首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nephrogenic diabetes insipidus (NDI) usually shows an X-linked recessive mode of inheritance caused by mutations in the vasopressin type 2 receptor gene (AVPR2). In the present study, three NDI families are described in which females show clinical features resembling the phenotype in males. Maximal urine osmolality in three female patients did not exceed 200 mosmol/kg and the absence of extra-renal responses to 1-desamino-8-d-arginine vasopressin was demonstrated in two of them. All affected females and two asymptomatic female family members were shown to be heterozygous for an AVPR2 mutation. Skewed X-inactivation is the most likely explanation for the clinical manifestation of NDI in female carriers of an AVPR2 mutation. It is concluded that, in female NDI patients, the possibility of heterozygosity for an AVPR2 gene mutation has to be considered in addition to homozygosity for mutations in the aquaporin 2 gene.  相似文献   

2.
X-linked nephrogenic diabetes insipidus (NDI) is a rare disease with defective renal and extrarenal arginine-vasopressin V2 receptor responses due to mutations in the AVPR2 gene in Xq28. We analyzed 31 independent NDI families to determine the nature and recurrence of AVPR2 mutations. Twenty-one new putative disease-causing mutations were identified: 113delCT, 253del35, 255del9, 274insG, V88M, R106C, 402delCT, C112R, Y124X, S126F, W164S, S167L, 684delTA, 804insG, W284X, A285P, W293X, R337X, and three large deletions or gene rearrangements. Five other mutations—R113W, Y128S, R137H, R181C, and R202C—that previously had been reported in other families were detected. There was evidence for recurrent mutation for four mutations (R113W, R137H, S167L, and R337X). Eight de novo mutation events were detected (274insG, R106C, Y128S, 167L [twice], R202C, 684delTA, and R337X). The origins were maternal (one), grandmaternal (one), and grandpaternal (six). In the 31 NDI families and 6 families previously reported by us, there is evidence both for mutation hot spots for nucleotide substitutions and for small deletions and insertions. More than half (58%) of the nucleotide substitutions in 26 families could be a consequence of 5-methylcytosine deamination at a CpG dinucleotide. Most of the small deletions and insertions could be attributed to slipped mispairing during DNA replication.  相似文献   

3.
Almost 90% of nephrogenic diabetes insipidus (NDI) is due to mutations in the arginine-vasopressin receptor 2 gene (AVPR2). We retrospectively examined all the published mutations/variants in AVPR2. We planned to perform a comprehensive review of all the AVPR2 mutations/variants and to test whether any amino acid change causing a missense mutation is significantly more or less common than others. We performed a Medline search and collected detailed information regarding all AVPR2 mutations and variants. We performed a frequency comparison between mutated and wild-type amino acids and codons. We predicted the mutation effect or reported it based on published in vitro studies. We also reported the ethnicity of each mutation/variant carrier. In summary, we identified 211 AVPR2 mutations which cause NDI in 326 families and 21 variants which do not cause NDI in 71 NDI families. We described 15 different types of mutations including missense, frameshift, inframe deletion, deletion, insertion, nonsense, duplication, splicing and combined mutations. The missense mutations represent the 55.83% of all the NDI published families. Arginine and tyrosine are significantly (P = 4.07E-08 and P = 3.27E-04, respectively) the AVPR2 most commonly mutated amino acids. Alanine and glutamate are significantly (P = 0.009 and P = 0.019, respectively) the least mutated AVPR2 amino acids. The spectrum of mutations varies from rare gene variants or polymorphisms not causing NDI to rare mutations causing NDI, among which arginine and tyrosine are the most common missense. The AVPR2 mutations are spread world-wide. Our study may serve as an updated review, comprehensive of all AVPR2 variants and specific gene locations. J. Cell. Physiol. 217: 605-617, 2008. (c) 2008 Wiley-Liss, Inc.  相似文献   

