》2006,25(1):35-35
SMUP型生物信号处理系统 (复旦大学上海医学院生理学教研究研制) 系统能在80586、P2、P3等微机上使用。功能多,实时处理能力强,可对血压、心电、脑电、细胞放电、脉搏、呼吸等生物信号进行多种处理,适用于循环、神经、呼吸、感官等系统的联机实验和资料处理。系统硬件系列化,A/D转换器及信号调理器可选配不同档次(A/D转换器分8位/20微秒和12位/10微秒两档;信号调理器分4路/8倍/手调、4路/10000倍/手调和4路/8000倍/程控三档)。程控刺激器最大输出5V,选配刺激电压输出器,可将最大输出幅度提升到40V。  相似文献   

7.
介绍一种体外发射式植入刺激器的结构和电路原理。该机不但体积较小,耗电少,且可选择较强刺激电压,其植入部分的生物相容性较好,并初步观察了用此刺激器刺激骶神经以恢复截瘫狗排尿功能的情况。  相似文献   

8.
介绍一种体外发射式植入刺激器的结构和电路原理。该机不但体积较小,耗电少,且可选择较强刺激电压,其植入部分的生物相容性较好,并初步观察了用此刺激器刺激骶神经以恢复截瘫狗排尿功能的情况。  相似文献   

9.
(一)铜-铝刺激器这种刺激器,很适合无交流电源,或者购买电池不便的农村中学应用。制成使用时,不消耗电。操作方便,装置简单。 1.原理由于铜-铝之间有一定的接触电位差,而在神经外面又有电解质溶液包围,铜-铝与生理盐水组成一个原电池。在铜丝和铝丝后端通路时,会产生电流,刺激神经。促使神经发生冲动,肌肉收缩。线路见图1。  相似文献   

10.
《生理通讯》2006,25(3):95-95
SMUP型生物信号处理系统(复旦大学上海医学院生理学教研究研制) 系统能在80586、P2、P3等微机上使用。功能多,实时处理能力强,可对血压、心电、脑电、细胞放电、脉搏、呼吸等生物信号进行多种处理,适用于循环、神经、呼吸、感官等系统的联机实验和资料处理。系统硬件系列化,A/D转换器及信号调理器可选配不同档次(A/D转换器分8位/20微秒和12位/10微秒两档;信号调理器分4路/8倍/手调、4路/10000倍/手调和4路/8000倍/程控三档)。程控刺激器最大输出5v,选配刺激电压输出器,可将最大输出幅度提升到40V。最近推出的并口传送接口,使系统与计算机的连接更加方便。实验软件在WINDOWS9x下运行,软件内容多,包括教学和科研的常用实验程序。系统提供的实验编辑软件,使用户能自行设计实验,大大拓宽了系统的功能。系统能同时采集4路原始信号,并能对各路信号分别作频率、直方图、微分、积分或触发积分等实时处理,还可对信号作拟合、双信息图、相关、功率谱分析及叠加平均等处理,软件包还具有BMP件生成、本件生成、DDE数据交换功能。本产品曾获上海市科技进步奖。  相似文献   

11.
不同时变磁场对神经纤维的诱导刺激作用的仿真研究   总被引:3,自引:0,他引:3  
利用神经纤维的无源电缆模型描述神经纤维在磁刺激下的阈下行为,通过数字仿真得出了神经纤维在不同频率的磁刺激感应电场作用下阈下膜电位的时间特征包括波形和幅度,发现高频的感应电场诱导作用下得到的膜电位幅值小于低频电场的性质。同时采用积分变换频域分析的方法,得出了在不同空间分布的感应电场诱导刺激作用下神经纤维的响应特性,发现和低频比较,高频的空间分布函数频率成分的感应电场诱导得到的膜电位幅值较低。计算出在刺激线圈中采用典型刺激电流作用下在神经纤维响应得到的膜电位的特征。从时空两域阐述神经纤维对不同时变磁场诱导作用下的阈下响应行为,对磁刺激仪中刺激线圈的刺激电流的选择和线圈尺寸的设计都具有指导意义。  相似文献   

12.
13.
In this study, a new mechanical stimulator using the piezoelectric actuator was developed to give cultured bone cells mechanical strains with more physiologic magnitude, frequency components, and waveform. This stimulator provides bone cells in a three-dimensional collagen gel block culture mechanical strains with magnitude of 200-40,000 microstrain and frequency of DC-100 Hz, which sufficiently covers physiological strains on bone. Furthermore, the stimulator can generate not only common strain waveforms like sine and rectangular waves, but also arbitrary strain waveforms synthesized on a personal computer. In particular, the controllability of strain frequency and waveform is an advance over that of previous stimulators. Thus, this device can facilitate new findings regarding bone cell responses to mechanical stimuli.  相似文献   

