首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rat liver endoplasmic reticulum (ER) membranes were investigated for the presence of proteins having structural relationships with sarcoplasmic reticulum (SR) proteins. Western immunoblots of ER proteins probed with polyclonal antibodies raised against the 100-kDa SR Ca-ATPase of rabbit skeletal muscle identified a single reactive protein of 100 kDa. Also, the antibody inhibited up to 50% the Ca-ATPase activity of isolated ER membranes. Antisera raised against the major intraluminal calcium binding protein of rabbit skeletal muscle SR, calsequestrin (CS), cross-reacted with an ER peptide of about 63 kDa, by the blotting technique. Stains-All treatment of slab gels showed that the cross-reactive peptide stained metachromatically blue, similarly to SR CS. Two-dimensional electrophoresis (Michalak, M., Campbell, K. P., and MacLennan, D. H. (1980) J. Biol. Chem. 255, 1317-1326) of ER proteins showed that the CS-like component of liver ER, similarly to skeletal CS, fell off the diagonal line, as expected from the characteristic pH dependence of the rate of mobility of mammalian CS. In addition, the CS-like component of liver ER was released from the vesicles by alkaline treatment and was found to be able to bind calcium, by a 45Ca overlay technique. From these findings, we conclude that a 100-kDa membrane protein of liver ER is the Ca-ATPase, and that the peripheral protein in the 63-kDa range is closely structurally and functionally related to skeletal CS.  相似文献   

2.
The emergent flagellum of euglenoids and trypanosomatids contained in addition to microtubules a prominent filamentous structure—the flagellar rod (paraflageliar/paraxonemal rod). Immunoblots and immunofluorescence localization using three antibodies generated against gel-isolated proteins confirmed previous studies that the Euglena flagellar rod consisted of polypeptides migrating at 66-, 69-, and 75-kD. Immunoblotting after two dimensional gel electrophoresis identified ten or more isoforms of these polypeptides. Differences in migration in acrylamide gels under nonreducing and reducing conditions suggested that the rod proteins contain intramolecular disulfide linkages. Comparative peptide mapping showed that the 66-. 69-, and 75-kD polypeptides were distinct, but related proteins, and also identified a fourth related protein migrating at 64-kD. Using antibodies against rod proteins, two overlapping cDNAs were isolated and from their sequences the cDNAs were predicted to encode 334 amino acids of the 66-kD protein: the amino acid sequence had >65% identity to the carboxyl-terminus of the trypanosomatid flagellar rod proteins. Secondary structural prediction suggested that flagellar rod proteins contain an extended segmented coiled coil stalk and two nonhelical heads. Coiled coil appeared to be an important structural motif in the construction of flagellar rod filaments.  相似文献   

3.
The phenothiazine, trifluoperazine, and the mitogenic lectins, phytohemagglutinin (PHA) and Concanavalin A (Con A), were tested for their effects on human lymphocyte plasma membrane Ca-activated Mg-ATPase and ATP-dependent calcium uptake. Trifluoperazine completely inhibited Ca-uptake when present from the start of the assay at concentrations of 100 microM or more. When added during measurement of calcium uptake, trifluoperazine reduced the rate of vesicular calcium accumulation but was unlike the calcium ionophore, A23187, which caused a rapid release of accumulated calcium from the vesicles. Trifluoperazine also inhibited membrane vesicle Ca-ATPase activity, but this inhibition was non-specific since the Mg-ATPase and Na,K-ATPase activities were inhibited to similar extents at the same concentration of the phenothiazine. In contrast, concentrations of PHA and Con A, which are mitogenic for lymphocytes, did not cause any change in Ca-uptake when added to suspensions of membrane vesicles. Con A had no effect and PHA had a weak inhibitory effect on Ca-ATPase activity.  相似文献   