4.
Over 155 mutations within the V2 vasopressin receptor (AVPR2) gene are responsible for nephrogenic diabetes insipidus (NDI). The expression and subcellular distribution of four of these was investigated in transfected cells. These include a point mutation in the seventh transmembrane domain (S315R), a frameshift mutation in the third intracellular loop (804delG), and two nonsense mutations that code for AVPR2 truncated within the first cytoplasmic loop (W71X) and in the proximal portion of the carboxyl tail (R337X). RT-PCR revealed that mRNA was produced for all mutant receptor constructs. However, no receptor protein, as assessed by Western blot analysis, was detected for 804delG. The S315R was properly processed through the Golgi and targeted to the plasma membrane but lacked any detectable AVP binding or signaling. Thus, this mutation induces a conformational change that is compatible with endoplasmic reticulum (ER) export but dramatically affects hormone recognition. In contrast, the W71X and R337X AVPR2 were retained inside the cell as determined by immunofluorescence. Confocal microscopy revealed that they were both retained in the ER. To determine if calnexin could be involved, its interaction with the AVPR2 was assessed. Sequential coimmunoprecipitation demonstrated that calnexin associated with the precursor forms of both wild-type (WT) and mutant receptors in agreement with its general role in protein folding. Moreover, its association with the ER-retained R337X mutant was found to be longer than with the WT receptor suggesting that this molecular chaperone also plays a role in quality control and ER retention of misfolded G protein-coupled receptors.  相似文献   

5.
Inactivating mutations of the V2 vasopressin receptor (V2R) cause cross-linked congenital nephrogenic diabetes insipidus (NDI), resulting in renal resistance to the antidiuretic hormone AVP. In two families showing partial NDI, characterized by an apparently normal response to diagnostic tests and an increase in the basal ADH levels suggesting AVP resistance, we have identified two V2R mutations, Ser-333del and Y128S. Both mutant V2Rs, when expressed in COS-7 cells, show partial defects in vasopressin-stimulated cAMP accumulation and intracellular localization. The inhibition of internalization does not rescue their localization. In contrast, the non-peptide V2R antagonists OPC41061 and OPC31260 partially rescue the membrane localization and basal function of these V2R mutants, whereas they inhibit the basal activity of the wild-type V2R. These results indicate that a partial loss of function of Ser-333del and Y128S mutant V2Rs results from defective membrane trafficking. These findings further indicate that V2R antagonists can act as protean agonists, serving as pharmacological chaperones for inactivating V2R mutants and also as inverse agonists of wild-type receptors. We speculate that this protean agonism could underlie the possible dual beneficial effects of the V2R antagonist: improvement of hyponatremia with heart failure or polycystic kidney disease and potential rescue of NDI.  相似文献   

6.
Mutations in the AVPR2 gene encoding the receptor for arginine vasopressin in the kidney (V2 ADHR) have been reported in patients with congenital nephrogenic diabetes insipidus, a predominantly X-linked disorder of water homeostasis. We have used restriction-enzyme analysis and direct DNA sequencing of genomic PCR product to evaluate the AVPR2 gene in 11 unrelated affected males. Each patient has a different DNA sequence variation, and only one matches a previously reported mutation. Cosegregation of the variations with nephrogenic diabetes insipidus was demonstrated for two families, and a de novo mutation was documented in two additional cases. Carrier detection was accomplished in one family. All the variations predict frameshifts, truncations, or nonconservative amino acid substitutions in evolutionarily conserved positions in the V2 ADHR and related receptors. Of interest, a 28-bp deletion is found in one patient, while another, unrelated patient has a tandem duplication of the same 28-bp segment, suggesting that both resulted from the same unusual unequal crossing-over mechanism facilitated by 9-mer direct sequence repeats. Since the V2 ADHR is a member of the seven-transmembrane-domain, G-protein-coupled receptor superfamily, the loss-of-function mutations from this study and others provide important clues to the structure-function relationship of this and related receptors.  相似文献   

