首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Humans and laboratory animals remain highly vulnerable to relapse to cocaine-seeking after prolonged periods of withdrawal from the drug. It has been hypothesized that this persistent cocaine relapse vulnerability involves drug-induced alterations in glutamatergic synapses within the mesolimbic dopamine reward system. Previous studies have shown that cocaine self-administration induces long-lasting neuroadaptations in glutamate neurons of the ventral tegmental area and nucleus accumbens. Here, we determined the effect of cocaine self-administration and subsequent withdrawal on glutamate receptor expression in the amygdala, a component of the mesolimbic dopamine system that is involved in cocaine seeking and craving induced by drug-associated cues. Rats were trained for 10 days to self-administer intravenous cocaine (6 h/day) or saline (a control condition) and were killed after one or 30 withdrawal days. Basolateral and central amygdala tissues were assayed for protein expression of the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor subunits (GluR1 and GluR2) and the NMDA receptor subunits (NR1, NR2A and NR2B). In the basolateral amygdala, GluR1 but not GluR2 levels were increased on days 1 and 30, NR2A levels were increased on day 1, and NR2B levels were decreased on day 30 of withdrawal from cocaine. In the central amygdala, GluR2 but not GluR1 levels were increased on days 1 and 30, NR1 levels were increased on day 30 and NR2A or NR2B levels were not altered after withdrawal from cocaine. These results indicate that cocaine self-administration and subsequent withdrawal induces long-lasting and differential neuroadaptations in basolateral and central amygdala glutamate receptors.  相似文献   

2.
Zhou Y  Li HL  Zhao R  Yang LT  Dong Y  Yue X  Ma YY  Wang Z  Chen J  Cui CL  Yu AC 《Neurochemical research》2010,35(12):2124-2134
The expression of the N-methyl-D-aspartate receptor (NMDA-R) in astrocytes is controversial. The receptor is commonly considered neuron-specific. We showed that astrocytes in primary cultures differentially expressed mRNA of NMDA-R subunits, NR1, NR2A and NR2B, in development, ischemia and post-ischemia. One-week-old cultures expressed detectable NR1 mRNA, which fell significantly at 2 weeks and became barely detectable at 4 weeks. NR2A and NR2B mRNA were both significantly up-regulated from 1 to 2 weeks. In 4 weeks, 2 h of ischemia caused a significant up-regulation of NR1 and NR2B mRNA; while 6 h caused down-regulation of NR2A mRNA. Under 3 h of post-ischemia, only NR1 mRNA was increased. Ischemia induced the expression of major NMDA-R effecter, nitric oxide synthase 1, which was unaffected by AMPA-R antagonist CNQX, but dose-dependently inhibited by NMDA-R specific antagonist MK-801. These findings reflected that astrocyte could express inducible functional NMDA receptors without the presence of neurons.  相似文献   

3.
N-Methyl-D-aspartate (NMDA) receptor-mediated glutamatergic neurotransmission is thought to play a central role in the development of alcohol dependence and this alteration is supposed to be due to a differential up-regulation of the NR2B type of subunits. In this work, we examined the effect of some known (CP-101,606; CI-1041 and Co-101,244) and novel indole-2-carboxamide derivative NR2B subunit selective NMDA receptor antagonists (SSNAs) (RG-13579 and RG-1103) on the neurotoxic effect of withdrawal in ethanol pre-treated cultures of rat cortical neurones. The extent of neurotoxicity was estimated by measuring the activity of lactate dehydrogenase (LDH) that was released into the culture medium during the 24h withdrawal period. Here, we demonstrate that NR2B SSNAs given in the course of the withdrawal potently reduced the LDH release in ethanol pre-treated cultures. One of our novel compound, RG-1103, proved to be more potent than the reference NR2B SSNAs tested in this work having similar potency as the most potent but non-subunit selective NMDA receptor antagonist dizocilpine (MK-801). Acamprosate, a currently used therapeutic drug for the treatment of alcoholism was also effective although only in high micromolar concentrations. According to these observations, NR2B SSNAs are potent inhibitors of ethanol-withdrawal-induced neurotoxicity and considering that these agents have acceptable side effect profiles, they could be promising therapeutic candidates in the pharmacotherapy for physical signs of acute alcohol-withdrawal and associated neuronal damage.  相似文献   