4.
Transverse tubule (TT) membrane vesicles contain a very active Mg-ATPase (EC 3.6.1.3). Concanavalin A (ConA) and other lectins were found to activate the TT Mg-ATPase from chicken skeletal muscle up to 25-fold yielding specific activities greater than 800 mumol/h/mg. The sarcoplasmic reticulum Ca-ATPase and the sarcolemma Na,K-ATPase were unaffected by ConA. 125I-Labeled lectin binding to the TT membrane Mr 102,000 glycoprotein supports the contention that this protein is identical with or is intimately associated with the TT Mg-ATPase. The ATPase exhibited non-Michaelis-Menton kinetics with both apparent negative cooperativity (n = 0.723; S0.5, Mg-ATP = 14 microM) and substrate inhibition (Ki, Mg-ATP = 10.2 mM), both of which were eliminated in the presence of ConA. Under the same conditions, ConA also abolished the unusual temperature dependence and potent Triton X-100 inhibition. The similarities in ConA suppression of both Triton and substrate inhibition suggest that these ligands may be interacting through a non-catalytic site and that Triton is serving as a nucleotide-mimetic agent. The unique kinetic responses are consistent with a homotropic substrate modifier mechanism wherein the enzyme can be viewed as possessing a single catalytic and a single regulatory site on a single polypeptide chain. It is proposed that ConA interferes either with ligand interaction at a putative regulatory site or blocks communication between a regulatory site and the catalytic site. The possible nature of the regulatory site and its modulation by a ConA-like, endogenous, skeletal muscle lectin and their combined role in excitation-contraction coupling is discussed.  相似文献   

5.
Twelve monoclonal antibodies have been raised against proteins in preparations of Z-disks isolated from Drosophila melanogaster flight muscle. The monoclonal antibodies that recognized Z-band components were identified by immunofluorescence microscopy of flight muscle myofibrils. These antibodies have identified three Z-disk antigens on immunoblots of myofibrillar proteins. Monoclonal antibodies alpha:1-4 recognize a 90-100-kD protein which we identify as alpha-actinin on the basis of cross-reactivity with antibodies raised against honeybee and vertebrate alpha-actinins. Monoclonal antibodies P:1-4 bind to the high molecular mass protein, projectin, a component of connecting filaments that link the ends of thick filaments to the Z-band in insect asynchronous flight muscles. The anti-projectin antibodies also stain synchronous muscle, but, surprisingly, the epitopes here are within the A-bands, not between the A- and Z-bands, as in flight muscle. Monoclonal antibodies Z(210):1-4 recognize a 210-kD protein that has not been previously shown to be a Z-band structural component. A fourth antigen, resolved as a doublet (approximately 400/600 kD) on immunoblots of Drosophila fibrillar proteins, is detected by a cross reacting antibody, Z(400):2, raised against a protein in isolated honeybee Z-disks. On Lowicryl sections of asynchronous flight muscle, indirect immunogold staining has localized alpha-actinin and the 210-kD protein throughout the matrix of the Z-band, projectin between the Z- and A-bands, and the 400/600-kD components at the I-band/Z-band junction. Drosophila alpha-actinin, projectin, and the 400/600-kD components share some antigenic determinants with corresponding honeybee proteins, but no honeybee protein interacts with any of the Z(210) antibodies.  相似文献   

6.
Vesiculated fragments of chicken skeletal muscle transverse tubule (TT) membranes were analyzed for their content of loosely associated and integral membrane proteins. Of particular interest was the identification of the magnesium-stimulated ATPase (Mg-ATPase), which is characteristically located in native isolated TT vesicles of chicken skeletal muscle [R. A. Sabbadini and V. R. Okamoto (1983) Arch. Biochem. Biophys. 223, 107-119]. A number of the proteins found in vesicular TT preparations were found to be extractable by a mild Triton-X100 treatment and were identified as aldolase, enolase, creatine kinase, glyceraldehyde-3-phosphate dehydrogenase, lactate dehydrogenase, and pyruvate kinase. Approximately 60% of TT-associated protein was extracted with Triton, resulting in a twofold enrichment of the Mg-ATPase. Concommitantly, one core integral membrane protein possessing a Mr of 102,000 was enriched, suggesting that it is responsible for the Mg-ATPase activity present in chicken skeletal muscle TT membranes.  相似文献   