7.
Congenital nephrogenic diabetes insipidus (NDI) is a disease characterized by failure of the kidney to concentrate urine in response to vasopressin. Human kindreds with nephrogenic diabetes insipidus have been found to harbor mutations in the vasopressin receptor 2 (Avpr2) gene or the vasopressin-sensitive water channel aquaporin-2 (Aqp2) gene. Development of a treatment is rendered difficult due to the lack of a viable animal model. Through forward genetic screening of ethylnitrosourea-mutagenized mice, we report the identification and characterization of a mouse model of NDI, with an F204V mutation in the Aqp2 gene. Unlike previously attempted murine models of NDI, our mice survive to adulthood and more exactly recapitulate the human disorder. Previous in vitro experiments using renal cell lines suggest recessive Aqp2 mutations result in improper trafficking of the mutant water pore. Using these animals, we have directly proven this hypothesis of improper AQP2 translocation as the molecular defect in nephrogenic diabetes insipidus in the intact organism. Additionally, using a renal cell line we show that the mutated protein, AQP2-F204V, is retained in the endoplasmic reticulum and that this abnormal localization can be rescued by wild-type protein. This novel mouse model allows for further mechanistic studies as well as testing of pharmacological and gene therapies for NDI.  相似文献   

8.
Mutations in the X-chromosomal V2 receptor gene are known to cause nephrogenic diabetes insipidus (NDI). Besides the X-linked form, an autosomal mode of inheritance has been described. Recently, mutations in the autosomal gene coding for water-channel aquaporin 2 (AQP2) of the renal collecting duct were reported in an NDI patient. In the present study, missense mutations and a single nucleotide deletion in the aquaporin 2 gene of three NDI patients from consanguineous matings are described. Expression studies in Xenopus oocytes showed that the missense AQP2 proteins are nonfunctional. These results prove that mutations in the AQP2 gene cause autosomal recessive NDI.  相似文献   

9.
Arginine vasopressin (AVP) is released from the posterior pituitary and controls water homeostasis. AVP binding to vasopressin V2 receptors (V2Rs) located on kidney collecting duct epithelial cells triggers activation of Gs proteins, leading to increased cAMP levels, trafficking of aquaporin-2 water channels, and consequent increased water permeability and antidiuresis. Typically, loss-of-function V2R mutations cause nephrogenic diabetes insipidus (NDI), whereas gain-of-function mutations cause nephrogenic syndrome of inappropriate antidiuresis (NSIAD). Here we provide further characterization of two mutant V2Rs, R181C and M311V, reported to cause complete and partial NDI respectively, together with a V266A variant, in a patient diagnosed with NSIAD. Our data in HEK293FT cells revealed that for cAMP accumulation, AVP was about 500- or 30-fold less potent at the R181C and M311V mutants than at the wild-type receptor respectively (and about 4000- and 60-fold in COS7 cells respectively). However, in contrast to wild type V2R, the R181C mutant failed to increase inositol phosphate production, while with the M311V mutant, AVP exhibited only partial agonism in addition to a 37-fold potency decrease. Similar responses were detected in a BRET assay for β-arrestin recruitment, with the R181C receptor unresponsive to AVP, and partial agonism with a 23-fold decrease in potency observed with M311V in both HEK293FT and COS7 cells. Notably, the V266A V2R appeared functionally identical to the wild-type receptor in all assays tested, including cAMP and inositol phosphate accumulation, β-arrestin interaction, and in a BRET assay of receptor ubiquitination. Each receptor was expressed at comparable levels. Hence, the M311V V2R retains greater activity than the R181C mutant, consistent with the milder phenotype of NDI associated with this mutant. Notably, the R181C mutant appears to be a Gs protein-biased receptor incapable of signaling to inositol phosphate or recruiting β-arrestin. The etiology of NSIAD in the patient with V266A V2R remains unknown.  相似文献   