4.
Hu M  Sun YJ  Zhou QG  Chen L  Hu Y  Luo CX  Wu JY  Xu JS  Li LX  Zhu DY 《Journal of neurochemistry》2008,106(4):1900-1913
Several lines of evidence suggest involvement of NMDA receptors (NMDARs) in the regulation of neurogenesis in adults and the formation of spatial memory. Functional properties of NMDARs are strongly influenced by the type of NR2 subunits incorporated. In adult forebrain regions such as the hippocampus and cortex, only NR2A and NR2B subunits are available to form the receptor complex with NR1 subunit. NR2B is predominant NR2 subunit in any of rat or human neural stem cells (NSCs). Thus, we suppose that NR2B-containing NMDAR should be critical in regulating adult neurogenesis, and thereby playing a role in the formation of spatial memory. In the cultured NSCs derived from the embryonic brain of rats, NR2B subunit-specific NMDAR antagonist Ro25-6981 increased cell proliferation, whereas MK-801, non-selective open-channel blocker of NMDARs, inhibited cell proliferation. Blockade of NR2B-containing NMDAR stimulated neurogenesis in the adult hippocampus and facilitated the formation of spatial memory. The enhanced spatial memory dropped back to base level when the NR2B antagonist-induced neurogenesis was neutralized by 3'-azido-deoxythymidine, a telomerase inhibitor. In addition, blockade of NR2B inhibited neuronal nitric oxide synthase (nNOS) enzymatic activity. In null mutant mice lacking nNOS gene (nNOS−/−), the effects of NR2B antagonist on neurogenesis disappeared. Moreover, nitric oxide donor DETA/NONOate attenuated and nNOS inhibitor 7-nitroindazole enhanced the effect of Ro 25-6981 on NSCs proliferation. Our findings suggest that NR2B-containing NMDAR subtypes negatively regulate neurogenesis in the adult hippocampus by activating nNOS activity and thereby hinder the formation of spatial memory.  相似文献   

5.
NMDA receptors (NMDARs) mediate ischemic brain damage, in part through interactions of the PDZ ligand of NR2 subunits with the PDZ domain proteins PSD-95 and neuronal nitric oxide synthase located within the NMDAR signaling complex. We have recently shown that this PDZ ligand-dependent pathway promotes neuronal death via p38 activation. A peptide mimetic of the NR2B PDZ ligand (TAT-NR2B9c) reduces p38-mediated death in vitro and p38-dependent ischemic damage in vivo. In the absence of the PDZ ligand-p38 pathway, such as in TAT-NR2B9c-treated neurons, or in NMDAR-expressing non-neuronal cells, NMDAR-dependent excitotoxicity is mediated largely by JNK and requires greater Ca2+ influx. A major reason for blocking pro-death signaling events downstream of the NMDAR as an anti-excitotoxic strategy is that it may spare physiological synaptic function and signaling. We find that neuroprotective doses of TAT-NR2B9c do not alter the frequency of spontaneous synaptic events within networks of cultured cortical neurons nor is mini-EPSC frequency altered. Furthermore, TAT-NR2B9c does not inhibit the capacity of synaptic NMDAR activity to promote neuroprotective changes in gene expression, including the up-regulation of PACAP via CREB, and suppression of the pro-oxidative FOXO target gene Txnip. Thus, while the NR2 PDZ ligand does not account for all the excitotoxic effects of excessive NMDAR activity, these findings underline the value of the specific targeting of death pathways downstream of the NMDAR.  相似文献   