7.
Small ankyrin 1, or sAnk1, is a small, alternatively spliced product of the erythroid ankyrin gene, ANK1, that is expressed in striated muscle and concentrated in the network sarcoplasmic reticulum (SR) surrounding the Z disks and M lines. We have characterized sAnk1 in muscle homogenates and SR vesicles, and have identified the region that targets it to the network SR. Selective extractions and partitioning into Triton X-114 show that sAnk1 behaves like the SR Ca-ATPase and so is an integral protein of the SR membrane. Mild proteolytic treatment of isolated SR vesicles indicates that sAnk1 is oriented with its hydrophilic, C-terminal sequence exposed to the solution, which is equivalent to the cytoplasmic face of the SR membrane in situ. SDS-PAGE in non-reducing gels suggests that sAnk1 is present as dimers and larger oligomers in the native SR. These results suggest that sAnk1 is oligomeric and oriented with its C-terminus exposed to the cytoplasm, where it may interact with proteins of the contractile apparatus. The N-terminal 29 amino acid hydrophobic sequence of sAnk1, which is predicted to span the SR membrane, is sufficient to target proteins to and anchor them in internal membranes of HEK 293 cells. It also targets reporter proteins to the network SR of skeletal myofibers and is thus the first example of a sequence that targets proteins to a particular compartment of the SR.  相似文献   

8.
Small ankyrin 1, or sAnk1, is a small, alternatively spliced product of the erythroid ankyrin gene, ANK1, that is expressed in striated muscle and concentrated in the network sarcoplasmic reticulum (SR) surrounding the Z disks and M lines. We have characterized sAnk1 in muscle homogenates and SR vesicles, and have identified the region that targets it to the network SR. Selective extractions and partitioning into Triton X-114 show that sAnk1 behaves like the SR Ca-ATPase and so is an integral protein of the SR membrane. Mild proteolytic treatment of isolated SR vesicles indicates that sAnk1 is oriented with its hydrophilic, C-terminal sequence exposed to the solution, which is equivalent to the cytoplasmic face of the SR membrane in situ. SDS-PAGE in non-reducing gels suggests that sAnk1 is present as dimers and larger oligomers in the native SR. These results suggest that sAnk1 is oligomeric and oriented with its C-terminus exposed to the cytoplasm, where it may interact with proteins of the contractile apparatus. The N-terminal 29 amino acid hydrophobic sequence of sAnk1, which is predicted to span the SR membrane, is sufficient to target proteins to and anchor them in internal membranes of HEK 293 cells. It also targets reporter proteins to the network SR of skeletal myofibers and is thus the first example of a sequence that targets proteins to a particular compartment of the SR.  相似文献   

9.
Polyclonal antibodies directed against laminin (LM), and against the A and B chains of reduced LM were used to identify antigenically related proteins in the extracellular matrix (ECM) of the snail Helisoma trivolvis. Immunofluorescence of snail central ganglionic rings using either the anti-LM or anti-B chain antibodies labeled the ECM within ganglionic sheaths as well as basal laminae surrounding the ganglia. Both the anti-LM and anti-B chain antibodies recognized a prominent, approximately 300-kD protein on immunoblots of a snail central ganglion preparation enriched in ECM components. The anti-A chain antibody failed to label any structures in sections of snail ganglia or to recognize any proteins on immunoblots of ganglionic ECM. A polyclonal antibody was raised against the approximately 300-kD snail protein. Immunofluorescence of snail ganglia with the anti- approximately 300-kD antibody gave a distribution of labeled structures comparable to that obtained with the anti-LM antibody. Immunofluorescent labeling of sections of snail muscle and salivary gland with the anti- approximately 300-kD antibody revealed a distribution of reactive protein characteristic of an ECM component. Probing immunoblots of ganglionic ECM with the anti- approximately 300-kD antibody revealed the recognition of the same approximately 300-kD protein as identified by the anti-LM antibodies. Media conditioned by Helisoma central ganglionic rings (CM) contains an unidentified neurite outgrowth promoting factor (NOPF). Immunoblots of CM probed with the anti-B chain and anti- approximately 300-kD antibodies reveal the recognition of a soluble approximately 300-kD protein similar to the approximately 300-kD protein identified in snail ECM. The ganglionic ECM preparation containing the approximately 300-kD protein supported outgrowth from cultured snail buccal neurons B5, and addition of anti- approximately 300-kD Fab fragments to CM abolished its outgrowth promoting activity. These results suggest that the approximately 300-kD ECM protein may be the NOPF in CM and/or functions in promoting neurite outgrowth.  相似文献   

