共查询到20条相似文献,搜索用时 15 毫秒
1.
Cohen RI Hassell AM Ye X Marzouk K Liu SF 《Biochemical and biophysical research communications》2003,307(3):451-458
Studies of the regulation of iNOS expression have provided many contradictory results. Comparing iNOS expression profile between cell types or organs of the same animal under the same experimental conditions may provide an explanation for these conflicting results. We have examined iNOS mRNA and protein expression in heart and liver of the same group of pigs. We found that there is a sharp difference in iNOS expression between heart and liver. The iNOS mRNA and protein was constitutively expressed in the heart at high level, but was not detectable in the liver of the same control animal. Lipopolysaccharide (LPS, 100 microg/kg, i.v.) caused a marked iNOS induction in the liver, but significantly down-regulated iNOS expression in the heart. This differential iNOS expression appears to be physiologically relevant, since LPS and the iNOS inhibitor, S-methylisothiourea, exerted different effects on hepatic and myocardial blood flow. Our data demonstrate a fundamental difference in iNOS regulation in the heart and liver of swine, and may explain the contradictory data on the regulation of iNOS expression. 相似文献
2.
Renton P Speed J Maddaford S Annedi SC Ramnauth J Rakhit S Andrews J 《Bioorganic & medicinal chemistry letters》2011,21(18):5301-5304
A series of 1,5-disubstituted indole derivatives was designed, synthesized and evaluated as inhibitors of human nitric oxide synthase. A variety of flexible and restricted basic amine side chain substitutions was explored at the 1-position of the indole ring, while keeping the amidine group fixed at the 5-position. Compounds having N-(1-(2-(1-methylpyrrolidin-2-yl)ethyl)- (12, (R)-12, (S)-12 and 13) and N-(1-(1-methylazepan-4-yl)- side chains (14, 15, (-)-15 and (+)-15) showed increased inhibitory activity for the human nNOS isoform and selectivity over eNOS and iNOS isoforms. The most potent compound of the series for human nNOS (IC(50)=0.02 μM) (S)-12 showed very good selectivity over the eNOS (eNOS/nNOS=96-fold) and iNOS (iNOS/nNOS=850-fold) isoforms. 相似文献
3.
Maddaford S Renton P Speed J Annedi SC Ramnauth J Rakhit S Andrews J Mladenova G Majuta L Porreca F 《Bioorganic & medicinal chemistry letters》2011,21(18):5234-5238
A series of 1,6-disubstituted indole derivatives was designed, synthesized and evaluated as inhibitors of human nitric oxide synthase (NOS). By varying the basic amine side chain at the 1-position of the indole ring, several potent and selective inhibitors of human neuronal NOS were identified. In general compounds with bulkier side chains displayed increased selectivity for nNOS over eNOS and iNOS isoforms. One of the compounds, (R)-8 was shown to reduce tactile hyperesthesia (allodynia) after oral administration (30 mg/kg) in an in vivo rat model of dural inflammation relevant to migraine pain. 相似文献
4.
Mei YF Yamaza T Atsuta I Danjo A Yamashita Y Kido MA Goto M Akamine A Tanaka T 《Cell and tissue research》2007,328(1):117-127
5.
6.
Constitutive arginine-dependent nitric oxide synthase activity in different organs of pea seedlings during plant development 总被引:20,自引:0,他引:20
Corpas FJ Barroso JB Carreras A Valderrama R Palma JM León AM Sandalio LM del Río LA 《Planta》2006,224(2):246-254
Nitric oxide (NO) is an important signalling molecule in different animal and plant physiological processes. Little is known about its biological function in plants and on the enzymatic source or site of NO production during plant development. The endogenous NO production from l-arginine (NO synthase activity) was analyzed in leaves, stems and roots during plant development, using pea seedlings as a model. NOS activity was analyzed using a novel chemiluminescence-based assay which is more sensitive and specific than previous methods used in plant tissues. In parallel, NO accumulation was analyzed by confocal laser scanning microscopy using as fluorescent probes either DAF-2 DA or DAF-FM DA. A strong increase in NOS activity was detected in stems after 11 days growth, coinciding with the maximum stem elongation. The arginine-dependent NOS activity was constitutive and sensitive to aminoguanidine, a well-known irreversible inhibitor of animal NOS, and this NOS activity was differentially modulated depending on the plant organ and seedling developmental stage. In all tissues studied, NO was localized mainly in the vascular tissue (xylem) and epidermal cells and in root hairs. These loci of NO generation and accumulation suggest novel functions for NO in these cell types. 相似文献
7.