6.
The postsynaptic density (PSD) is a cytoskeletal specialization involved in the anchoring of neurotransmitter receptors and in regulating the response of postsynaptic neurons to synaptic stimulation. The postsynaptic protein PSD-95 binds to NMDA receptor subunits NR2A and NR2B and to signaling molecules such as neuronal nitric oxide synthase and p135synGAP. We investigated the effects of transient cerebral ischemia on protein interactions involving PSD-95 and the NMDA receptor in the rat hippocampus. Ischemia followed by reperfusion resulted in a decrease in the solubility of the NMDA receptor and PSD-95 in 1% sodium deoxycholate, the decrease being greater in the vulnerable CA1 hippocampal subfield than in the less sensitive CA3/dentate gyrus regions. Solubilization of the kainic acid receptor GluR6/7 and the PSD-95 binding proteins, neuronal nitric oxide synthase and p135synGAP, also decreased following ischemia. The association between PSD-95 and NR2A and NR2B, as indicated by coimmunoprecipitation, was less in postischemic samples than in sham-operated controls. Ischemia also resulted in a decrease in the size of protein complexes containing PSD-95, but had only a small effect on the size distribution of complexes containing the NMDA receptor. The results indicate that molecular interactions involving PSD-95 and the NMDA receptor are modified by an ischemic challenge.  相似文献   

7.
We examined whether behavioral sensitization to amphetamine is associated with redistribution of glutamate receptors (GluR) in the rat nucleus accumbens (NAc) or dorsolateral striatum (DLSTR). Following repeated amphetamine treatment and 21 days of withdrawal, surface and intracellular levels of α-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) or NMDA receptor subunits were determined using a protein cross-linking assay. In contrast to our previous results in cocaine-sensitized rats, we did not observe redistribution of GluR1 or GluR2 to the cell surface in the NAc after amphetamine withdrawal, although a small increase in total GluR1 was found in the shell subregion. Nor did we observe activation of signaling pathways associated with cocaine-induced AMPA receptor trafficking or changes in NMDA receptor subunits. No significant changes were observed in the DLSTR. We also investigated the effect of administering a challenge injection of amphetamine to amphetamine-sensitized rats 24 h prior to biochemical analysis based on prior studies showing that cocaine challenge decreases AMPA receptor surface expression in the NAc of cocaine-sensitized rats. GluR1 and GluR2 were not significantly altered in either NAc or DLSTR, although a modest effect on GluR3 cannot be ruled out. Our results suggest that glutamate transmission in the NAc is dramatically different in rats sensitized to amphetamine versus cocaine.  相似文献   

8.
9.
Postmortem studies in schizophrenic patients revealed alterations in NMDA receptor binding and gene expression of specific subunits. Because most of the patients had been treated with antipsychotics over long periods, medication effects might have influenced those findings. We treated animals with haloperidol and clozapine in clinical doses to investigate the effects of long-term antipsychotic treatment on NMDA receptor binding and gene expression of subunits. Rats were treated with either haloperidol (1,5 mg/kg/day) or clozapine (45 mg/kg/day) given in drinking water over a period of 6 months. Quantitative receptor autoradiography with [3H]-MK-801 was used to examine NMDA receptor binding. In situ hybridization was performed for additional gene expression studies of the NR1, NR2A, NR2B, NR2C, and NR2D subunits. [3H]-MK-801 binding was found to be increased after haloperidol treatment in the striatum and nucleus accumbens. Clozapine was shown to up-regulate NMDA receptor binding only in the nucleus accumbens. There were no alterations in gene expression of NMDA subunits in any of the three regions. However, the NR2A subunit was down-regulated in the hippocampus and prefrontal cortex by both drugs, whereas only clozapine induced a down-regulation of NR1 in the dorsolateral prefrontal cortex. NR2B, 2C, and 2D subunits did not differ between treatment groups and controls. Both altered NMDA receptor binding and subunit expression strengthen a hyperglutamatergic function after haloperidol treatment and may contribute to some of our postmortem findings in antipsychotically treated schizophrenic patients. Because the effects seen in different brain areas clearly vary between haloperidol and clozapine, they may also be responsible for some of the differences in efficacy and side effects.  相似文献   