14.
In vitro mechanical cell stimulators are used for the study of the effect of mechanical stimulation on anchorage-dependent cells. We developed a new mechanical cell stimulator, which uses stepper motor technology and computer control to achieve a high degree of accuracy and repeatability. This device also uses high-performance plastic components that have been shown to be noncytotoxic, dimensionally stable, and resistant to chemical degradation from common culture laboratory chemicals. We show that treatment with glow discharge for 25 s at 20 mA is sufficient to modify the surface of the rubber to allow proper adhesion for polymerization of aligned collagen. We show through finite element analysis that the middle area of the membrane, away from the clamped ends, is predictable, homogeneous, and has negligible shear strain. To test the efficacy of the mechanical stretch, we examined the effect of mechanical stimulation on the production of beta(1)-integrin by neonatal rat cardiac fibroblasts. Mechanical stimulation was tested in the range of 0-12% stretch and 0-10-cycles/min stretch frequency. The fibroblasts respond with an increase in beta(1)-integrin at 3% stretch and a decrease at 6 and 12% stretch. Stretch frequency was found to not significantly effect the concentration of beta(1)-integrin. These studies yield a new and improved mechanical cell stimulator and demonstrate that mechanical stimulation has an effect on the expression of beta(1)-integrin.  相似文献   

15.
Cell synchrony is a critical requirement for the study of eukaryotic cells. Although several chemical and genetic methods of cell cycle synchronization are currently available, they have certain limitations, such as unnecessary perturbations to cells. We developed a novel cell cycle synchronization method that is based on a cell chip platform. The budding yeast, Saccharomyces cerevisiae, is a simple but useful model system to study cell biology and shares many similar features with higher eukaryotic cells. Single yeast cells were individually captured in the wells of a specially designed cell chip platform. When released from the cell chip, the yeast cells were synchronized, with all cells in the G1 phase. This method is non-invasive and causes minimal chemical and biological damage to cells. The capture and release of cells using cells chips with microwells of specific dimensions allows for the isolation of cells of a particular size and shape; this enables the isolation of cells of a given phase, because the size and shape of yeast cells vary with the phase of the cell cycle. To test the viability of synchronized cells, the yeast cells captured in the cell chip platform were assessed for response to mating pheromone (α-factor). The synchronized cells isolated using the cell chip were capable of mediating the mating signaling response and exhibited a dynamic and robust response behavior. By changing the dimensions of the well of the cell chip, cells of other cell cycle phases can also be isolated.  相似文献   

16.
Various ganglia from 10-day-old chick embryos were cultured for 3 days in substrata of hydrated collagen lattices. Each ganglion was surrounded at a distance of about 1 mm by three tissue expiants which were identical in one series of cultures and taken from different organs in another. The extent of axon outgrowth towards the different explants was estimated by counting intersections between the axons and test lines arranged perpendicularly to the radial outgrowth direction. The various organs stimulated axon formation to distinctly different extents. Spinal cord, skeletal muscle, skin, liver, colon, kidney and heart had, in that order, increasingly stimulative influence on sympathetic chain ganglia. Colon, followed by heart and liver, had the strongest stimulative effect on Remak's colon ganglion. Spinal and trigeminal ganglia showed dense outgrowth of fibroblast-like cells and were not included in the calculations. However, they appeared to be stimulated to extend axons by exposure to heart explants. The results imply that the tissue explants release various amounts of stimulative factors that reach the ganglia by diffusion. When presented to different tissue explants, the same ganglion showed different extents of outgrowth towards the various tissues. Also, ganglia showed dense outgrowth of axons directed towards inserted capillary tubes containing nerve growth factor. The courses taken by the axons as revealed in silver impregnated whole mounted ganglia suggest that chemotaxis can account for the directed axon outgrowth.  相似文献   