Hong IS Kim YK Choi WS Seo DW Yoon JW Han JW Lee HY Lee HW 《FEMS microbiology letters》2003,225(2):177-182
We previously reported the presence of nitric oxide synthase (NOS) in Staphylococcus aureus ATCC6538P whose activity was induced by methanol. In the present study, the methanol-induced NOS was purified 900-fold from S. aureus by means of Mono Q ion exchange column, 2',5'-ADP-agarose affinity column, and Superdex 200HR gel permeation column chromatography. The purified bacterial NOS showed two protein bands with 67 and 64 kDa molecular mass on SDS-PAGE. However, the molecular mass of the NOS was 135 kDa on Superdex 200HR gel permeation column chromatography, indicating that the native enzyme exists as a heterodimer. This bacterial NOS had K(m) value of 13.4x10(-6) M for L-arginine and V(max) of 35.3 nmol min(-1) mg(-1) protein. In addition, reduced nicotinamide adenine dinucleotide phosphate, flavin adenine dinucleotide, flavin mononucleotide, tetrahydrobiopterin, calmodulin and Ca(2+) were required as cofactors in the conversion of L-arginine to L-citrulline, and NOS inhibitors selectively inhibited the activity of the purified NOS. 相似文献
8.
Trajanovska S Donald JA 《Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology》2011,158(4):274-281
Nitric oxide (NO) is generated by NO synthase (NOS) of which there are three isoforms: neuronal NOS (nNOS, nos1), inducible NOS (iNOS, nos2), and endothelial NOS (eNOS, nos3). This study utilised the genome of Xenopus tropicalis to sequence a nos3 cDNA and determine if eNOS protein is expressed in blood vessels. A nos3 cDNA was sequenced that encoded a 1177 amino acid protein called XteNOS, which showed closest sequence identity to mammalian eNOS protein. The X. tropicalis nos3 gene and eNOS protein were determined to be an orthologue of mammalian nos3 and eNOS using gene synteny and phylogenetic analyses, respectively. In X. tropicalis, nos3 mRNA expression was highest in lung and skeletal muscle and lower in the liver, gut, kidney, heart and brain. Western analysis of kidney protein using an affinity-purified anti-XteNOS produced a single band at 140kDa. Immunohistochemistry showed XteNOS immunoreactivity in the proximal tubule of the kidney and endocardium of the heart, but not in the endothelium of blood vessels. Thus, X. tropicalis has a nos3 gene that appears not to be expressed in the vascular endothelium. 相似文献
9.
Ishimura Y Gao YT Panda SP Roman LJ Masters BS Weintraub ST 《Biochemical and biophysical research communications》2005,338(1):543-549
Using headspace gas chromatography-mass spectrometry, we detected significant amounts of nitrous oxide in the reaction products of the monooxygenase reaction catalyzed by neuronal nitric oxide synthase. Nitrous oxide is a dimerization product of nitroxyl anion; its presence in the reaction products indicates that the nitroxyl anion is a product of the neuronal nitric oxide synthase-catalyzed reaction. 相似文献
10.
Benjamin Hemmens Silvia Woschitz Eva Pitters Burkhardt Klösch Christof Völker Kurt Schmidt Bernd Mayer 《FEBS letters》1998,430(3):537
Neuronal NO synthase (nNOS) was discovered recently to interact specifically with the protein PIN (protein inhibitor of nNOS) [Jaffrey, S.R. and Snyder, S.H. (1996) Science 274, 774–777]. We have studied the effects on pure NOS enzymes of the same GST-tagged PIN used in the original paper. Unexpectedly, all NOS isoenzymes were inhibited. The IC50 for nNOS was 18±6 μM GST-PIN with 63 nM nNOS after 30 min at 37°C. Uncoupled NADPH oxidation was inhibited similarly, whereas cytochrome c reductase activity, the KM for l-arginine, and dimerization were unaffected. We reconsider the physiological role of PIN in the light of these results. 相似文献
11.