10.
Chronic ethanol treatment of cultured neurons from various brain areas has been found to increase NMDA receptor function and to alter the levels of some NMDA receptor subunit proteins. Because the cultured neurons are exposed to ethanol during a period when the NMDA receptor is undergoing developmental changes in subunit expression, we wished to determine whether ethanol treatment alters this developmental pattern. We found that 3 days of treatment of cerebellar granule neurons with ethanol, which was previously reported to increase NMDA receptor function, resulted in a delay in the 'developmental switch' of the NR2A and NR2B subunits, i.e. the developmental decrease in NR2B and increase in NR2A protein expression. As a result, the level of NR2B was higher, and that of NR2A was lower, in the ethanol-treated cells than in control cells. Cross-linking experiments showed that the changes in total receptor subunit proteins levels were reflected in cell-surface expressed proteins, indicating changes in the amount of functional receptors. These results were confirmed by a higher potency of glycine at the NMDA receptor in the ethanol-treated cells, as determined by NMDA/glycine-induced increases in intracellular Ca(2+). The results suggest that the mechanism by which ethanol alters NMDA receptor expression in cultured neurons, where receptors are undergoing development, differs from the mechanism of ethanol's effect on NMDA receptors in adult brain. Changes in the proportion of NR2A and NR2B subunits may contribute to effects of ethanol on neuronal development.  相似文献   

11.
Abstract: Activation of the N -methyl- d -aspartate (NMDA) receptor has been implicated in the events leading to ischemia-induced neuronal cell death. Recent studies have indicated that the properties of the NMDA receptor channel may be regulated by tyrosine phosphorylation. We have therefore examined the effects of transient cerebral ischemia on the tyrosine phosphorylation of NMDA receptor subunits NR2A and NR2B in different regions of the rat brain. Transient (15 min) global ischemia was produced by the four-vessel occlusion procedure. The tyrosine phosphorylation of NR2A and NR2B subunits was examined by immunoprecipitation with anti-tyrosine phosphate antibodies followed by immunoblotting with antibodies specific for NR2A or NR2B, and by immunoprecipitation with subunit-specific antibodies followed by immunoblotting with anti-phosphotyrosine antibodies. Transient ischemia followed by reperfusion induced large (23–29-fold relative to sham-operated controls), rapid (within 15 min of reperfusion), and sustained (for at least 24 h) increases in the tyrosine phosphorylation of NR2A and smaller increases in that of NR2B in the hippocampus. Ischemia-induced tyrosine phosphorylation of NR2 subunits in the hippocampus was higher than that of cortical and striatal NR2 subunits. The enhanced tyrosine phosphorylation of NR2A or NR2B may contribute to alterations in NMDA receptor function or in signaling pathways in the postischemic brain and may be related to pathogenic events leading to neuronal death.  相似文献   