10.
Vesiculated fragments of transverse tubules (TT) and sarcoplasmic reticulum (SR) membranes were purified from heterogeneous microsomal membrane fractions of chicken breast muscle by a modification of an iterative calcium-oxalate loading technique. The distribution of ATPase activities were determined for the TT and SR and were compared to enriched fractions of sarcolemma (SL) membranes. The TT membranes were characterized by high rates of magnesium-stimulated ATPase (Mg-ATPase) and 5′-nucleotidase activities but were virtually devoid of calcium-stimulated, magnesium-dependent ATPase (Ca,Mg-ATPase) activity. Moderate levels of a latent sodium and potassium-stimulated ATPase (Na,K-ATPase) were observed for TT membranes when unmasked with valinomycin and monensin. In contrast to the behavior of TT membranes, highly purified SR membranes displayed an active Ca,Mg-ATPase but negligible Na,K-ATPase, Mg-ATPase, and 5′-nucleotidase activities. High levels of Na,K-ATPase and 5′-nucleotidase activities were observed for SL membranes; however, the SL displayed no appreciable Ca,Mg-ATPase and Mg-ATPase activities. The lack of significant Mg-ATPase activity in the SR and SL fractions suggested that the Mg-ATPase was uniquely associated with the TT membranes. The TT Mg-ATPase was further characterized by its pH and temperature dependences, and its sensitivity to pharmacologic agents. The Mg-ATPase of the TT was insensitive to inhibition by sodium azide and oligomycin in concentrations shown to exert maximum inhibition on the F1 ATPase of submitochondrial particles. The Mg-ATPase was also resistant to the effects of ouabain and orthovanadate in concentrations which abolished the Na,K-ATPase and Ca,Mg-ATPase activities of the SL and SR, respectively. The Mg-ATPase displayed temperature and pH optima (25 °C, pH 7.3) which were distinguishable from the Ca,Mg-ATPase (45 °, pH 7.0) of highly purified SR fractions but which were very similar to the temperature and pH dependencies of the mixed microsomal fractions (MMF) from which the TT membranes were derived. Similarities in the pH and temperature dependencies of the TT and MMF Mg-ATPases plus the absence of appreciable Mg-ATPase activity in highly purified SR membranes suggests that the “basic” Mg-ATPase often seen in crude SR fractions may originate from TT membrane contamination. The resistance of the TT Mg-ATPase to inhibition by the pharmacologic agents tested plus its unique temperature and pH dependences indicate that this ATPase is distinguishable from other ATPases and may, therefore, be of value as a specific biochemical marker for TT membranes.  相似文献   

11.
《The Journal of cell biology》1993,121(6):1291-1297
An Mr 63-kD sea urchin sperm flagellar membrane protein has been previously implicated as a possible receptor for egg jelly ligand(s) that trigger the sperm acrosome reaction (AR). The cDNA and deduced amino acid sequences of the 63-kD protein are presented. The open reading frame codes for a protein of 470 amino acids which contains a putative signal sequence of 25 residues. Western blots using antibodies to two synthetic peptides confirm the sequence to be that of the 63-kD protein. The mRNA is approximately 2,300 bases in length and the gene appears to be single copy. The protein is released from sperm membrane vesicles by treatment with phosphatidylinositol-specific phospholipase C, showing that it is anchored to the flagellar membrane by glycosylphosphatidyl inositol (GPI). Although we cannot demonstrate involvement of the 63-kD protein in the AR, it is of potential interest because it shares significant similarity with the developmentally expressed proteins crumbs, notch and xotch as well as human uromodulin over a region that includes two separate EGF repeats.  相似文献   

12.
Addition of an amphipathic bee venom peptide, melittin, to sarcoplasmic reticulum (SR) vesicles isolated from rabbit skeletal muscles resulted in a fast (<1 min) blue shift in the fluorescence maximum of the melittin--SR membrane complex. Over the following 45 min the position of the fluorescence maximum did not change, but the fluorescence intensity of the melittin--SR membrane complex decreased by approximately 35% with rate constant 0.14 min-1. Melittin rapidly quenched the isotropic signal in the EPR spectrum of spin-labeled stearic acid added to SR membranes. Further changes in the spectral parameters of the spin probe bound to SR membranes in the presence of melittin indicated an increase of the viscosity of the probe microenvironment (empiric parameter T/eta was decreased by approximately 35% with rate constant 0.11 min-1). The surface potential of SR membranes measured using a pH-sensitive dye, neutral red, decreased after melittin addition from -60 to -30 mV. It was demonstrated with the use of a cross-linking agent, cupric o-phenanthroline, that melittin induced slow aggregation of Ca-ATPase protein in SR membranes; the content of enzyme in the monomeric form decreased with rate constant 0.14 min-1. It is concluded that melittin binds rapidly to SR membranes, inducing slow changes in Ca-ATPase conformation and oligomeric state as well as structural transitions in the lipid bilayer of SR membranes.  相似文献   