10.
The gene responsible for familial vasopressin-resistant nephrogenic diabetes insipidus (NDI) has been localized to a small region of the human X-chromosome (Xq28). A series of hamster lung fibroblast and mouse lymphocyte cell lines carrying fragments of the wild type human X-chromosome was analyzed for vasopressin renal-type V2 receptor expression, to test the hypothesis that the NDI locus may have identity with the V2 receptor gene. V2 receptor binding activity and induction of cAMP production in response to [Arg8] vasopressin (AVP) were exhibited by all cell lines carrying the wild type NDI locus, in contrast to control cell lines. AVP stimulation of cAMP production was concentration-dependent and could be almost completely inhibited by co-incubation with a V2-V1 receptor-specific antagonist. The V2-specific agonist [Mpa1,Val4,Sar7]AVP was as potent as AVP in inducing cAMP production by NDI-DNA-carrying cells, whereas no response was shown to other hormones such as calcitonin, oxytocin (less than 10(-8) M), isoproterenol, or an oxytocin-specific agonist. All results were consistent with the hypothesis that the V2 receptor gene co-localized with the NDI locus, supporting the view that the loci are one and the same.  相似文献   

11.
The gene for nephrogenic diabetes insipidus (DIR) and the vasopressin type 2 receptor gene (AVPR2) have both been localized in the Xqter region by genetic mapping and functional expression studies, respectively. In this paper genetic evidence that the DIR locus is localized distal to the DXS305 locus and that the functional gene for the V2 receptor is localized between the markers DXS269 and F8 is presented. These further refinements in the localization of both genes strengthen the assumption that both genes are identical and provide a rationale for cloning the gene by reversed genetics strategies.  相似文献   

12.
Mutations in the gene of the G protein-coupled vasopressin V2 receptor (V2 receptor) cause X-linked nephrogenic diabetes insipidus (NDI). Most of the missense mutations on the extracellular face of the receptor introduce additional cysteine residues. Several groups have proposed that these residues might disrupt the conserved disulfide bond of the V2 receptor. To test this hypothesis, we first calculated a structure model of the extracellular receptor domains. The model suggests that the additional cysteine residues may form a second disulfide bond with the free, nonconserved extracellular cysteine residue Cys-195 rather than impairing the conserved bond. To address this question experimentally, we used the NDI-causing mutant receptors G185C and R202C. Their Cys-195 residues were replaced by alanine to eliminate the hypothetical second disulfide bonds. This second site mutation led to functional rescue of both NDI-causing mutant receptors, strongly suggesting that the second disulfide bonds are indeed formed. Furthermore we show that residue Cys-195, which is sensitive to "additional cysteine" mutations, is not conserved among the V2 receptors of other species and that the presence of an uneven number of extracellular cysteine residues, as in the human V2 receptor, is rare among class I G protein-coupled receptors.  相似文献   

13.
The G protein-coupled vasopressin V2 receptor (V2 receptor) contains a pair of conserved cysteine residues (C112 and C192) which are thought to form a disulfide bond between the first and second extracellular loops. The conserved cysteine residues were found to be important for the correct formation of the ligand binding domain of some G protein-coupled receptors. Here we have assessed the properties of the V2 receptor after site-directed mutagenesis of its conserved cysteine residues in transiently transfected human embryonic kidney (HEK 293) cells. Mutant receptors (C112S, C112A and C192S, C192A) were non-functional and located mostly in the cell's interior. The conserved cysteine residues of the V2 receptor are thus not only important for the structure of the ligand binding domain but also for efficient intracellular receptor transport. In addition to the functional significance of the conserved cysteine residues, we have also analyzed the defects of two mutant V2 receptors which cause X-linked nephrogenic diabetes insipidus (NDI) by the introduction of additional cysteine residues into the second extracellular loop (mutants G185C, R202C). These mutations are assumed to impair normal disulfide bond formation. Mutant receptor G185C and R202C were efficiently transported to the plasma membrane but were defective in ligand binding. Only in the case of the mutant receptor R202C, the more sensitive adenylyl cyclase activity assay revealed vasopressin-stimulated cAMP formation with a 35-fold increased EC(50) value and with a reduced EC(max), indicating that ligand binding is not completely abolished. Taking the unaffected intracellular transport of both NDI-causing mutant receptors into account, our results indicate that the observed impairment of ligand binding by the additional cysteine residues is not due to the prevention of disulfide bond formation between the conserved cysteine residues.  相似文献   