12.
In our previous experiments, severe cellular damages and neuronal cell loss were observed following 24h of alcohol withdrawal in primary cultures of rat cortical neurones pre-treated with ethanol (50-200 mM) repeatedly for 3 days. Increased NMDA induced cytosolic calcium responses and excitotoxicity were also demonstrated in the ethanol pre-treated cultures. Thus, the enhancement in functions of NMDA receptors was supposed to be involved in the adaptive changes leading to the neurotoxic effect of alcohol-withdrawal. In this study, we investigated the effect of the 3-day repeated ethanol (100 mM) treatment on the function and subunit composition of the NMDA receptors. Here, we demonstrate that the maximal inhibitory effect of ethanol was significantly increased after ethanol pre-treatment. Similarly, the inhibitory activity of the NR2B subunit selective antagonists threo-ifenprodil, CP-101,606 and CI-1041 was also enhanced. On the contrary, the efficiency of the channel blocker agent MK-801 and the glycine-site selective antagonist 5,7-dichlorokynurenic acid was the same as in control cultures. According to these observations, a shift in subunit expression in favour for the NR2B subunit was suggested. Indeed, we provided evidence for increased expression of the NR2B and the C1 and C2' cassette containing splice variant forms of the NR1 subunit proteins in ethanol pre-treated cultures in further experiments using a flow cytometry based immunocytochemical method. These changes may constitute the basis of the increased NMDA receptor functions and subsequently the enhanced sensitivity of ethanol pre-treated cortical neurones to excitotoxic insults resulting in increased neuronal cell loss after ethanol withdrawal. Such alterations may play a role in the neuronal adaptation to ethanol as well as in the development of alcohol dependence, and might cause neuronal cell loss in certain areas of the brain during alcohol withdrawal.  相似文献   

13.
Chronic cocaine use in humans and animal models is known to lead to pronounced alterations in glutamatergic function in brain regions associated with reinforcement. Previous studies have examined ionotropic glutamate receptor (iGluR) subunit protein level changes following acute and chronic experimenter-administered cocaine or after withdrawal periods from experimenter-administered cocaine. To evaluate whether alterations in expression of iGluRs are associated with cocaine reinforcement, protein levels were assessed after binge (8 h/day, 15 days; 24-h access, days 16-21) cocaine self-administration and following 2 weeks of abstinence from this binge. Western blotting was used to compare levels of iGluR protein expression (NR1-3B, GluR1-7, KA2) in the ventral tegmental area (VTA), substantia nigra (SN), nucleus accumbens (NAc), striatum and prefrontal cortex (PFC) of rats. iGluR subunits were altered in a time-dependent manner in all brain regions studied; however, selective alterations in certain iGluR subtypes appeared to be associated with binge cocaine self-administration and withdrawal in a region-specific manner. In the SN and VTA, alterations in iGluR protein levels compared with controls occurred only following binge access, whereas in the striatum and PFC, iGluR alterations occurred with binge access and following withdrawal. In the NAc, GluR2/3 levels were increased following withdrawal compared with binge access, and were the only changes observed in this region. Because subunit composition determines the functional properties of iGluRs, the observed changes may indicate alterations in the excitability of dopamine transmission underlying long-term biochemical and behavioral effects of cocaine.  相似文献   

14.
Cocaine-induced long-term potentiation of glutamatergic synapses in the ventral tegmental area (VTA) has been proposed as a key process that contributes to the development of addictive behaviors. In particular, the activation of ionotrophic glutamate NMDA receptor (NMDAR) in the VTA is critical for the initiation of cocaine sensitization. Here we show that application of cocaine both in slices and in vivo induced an increase in tyrosine phosphorylation of the NR2A, but not the NR2B subunit of the NMDAR in juvenile rats. Cocaine induced an increase in the activity of both Fyn and Src kinases, and the Src-protein tyrosine kinase (Src-PTKs) inhibitor, 4-amino-5-(4-chlorophenyl)-7-( t -butyl)pyrazolo[3,4-d]pyrimidine (PP2), abolished both cocaine-induced increase in tyrosine phosphorylation of the NR2A subunit and the increase in the expression of NR1, NR2A, and NR2B in the VTA. Moreover, cocaine-induced enhancement in NMDAR-mediated excitatory post-synaptic currents was completely abolished by PP2. Taken together, these results suggest that acute cocaine induced an increase in the expression of NMDAR subunits and enhanced tyrosine phosphorylation of NR2A-containing NMDAR through members of the Src-PTKs. This in turn, increased NMDAR-mediated currents in VTA dopamine neurons. These results provide a potential cellular mechanism by which cocaine triggers NMDAR-dependent synaptic plasticity of VTA neurons that may underlie the development of behavioral sensitization.  相似文献   