13.
The isolated nuclei of wheat embryo possess the ATPase activity. The addition of Mg2+ and Ca2+ significantly increases the activities of nuclear ATPases, whereas Hg2+, Cu2+ and Mn2+ inhibit the activity. The activating effect of Mg2+ is enhanced by an addition of Na and K ions. The activity of wheat embryo nuclear Mg-ATPase is higher than its Ca-ATPase activity; both ATPases also differ in their pH optima. Separation of total nuclear protein according to the solubility of its individual protein components in wheat and strong salt solutions, using the detergents, as well as ammonium sulfate precipitation and dialysis do not result in separation of Mg-activated and Ca-activated ATPases, although their levels of activities and ratios change in the course of fractionation. The Mg- and Ca-ATPase activities of the wheat embryo nuclei were found in the nuclear fraction of albumin, in nonhistone proteins and nuclear membranes. In the albumin nuclear fraction and subfractions of non-histone proteins the higher level of activity is observed in Ca-ATPase, whereas in the nuclei and soluble fractions of residual proteins in Mg-ATPase.  相似文献   

14.
60% of the peripheral membrane skeleton of Euglena gracilis consists of equimolar amounts of two proteins (articulins) with M(r)s in SDS gels of 80 and 86 kD. To understand eventually how these proteins assemble and function in maintaining cell form and membrane integrity we have undertaken a molecular characterization of articulins. A lambda gt11 expression library constructed from Euglena gracilis mRNAs was screened with antibodies against both articulins. Two sets of cDNAs were recovered, and evidence from three independent assays confirmed that both sets encoded articulins: (a) Anti-articulin antibodies recognized a high molecular weight beta-galactosidase (beta-gal) fusion protein expressed in bacteria infected with lambda gt11 cDNA clones. (b) Antibodies generated against the bacterially expressed beta-gal fusion protein identified one or the other articulin in Western blots of Euglena proteins. These antibodies also localized to the membrane skeletal region in thin sections of Euglena. (c) Peptide maps of the beta-gal fusion protein were similar to peptide maps of Euglena articulins. From the nucleotide sequence of the two sets of cDNAs an open reading frame for each articulin was deduced. In addition to 37% amino acid identity and overall structural similarity, both articulins exhibited a long core domain consisting of over 30 12-amino acid repeats with the consensus VPVPV--V--. Homology plots comparing the same or different articulins revealed larger, less regular repeats in the core domain that coincided with predicted turns in extended beta-sheets. Outside the core domain a short hydrophobic region containing four seven-amino acid repeats (consensus: APVTYGA) was identified near the carboxy terminus of the 80-kD articulin, but near the amino terminus of the 86-kD articulin. No extensive sequence similarities were found between articulins and other protein sequences in various databanks. We conclude that the two articulins are related members of a new class of membrane cytoskeletal proteins.  相似文献   

15.
Polyclonal antibodies directed against laminin (LM), and against the A and B chains of reduced LM were used to identify antigenically related proteins in the extracellular matrix (ECM) of the snail Helisoma trivolvis Immunofluorescence of snail central ganglionic rings using either the anti-LM or anti-B chain antibodies labeled the ECM within ganglionic sheaths as well as basal laminae surrounding the ganglia. Both the anti-LM and anti-B chain antibodies recognized a prominent, ~300-kD protein on immunoblots of a snail central ganglion preparation enriched in ECM components. The anti-A chain antibody failed to label any structures in sections of snail ganglia or to recognize any proteins on immunoblots of ganglionic ECM. A polyclonal antibody was raised against the ~300-kD snail protein. Immunofluorescence of snail ganglia with the anti-~300-kD antibody gave a distribution of labeled structures comparable to that obtained with the anti-LM antibody. Immunofluorescent labeling of sections of snail muscle and salivary gland with the anti-~300-kD antibody revealed a distribution of reactive protein characteristic of an ECM component. Probing immunoblots of ganglionic ECM with the anti- ~300-kD antibody revealed the recognition of the same ~ 300-kD protein as identified by the anti-LM antibodies. Media conditioned by Helisoma central ganglionic rings (CM) contains an unidentified neurite outgrowth promoting factor (NOPF). Immunoblots of CM probed with the anti-B chain and anti- ~300-kD antibodies reveal the recognition of a soluble ~300-kD protein similar to the ~300-kD protein identified in snail ECM. The ganglionic ECM preparation containing the ~300-kD protein supported outgrowth from cultured snail buccal neurons B5, and addition of anti- ~300-kD Fab fragments to CM abolished its outgrowth promoting activity. These results suggest that the ~300-kD ECM protein may be the NOPF in CM and /or functions in promoting neurite outgrowth.  相似文献   