14.
Hereditary nonpolyposis colorectal cancer (HNPCC) is a common autosomal dominant cancer susceptibility condition. Inherited mutations in at least four DNA mismatch repair genes, hMSH2, hMLH1, hPMS1, and hPMS2, are known to cause HNPCC. In this study we used denaturing gradient gel electrophoresis (DGGE) to screen for hMLH1 mutations in 34 unrelated HNPCC families (30 Dutch, 3 Italian, and 1 Danish). Ten novel pathogenic germ-line mutations (seven affecting splice sites, two frameshifts, and one in-frame deletion of a single amino acid) have been identified in 12 (35%) of these families. In a previous study, hMSH2 mutations were found in 21% of the same families. While the spectrum of mutations at the hMSH2 gene among HNPCC patients appears heterogeneous, a cluster of hMLH1 mutations has been found in the region encompassing exons 15 and 16, which accounts for 50% of all the independent hMLH1 mutations described to date and for > 20% of the unrelated HNPCC kindreds here analyzed. This unexpected finding has a great practical value in the clinical scenario of genetic services.  相似文献   

15.
In several cases of familial glucocorticoid deficiency (FGD), referred to as FGD type 1, mutations have been described in the coding exon of the adrenocorticotropin receptor (melanonocortin receptor type 2, MC2R) gene. However, for the majority of cases (FGD type 2), no mutations were found in this gene. In the more informative families, the involvement of the MC2R locus could be excluded by linkage or sequencing analysis and, as there was no obvious candidate gene, a genome linkage scan was performed. Fourteen families were studied in this report. Evidence of linkage was found with markers on chromosome 8q in three out of the 14 families (maximum heterogeneity LOD score of 2.81 at D8S1763). These three families were consanguineous and the gene could be located by homozygosity mapping between markers D8S285 and D8S1718 in a 8.8-cM region. No potential candidate genes were apparent in the region. Linkage to this region could be excluded in some families from our sample giving highly negative LOD scores with the markers of the region. This result suggests that at least one other gene, located on a different region, must be responsible for FGD in these families and provides new evidence of genetic heterogeneity of this disorder.  相似文献   

16.
Familial adenomatous polyposis (FAP) is a disease characterized by the presence of hundreds of adenomatous polyps in the colon and rectum which, if not treated, develop into colorectal cancer. FAP is an autosomal dominantly inherited disorder caused by mutation in the APC gene. The aim of this study was to search for germ-line mutations of the APC gene in unrelated FAP families from southern Spain. By direct sequencing of all APC gene exons, we found the mutation in 13 of 15 unrelated FAP families studied. We identified eight novel mutations: 707delA (exon6), 730_731delAG (exon7), 1787C-->G and 1946_1947insG (exon14), 2496delC, 2838_2839delAT, 2977A-->T, and 3224dupA (exon15). Two patients presented de novo germ-line mutations. Genotype-phenotype correlations for extraintestinal and extracolonic manifestations were studied. Intrafamilial phenotypic variability was observed in two families with mutations in exon/intron boundary, probably due to alternative splicing.  相似文献   

17.
The vasopressin V2 receptor (V2R) and the aquaporin-2 genes of two unrelated male patients with congenital nephrogenic diabetes insipidus were analyzed. The V2R gene of the patient of family 1 had the wild-type sequence. Consequently, the coding region of the aquaporin-2 gene including the exon-intron junctions was sequenced. A novel G to T transversion at codon 202, predictive of an exchange of tryptophan 202 by cysteine, was identified. As the mutation occurs at G-1 of the 5′ splice donor site of intron 3, aberrant splicing is also likely. The mutation involves one of the supposed water pore-forming loops. Therefore, both aberrant splicing and amino acid substitution are likely to result in a functionally defective protein. Sequencing of the complete V2R gene of the male patient of family 2 revealed a novel single-base deletion at codon 310 (ΔC1001), shifting the reading frame to give an altered amino acid sequence beginning at codon 311. The mutation is unique in predicting a C-terminally extended protein (termination after codon 434 in the mutant receptor instead of codon 371 in the wild-type). The deduced mutant protein is likely to be nonfunctional since the amino acid sequence of the seventh transmembrane domain and the C-terminus is altered. Received: 5 March 1996 / Revised: 30 May 1996  相似文献   