Nitric oxide and nitric oxide synthase activity in plants 总被引:26,自引:0,他引:26
Research on NO in plants has gained considerable attention in recent years mainly due to its function in plant growth and development and as a key signalling molecule in different intracellular processes in plants. The NO emission from plants is known since the 1970s, and now there is abundant information on the multiple effects of exogenously applied NO on different physiological and biochemical processes of plants. The physiological function of NO in plants mainly involves the induction of different processes, including the expression of defence-related genes against pathogens and apoptosis/programmed cell death (PCD), maturation and senescence, stomatal closure, seed germination, root development and the induction of ethylene emission. NO can be produced in plants by non-enzymatic and enzymatic systems. The NO-producing enzymes identified in plants are nitrate reductase, and several nitric oxide synthase-like activities, including one localized in peroxisomes which has been biochemically characterized. Recently, two genes of plant proteins with NOS activity have been isolated and characterized for the first time, and both proteins do not have sequence similarities to any mammalian NOS isoform. However, different evidence available indicate that there are other potential enzymatic sources of NO in plants, including xanthine oxidoreductase, peroxidase, cytochrome P450, and some hemeproteins. In plants, the enzymatic production of the signal molecule NO, either constitutive or induced by different biotic/abiotic stresses, may be a much more common event than was initially thought. 相似文献
12.
13.
Analysis of the effects of nitric oxide and oxygen on nitric oxide production by macrophages 总被引:2,自引:0,他引:2
The interactions between NO and O(2) in activated macrophages were analysed by incorporating previous cell culture and enzyme kinetic results into a novel reaction-diffusion model for plate cultures. The kinetic factors considered were: (i) the effect of O(2) on NO production by inducible NO synthase (iNOS); (ii) the effect of NO on NO synthesis by iNOS; (iii) the effect of NO on respiratory and other O(2) consumption; and (iv) the effects of NO and O(2) on NO consumption by a possible NO dioxygenase (NOD). Published data obtained by varying the liquid depth in macrophage cultures provided a revealing test of the model, because varying the depth should perturb both the O(2) and the NO concentrations at the level of the cells. The model predicted that the rate of NO(2)(-) production should be nearly constant, and that the net rate of NO production should decline sharply with increases in liquid depth, in excellent agreement with the experimental findings. In further agreement with available results for macrophage cultures, the model predicted that net NO synthesis should be more sensitive to liquid depth than to the O(2) concentration in the headspace. The main reason for the decrease in NO production with increasing liquid depth was the modulation of NO synthesis by NO, with O(2) availability playing only a minor role. The model suggests that it is the ability of iNOS to consume NO, as well as to synthesize it, that creates very sensitive feedback control, setting an upper bound on the NO concentration of approximately 1 microM. The effect of NO consumption by other possible pathways (e.g., NOD) would be similar to that of iNOS, in that it would help limit net NO production. The O(2) utilized during enzymatic NO consumption is predicted to make the O(2) demands of activated macrophages much larger than those of unactivated ones (where iNOS is absent); this remains to be tested experimentally. 相似文献
14.