16.
The human cytomegalovirus (HCMV) gCIII envelope complex is composed of glycoprotein H (gH; gpUL75), glycoprotein L (gL; gpUL115), and a third, 125-kDa protein not related to gH or gL (M. T. Huber and T. Compton, J. Virol. 71:5391–5398, 1997; L. Li, J. A. Nelson, and W. J. Britt, J. Virol. 71:3090–3097, 1997). Glycosidase digestion analysis demonstrated that the 125-kDa protein was a glycoprotein containing ca. 60 kDa of N-linked oligosaccharides on a peptide backbone of 65 kDa or less. Based on these biochemical characteristics, two HCMV open reading frames, UL74 and TRL/IRL12, were identified as candidate genes for the 125-kDa glycoprotein. To identify the gene encoding the 125-kDa glycoprotein, we purified the gCIII complex, separated the components by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and subjected gH and the 125-kDa glycoprotein to amino acid microsequence analysis. Microsequencing of an internal peptide derived from purified 125-kDa glycoprotein yielded the amino acid sequence LYVGPTK. A FASTA search revealed an exact match of this sequence to amino acids 188 to 195 of the predicted product of the candidate gene UL74, which we have designated glycoprotein O (gO). Anti-gO antibodies reacted in immunoblots with a protein species migrating at ca. 100 to 125 kDa in lysates of HCMV-infected cells and with 100- and 125-kDa protein species in purified virions. Anti-gO antibodies also immunoprecipitated the gCIII complex and recognized the 125-kDa glycoprotein component of the gCIII complex. Positional homologs of the UL74 gene were found in other betaherpesviruses, and comparisons of the predicted products of the UL74 homolog genes demonstrated a number of conserved biochemical features.  相似文献   

17.
Glycoproteins of the lysosomal membrane   总被引:51,自引:30,他引:21       下载免费PDF全文
Three glycoprotein antigens (120, 100, and 80 kD) were detected by mono- and/or polyclonal antibodies generated by immunization with highly purified rat liver lysosomal membranes. All of the antigens were judged to be integral membrane proteins based on the binding of Triton X-114. By immunofluorescence on normal rat kidney cells, a mouse monoclonal antibody to the 120-kD antigen co-stained with a polyclonal rabbit antibody that detected the 100- and 80-kD antigens as well as with antibodies to acid phosphatase, indicating that these antigens are preferentially localized in lysosomes. Few 120-kD-positive structures were found to be negative for acid phosphatase, suggesting that the antigen was not concentrated in organelles such as endosomes, which lack acid phosphatase. Immunoperoxidase cytochemistry also showed little reactivity in Golgi cisternae, coated vesicles, or on the plasma membrane. Digestion with endo-beta-N-acetylglucosaminidase H (Endo H) and endo-beta-N-acetylglucosaminidase F (Endo F) demonstrated that each of the antigens contained multiple N-linked oligosaccharide chains, most of which were of the complex (Endo H-resistant) type. The 120-kD protein was very heavily glycosylated, having at least 18 N-linked chains. It was also rich in sialic acid, since neuraminidase digestion increased the pI of the 120-kD protein from less than 4 to greater than 8. Taken together, these results strongly suggest that the glycoprotein components of the lysosomal membrane are synthesized in the rough endoplasmic reticulum and terminally glycosylated in the Golgi before delivery to lysosomes. We have provisionally designated these antigens lysosomal membrane glycoproteins lgp120, lgp100, lgp80.  相似文献   