15.
Jang  Choon-Gon  Oh  Seikwan  Ho  Ing Kang 《Neurochemical research》1998,23(11):1371-1377
Little is known about the functional modulation of NMDA receptor subunits at the molecular level. Therefore, a series of experiments were conducted to elucidate more fully the role of NMDA receptor subtypes in pentobarbital tolerance and withdrawal. We investigated the influence of centrally administered pentobarbital on the regulation of mRNA levels of the family of NMDA receptor 2 (NR2) subtypes (NR2A, NR2B, and NR2C) by in situ hybridization histochemistry in rat brain. Animals were rendered tolerant by continuous intracerebroventricular (i.c.v.) infusion with pentobarbital (300 g/10 l/hr for 6 days) through pre-implanted cannulae connected to osmotic mini-pumps, and dependent, by abrupt withdrawal from pentobarbital. The NR2A subunit mRNA was increased in cortical areas in pentobarbital tolerant and withdrawal rats. In contrast, the NR2B mRNA was decreased in parietal cortex and hippocampus in both tolerance and withdrawal rats. The level of NR2C mRNA was increased in withdrawal rats, while there was no change in tolerant rats. These results indicate that continuous i.c.v. infusion with pentobarbital alters NR2 subunit mRNA expression in the rat brain, suggesting that NR2 subunits may play an important role in the development of tolerance to and withdrawal from pentobarbital.  相似文献   

16.
Expression of NMDA neuroreceptors in experimental ischemia   总被引:7,自引:0,他引:7  
The role of NMDA receptors in molecular mechanisms of neurotoxicity was investigated using rat models of global and focal cerebral ischemia. Expression of NR2A and NR2B receptor mRNAs up-regulated in cortex after 3 h of reperfusion following middle cerebral artery occlusion (MCAo). This effect was accompanied by an increase in NR2A and NR2B immunoreactivity. At six hours of reperfusion, drastic activation of NR2A mRNA expression was observed in the penumbra that returned to the control level at 24 h of reperfusion. The monitoring of NR2A autoantibodies in the blood of the experimental rats showed its reliable increase to the 5-6th day of reperfusion that maintained elevated to the 20th day of the experiment. The data indicate that NR2A and 2B receptor subunits and NR2A autoantibodies are biochemical markers of the neurotoxicity underlying cerebral ischemia.  相似文献   

17.
Chronic cocaine and withdrawal induce significant alterations in nucleus accumbens (NAc) glutamatergic function in humans and rodent models of cocaine addiction. Dysregulation of glutamatergic function of the prefrontal cortical-NAc pathway has been proposed as a critical substrate for unmanageable drug seeking. Previously, we demonstrated significant up-regulation of NMDA, (+/-)-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and kainate receptor subunit mRNAs and protein levels in the ventral tegmental area (VTA), but not the substantia nigra, of cocaine overdose victims (COD). The present study was undertaken to examine the extent of altered ionotropic glutamate receptor (iGluR) subunit expression in the NAc and the putamen in cocaine overdose victims. Results revealed statistically significant increases in the NAc, but not in the putamen, of NMDA receptor subunit (NR)1 and glutamate receptor subunit (GluR)2/3 wit trends in GluR1 and GluR5 in COD. These results extend our previous finding and indicate pathway-specific alterations in iGluRs in COD. In order to determine that changes were related to cocaine intake and not to other factors in the COD victims, we examined the effects of cocaine intravenous self-administration in rhesus monkeys for 18 months (unit dose of 0.1 mg/kg/injection and daily drug intake of 0.5 mg/kg/session). Total drug intake for the group of four monkeys was 37.9 +/- 4.6 mg/kg. Statistically significant elevations were observed for NR1, GluR1, GluR2/3 and GluR5 (p < 0.05) and a trend towards increased NR1 phosphorylated at serine 896 (p = 0.07) in the NAc but not putamen of monkeys self-administering cocaine compared with controls. These results extend previous results by demonstrating an up-regulation of NR1, GluR2/3 and GluR5 in the NAc and suggest these alterations are pathway specific. Furthermore, these changes may mediate persistent drug intake and craving in the human cocaine abuser.  相似文献   