18.
Idiopathic ventricular fibrillation in patients with an electrocardiogram (ECG) pattern of right bundle branch block and ST-segment elevation in leads V1 to V3 (now frequently called Brugada syndrome) is associated with a high incidence of syncopal episodes or sudden death. The disease is inherited as an autosomal dominant trait. Mutations in SCN5A, a cardiac sodium channel gene, have been recently associated with Brugada syndrome. We have analyzed 7 patients from Israel affected with Brugada syndrome. The families of these patients are characterized by a small number of symptomatic members. Sequencing analysis of SCN5A revealed two novel mutations, G35S and R104Q, in two Brugada patients, and a possible R34C polymorphism in two unrelated controls. No mutations were detected in 5 other patients, suggesting genetic heterogeneity. Low penetrance is probably the cause for the small number of symptomatic members in the two families positive for the SCN5A mutations.  相似文献   

19.
Mucopolysaccharidosis IVA (MPS IVA) is an autosomal recessive lysosomal storage disorder caused by the deficiency of N-acetylgalactosamine-6-sulfate sulfatase (GALNS). Molecular mutational analysis was performed by PCR product sequencing for fourteen exons and exon–intron boundaries of GALNS gene in 21 patients from 19 unrelated families with severe MPS IVA in South China. We identified fifteen different mutations, including 10 reported mutations (p.P125L, p.G290S, p.M318R, p.G340D, p.L366P, p.R386C, p.A392V, c.1243-1G>C, p.L440RfsX54 and p.X523E) and five novel mutations (p.N177S, p.G290R, p.F306S, p.W403_T404delinsCS, p.W520X). All five novel mutations were inherited from parents of the patients and not found in 100 normal control alleles. Three mutations, p.M318R, p.L366P and p.R386C were common, accounting for 36.8% of mutant alleles investigated. One patient homozygous of p.A392V and the other two unrelated patients homozygous of p.L366P presented classical disease course. The results show that the GALNS gene has a different mutational spectrum in South China as compared to other regions. The p.A392V and p.L366P mutations were associated with severe phenotype of MPS IVA.  相似文献   

20.
BACKGROUND: Acute intermittent porphyria (AIP), an autosomal dominant inborn error, results from the half-normal activity of the heme biosynthetic enzyme hydroxymethylbilane synthase (EC 4.3.1.8; HMB-synthase). This disease is characterized by acute, life-threatening neurologic attacks that are precipitated by various drugs, hormones, and other factors. The enzymatic and/or biochemical diagnosis of AIP heterozygotes is problematic; therefore, efforts have focused on the identification of HMB-synthase mutations so that heterozygotes can be identified and educated to avoid the precipitating factors. In Spain, the occurrence of AIP has been reported, but the nature of the HMB-synthase mutations causing AIP in Spanish families has not been investigated. Molecular analysis was therefore undertaken in nine unrelated Spanish AIP patients. MATERIALS AND METHODS: Genomic DNA was isolated from affected probands and family members of nine unrelated Spanish families with AIP. The HMB-synthase gene was amplified by long-range PCR and the nucleotide sequence of each exon was determined by cycle sequencing. RESULTS: Three new mutations, a missense, M212V; a single base insertion, g4715insT; and a deletion/insertion, g7902ACT-->G, as well as five previously reported mutations (G111R, R116W, R149X R167W, and R173W) were detected in the Spanish probands. Expression of the novel missense mutation M212V in E. coli revealed that the mutation was causative, having <2% residual activity. CONCLUSIONS: These studies identified the first mutations in the HMB-synthase gene causing AIP in Spanish patients. Three of the mutations were novel, while five previously reported lesions were found in six Spanish families. These findings enable accurate identification and counseling of presymptomatic carriers in these nine unrelated Spanish AIP families and further demonstrate the genetic heterogeneity of mutations causing AIP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号