17.
We have reported the isolation of linking clones of HindIII and EcoRI fragments, altogether spanning a 230-kb continuous stretch of chromosome VI. The presence or absence of autonomously replicating sequence (ARS) activities in all of these fragments has been determined by using ARS searching vectors containing CEN4. Nine ARS fragments were identified, and their positions were mapped on the chromosome. Structures essential for and/or stimulative to ARS activity were determined for the ARS fragments by deletions and mutations. The organization of functional elements composed of core and stimulative sequences was found to be variable. Single core sequences were identified in eight of nine ARSs. The remaining ARS (ARS603) essential element is composed of two core-like sequences. The lengths of 3'- and 5'-flanking stimulative sequences required for the full activity of ARSs varied from ARS to ARS. Five ARSs required more than 100 bp of the 3'-flanking sequence as stimulative sequences, while not more than 79 bp of the 3' sequence was required by the other three ARSs. In addition, five ARSs had stimulative sequences varying from 127 to 312 bp in the 5'-flanking region of the core sequence. In general, these stimulative activities were correlated with low local delta Gs of unwinding, suggesting that the low local delta G of an ARS is an important element for determining the efficiency of initiation of replication of ARS plasmids.  相似文献   

18.
Gao XY  Wang HJ  Zhang Y  Lu ZH  Wang W  Zhu GQ 《Life sciences》2006,78(10):1129-1134
A closed-loop implanted chip system was designed to control blood pressure without using drugs. The chip system instantaneously reset blood pressure by stimulating the left aortic depressor nerve according to the feedback signals of arterial blood pressure. The relationship between pressure signals and frequency of stimulation was identified in vitro and in vivo, and the efficiency of the chip system was evaluated in normal anesthetized Wistar rats. To determine whether the depressor effect of the chip was primarily independent on the bradycardia induced by the resetting, the effects of methyl atropine (1.5 g/kg, iv.) and bilateral vagotomy on depressor effect induced by the chip system were determined, respectively. The results indicated that the chip system worked well. The frequency of stimulus linearly increased following the elevation of pressure from 70 to 160 mm Hg. The frequency of the stimulus reached its maximum (100 Hz) when pressure exceeded 160 mm Hg, and the stimulation stopped when MAP was below 70 mm Hg. There were significant decreases in mean arterial pressure (MAP, -20.0+/-4.4 mm Hg) and heart rate (HR, -43.0+/-10.5 bpm) during the resetting in rats. After resetting, both MAP and HR recovered in a minute without any significant rebound. Pretreatment with either methyl atropine or bilateral vagotomy abolished the bradycardia effect but produced no significant effect on hypotension. The results demonstrated that the chip system successfully reset blood pressure in rats, and that the hypotension induced by the chip system was primarily independent on the bradycardia effect.  相似文献   

19.
目的:研制可用于臂丛神经损伤治疗的三通道电刺激仪,并且将之应用于临床臂丛神经损伤患者,观察该仪器治疗臂丛神经损伤的临床效果。方法:由主控模块、显示模块、键盘模块、三个通道的电刺激发生器模块以及电源模块组成系统,可以连续交替释放脉冲刺激,针对不同神经和肌肉,选择不同的刺激位点。将60例臂丛神经损伤术后的患者随机分成试验组(30例)和对照组(30例),试验组术后第三周使用三通道电刺激仪治疗,对照组不做处理,患者术后随访6-12月后,观察患者上肢肩部、肘部功能恢复情况。结果:试验组治疗后上臂丛、全臂丛、下臂丛的肩部、肘部功能均好于治疗前,差异明显,均有统计学意义(P0.05);试验组上臂丛、全臂丛、下臂丛的肩部、肘部治疗效果均显著优于对照组,差异有统计学意义(P0.05)。结论:三通道电刺激仪可以有效地促进臂丛神经损伤后上肢功能的康复,可以对三组神经和肌肉交替进行电刺激,使用方便,并且便于携带,患者较为满意。  相似文献   

20.
The IS911 bacterial transposable element uses -1 programmed translational frameshifting to generate the protein required for its mobility: translation initiated in one gene (orfA) shifts to the -1 frame and continues in a second overlapping gene (orfB), thus generating the OrfAB transposase. The A-AAA-AAG frameshift site of IS911 is flanked by two stimulatory elements, an upstream Shine-Dalgarno sequence and a downstream stem-loop. We show here that, while they can act independently, these stimulators have a synergistic effect when combined. Mutagenic analyses revealed features of the complex stem-loop that make it a low-efficiency stimulator. They also revealed the dual role of the upstream Shine-Dalgarno sequence as (i) a stimulator of frameshifting, by itself more potent than the stem-loop, and (ii) a mandatory determinant of initiation of OrfB protein synthesis on an AUU codon directly preceding the A6G motif. Both roles rely on transient base pairing of the Shine-Dalgarno sequence with the 3' end of 16S rRNA. Because of its effect on frameshifting, the Shine-Dalgarno sequence is an important determinant of the level of transposase in IS911-containing cells, and hence of the frequency of transposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号