18.
Neurodegeneration induced by the NMDA receptor antagonist, phencyclidine (PCP), has been used to model the pathogenesis of schizophrenia in the developing rat. Acute and sub-chronic administration of PCP in perinatal rats results in different patterns of neurodegeneration. The potential role of an alteration in the membrane expression of NMDA receptors in PCP-induced degeneration is unknown. Acute PCP treatment on postnatal day 7 increased membrane levels of both NMDA receptor subunit 1 (NR1) and NMDA receptor subunit 2B (NR2B) proteins in the frontal cortex; conversely, NR1 and NR2B protein levels in the endoplasmic reticulum fraction were decreased. Acute PCP administration also resulted in increased membrane cortical protein levels of post-synaptic density-95, as well as the activation of calpain, which paralleled the observed increase in membrane expression of NR1 and NR2B. Further, administration of the calpain inhibitor, MDL28170, prevented PCP-induced up-regulation of NR1 and NR2B. On the other hand, sub-chronic PCP treatment on postnatal days 7, 9 and 11 caused an increase in NR1 and NR2A expression, which was accompanied by an increase in both NR1 and NR2A in the endoplasmic reticulum fraction. Sub-chronic PCP administration did not alter levels of post-synaptic density-95 and had no effect on activation of calpain. These data suggest that increased trafficking accounts for up-regulation of cortical NR1/NR2B subunits following acute PCP administration, while increased protein synthesis likely accounts for the increased expression of NR1/NR2A following sub-chronic PCP treatment of the developing rat. These results are discussed in the context of the differential neurodegeneration caused by acute and subchronic PCP administration in the developing rat brain.  相似文献   

19.
NMDA受体是兴奋性氨基酸谷氨酸(Glu)的特异性受体,属配体门控离子通道,是由不同的亚单位组成.现已发现,NMDA受体至少存在7个亚单位(NR1,NR2A-D,NR3A-B),其中NR2B在7个亚单位中扮演非常重要的角色.近年来对NR2B研究表明,其在调控神经元突触的可塑性、学习与记忆以及治疗精神紊乱方面具有重要的意义.对近期有关NR2B亚单位的结构、功能特性及其表达与调控的研究进展做一综述.  相似文献   

20.
NMDA receptors play essential roles in the physiology and pathophysiology of the striatum, a brain nucleus involved in motor control and reward-motivated behaviors. NMDA receptors are composed of NR1 and NR2A–D subunits. Functional properties of NMDA receptors are determined by the type of NR2 subunit they contain. In this study, we have examined the involvement of NR2B and NR2A in the modulatory effect of NMDA on glutamatergic and dopaminergic synaptic transmission in the striatum. We found that bath application of NMDA decreased the amplitude of the field excitatory post-synaptic potential/population spike (fEPSP/PS) measured in corticostriatal mouse brain slices. This depression was not affected by the NR2B-selective antagonists Ifenprodil and Ro 25-6981, but was abolished by the NR2A antagonist NVP-AAM077. Activation of corticostriatal neurons by NMDA did not contribute to synaptic depression because similar results were obtained in decorticated striatal slices. Synaptic depression was not dependent on GABA release because the GABAA receptor antagonist bicuculline did not affect NMDA-induced decrease of the fEPSP/PS. NMDA also depressed evoked-dopamine release through NR2A- but not NR2B-containing NMDA receptors. Our results identify an important role for NR2A-containing NMDA receptors intrinsic to the striatum in regulating glutamatergic synaptic transmission and evoked-dopamine release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号