The consequences of chronic nitric oxide synthase (NOS) blockade on the myocardial metabolic and guanylyl cyclase stimulatory effects of exogenous nitric oxide (NO) were determined. Thirty-three anesthetized open-chest rabbits were randomized into four groups: control, NO donor S-nitroso-N-acetyl-penicillamine (SNAP, 10(-4 )M), NOS blocking agent N(G)-nitro-L-arginine methyl ester (L-NAME, 20 mg/kg/day) for 10 days followed by a 24 hour washout and L-NAME for 10 days followed by a 24 hour washout plus SNAP. Myocardial O(2) consumption was determined from coronary flow (microspheres) and O(2) extraction (microspectrophotometry). Cyclic GMP and guanylyl cyclase activity were determined by radioimmunoassay. There were no baseline metabolic, functional or hemodynamic differences between control and L-NAME treated rabbits. SNAP in controls caused a reduction in O(2) consumption (SNAP 5.9+/-0.6 vs. control 8.4+/-0.8 ml O(2)/min/100 g) and a rise in cyclic GMP (SNAP 18.3+/-3.8 vs. control 10.4+/-0.9 pmol/g). After chronic L-NAME treatment, SNAP caused no significant changes in O(2) consumption (SNAP 7.1+/-0.8 vs. control 6.4+/-0.7) or cyclic GMP (SNAP 14.2+/-1.8 vs. control 12.1+/-1.3). In controls, guanylyl cyclase activity was significantly stimulated by SNAP (216.7+/-20.0 SNAP vs. 34.4+/-2.5 pmol/mg/min base), while this increase was blunted after L-NAME (115.9+/-24.5 SNAP vs. 24.9+/-4.7 base). These results demonstrated that chronic NOS blockade followed by washout blunts the response to exogenous NO, with little effect on cyclic GMP or myocardial O(2) consumption. This was related to reduced guanylyl cyclase activity after chronic L-NAME. These results suggest that, unlike many receptor systems, the NO-cyclic GMP signal transduction system becomes downregulated upon chronic inhibition. 相似文献
15.
Jianguo Fang 《Analytical biochemistry》2009,390(1):74-2048
Nitric oxide synthase (NOS) inhibitors are potential drug candidates because it has been well demonstrated that excessive production of nitric oxide critically contributes to a range of diseases. Most inhibitors have been screened in vitro using recombinant enzymes, leading to the discovery of a variety of potent compounds. To make inhibition studies more physiologically relevant and bridge the gap between the in vitro assay and in vivo studies, we report here a cellular model for screening NOS inhibitors. Stable transformants were generated by overexpressing rat neuronal NOS in HEK 293T cells. The enzyme was activated by introducing calcium ions into cells, and its activity was assayed by determining the amount of nitrite that was formed in culture medium using the Griess reagent. We tested a few NOS inhibitors with this assay and found that the method is sensitive, versatile, and easy to use. The cell-based assay provides more information than in vitro assays regarding the bioavailability of NOS inhibitors, and it is suitable for high-throughput screening. 相似文献
16.
17.
18.
Lam-Himlin D Espey MG Perry G Smith MA Castellani RJ 《Neurochemistry international》2006,49(8):764-768
Glioblastoma multiforme, the most common of the malignant gliomas, carries a dismal prognosis in spite of the most aggressive therapy and recent advances in molecular pathways of glioma progression. Although it has received relatively little attention in the setting of malignant gliomas, nitric oxide metabolism may be intimately associated with the disease process. Interestingly, nitric oxide has both physiological roles (e.g., neurotransmitter-like activity, stimulation of cyclic GMP), and pathophysiological roles (e.g., neoplastic transformation, tumor neovascularization, induction of apoptosis, free radical damage). Moreover, whether nitric oxide is neuroprotective or neurotoxic in a given disease state, or whether it enhances or diminishes chemotherapeutic efficacy in malignant neoplasia, is unresolved. This review discusses the multifaceted activity of nitric oxide with particular reference to malignant gliomas. 相似文献
19.
昆虫一氧化氮及其合酶的研究进展 总被引:5,自引:0,他引:5
一氧化氮作为一种重要的信息分子 ,参与调节昆虫嗅觉、视觉、机械感受、发育、机体防御及学习行为。该文从生理、生化、形态定位以及信号转导几方面综述了有关昆虫一氧化氮及其合酶的最新研究进展。 相似文献
20.
Yasuo Hisa Toshiyuki Uno Nobuhisa Tadaki Kaori Umehara Hitoshi Okamura Yasuhiko Ibata 《Cell and tissue research》1995,279(3):629-631
By means of NADPH-diaphorase (NADPH-d) histochemistry and nitric oxide synthase (NOS) immunohistochemistry, we demonstrate that considerable numbers of NADPH-d-positive neurons are distributed throughout the canine superior cervical ganglion (SCG). These neurons also show NOS immunoreactivity. This finding indicates that NADPH-d histochemistry, a simple and reliable technique, can be used as a reliable marker of NOS activity in the sympathetic innervation of canine head and neck. The present findings suggest that the participation of nitric oxide in the SCG differs greatly between species. 相似文献