18.
Ferrington DA  Yao Q  Squier TC  Bigelow DJ 《Biochemistry》2002,41(44):13289-13296
Alterations in expression levels of phospholamban (PLB) relative to the sarcoplasmic reticulum (SR) Ca-ATPase have been suggested to underlie defects of calcium regulation in the failing heart and other cardiac pathologies. To understand how variation in PLB expression relative to that of the Ca-ATPase can modulate calcium transport, we have investigated the inhibition of the Ca-ATPase by PLB in native SR membranes from slow-twitch skeletal and cardiac muscle and in reconstituted proteoliposomes. Quantitative immunoblotting in combination with affinity-purified protein standards was used to measure protein concentrations of PLB and of the Ca-ATPase. Functional inhibition of the Ca-ATPase was determined from both the calcium concentrations for half-maximal activation (Ca(1/2)) and the shift in the calcium concentrations following release of PLB inhibition (i.e., (Delta)Ca(1/2)) by incubation with monoclonal antibodies against PLB, which are equivalent to phosphorylation of PLB by cAMP-dependent protein kinase. We report that equivalent levels of PLB inhibition and antibody-induced activation ((Delta)Ca(1/2) = 0.25 +/- 0.02 microM) are observed in SR membranes from slow-twitch skeletal and cardiac muscle, where molar stoichiometries of PLB expressed per Ca-ATPase vary, respectively, from 0.9 +/- 0.1 to 4.1 +/- 0.8. Similar levels of inhibition to those observed in isolated SR vesicles were observed using reconstituted proteoliposomes following co-reconstitution of affinity-purified Ca-ATPase with PLB. These results indicate that total expression levels of one PLB per Ca-ATPase result in full inhibition of the Ca-ATPase and, based on the measured K(D) (140 +/- 30 microM), suggests one PLB complexed with two Ca-ATPase molecules is sufficient for full inhibition of activity. Therefore, the excess PLB expressed in the heart over that required for inhibition suggests a capability for graded responses of the Ca-ATPase activity to endogenous kinases and phosphatases that modulate the level of phosphorylation necessary to relieve inhibition of the Ca-ATPase by PLB.  相似文献   

19.
The signal recognition particle and its receptor (SR) target nascent secretory proteins to the ER. SR is a heterodimeric ER membrane protein whose subunits, SRα and SRβ, are both members of the GTPase superfamily. Here we characterize a 27-kD protein in Saccharomyces cerevisiae (encoded by SRP102) as a homologue of mammalian SRβ. This notion is supported (a) by Srp102p''s sequence similarity to SRβ; (b) by its disposition as an ER membrane protein; (c) by its interaction with Srp101p, the yeast SRα homologue; and (d) by its role in SRP-dependent protein targeting in vivo. The GTP-binding site in Srp102p is surprisingly insensitive to single amino acid substitutions that inactivate other GTPases. Multiple mutations in the GTP-binding site, however, inactivate Srp102p. Loss of activity parallels a loss of affinity between Srp102p and Srp101p, indicating that the interaction between SR subunits is important for function. Deleting the transmembrane domain of Srp102p, the only known membrane anchor in SR, renders SR soluble in the cytosol, which unexpectedly does not significantly impair SR function. This result suggests that SR functions as a regulatory switch that needs to associate with the ER membrane only transiently through interactions with other components.  相似文献   

20.
Anti-Sm antibodies from a patient with systemic lupus erythematosus (SLE) were used to isolate cDNA clones encoding the snRNP-associated protein N from a rat brain derived cDNA library. The predicted primary structure of the 240 amino acid protein has a proline rich carboxyl terminus and shares a region of sequence similarity with other snRNP polypeptides, A and B/B'. Anti-Sm sera recognize a beta-galactosidase fusion protein containing only the carboxyl-terminal 80 amino acids of N; antibodies eluted from this fusion protein also react with A, B/B' and N on immunoblots, suggesting that these proteins share an Sm epitope located within this segment. Polyclonal antibodies raised against a 23 amino acid synthetic peptide derived from this conserved region of N recognize A, N and B/B' on immunoblots and can immunoprecipitate the Sm class of U snRNAs. These results confirm that this sequence defines a potential Sm epitope. RNA blotting analyses demonstrate that a 1.6 kb mRNA expressed predominantly in brain encodes the N polypeptide in both rats and humans. At low stringency rat N cDNA also hybridizes to a 1.3 kb mRNA species which encodes B/B', suggesting that N is structurally related to, but distinct from B/B'. Although B/B' proteins are thought to be expressed in all human cells, only N and B, but not B', are observed on immunoblots of human brain proteins probed with anti-Sm sera. The apparent difference in the complement of proteins associated with snRNP particles in human brain versus elsewhere suggests a possible mechanism for the regulation of brain-specific mRNA splicing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号