首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The rag2 mutant of Kluyveromyces lactis cannot grow on glucose when mitochondrial functions are blocked by various mitochondrial inhibitors, suggesting the presence of a defect in the fermentation pathway. The RAG2 gene has been cloned from a K. lactis genomic library by complementation of the rag2 mutation. The amino acid sequence of the RAG2 protein deduced from the nucleotide sequence of the cloned RAG2 gene shows homology to the sequences of known phosphoglucose isomerases (PGI and PHI). In vivo complementation of the pgi1 mutation in Saccharomyces cerevisiae by the cloned RAG2 gene, together with measurements of specific PGI activities and the detection of PGI proteins, confirm that the RAG2 gene of K. lactis codes for the phosphoglucose isomerase enzyme. Complete loss of PGI activity observed when the coding sequence of RAG2 was disrupted leads us to conclude that RAG2 is the only gene that codes for phosphoglucose isomerase in K. lactis. The RAG2 gene of K. lactis is expressed constitutively, independently of the growth substrates (glycolytic or gluconeogenic). Unlike the pgi1 mutants of S. cerevisiae, the K. lactis rag2 mutants can still grow on glucose, however they do not produce ethanol.  相似文献   

2.
3.
4.
5.
6.
The aim of this work was to obtain insights about the factors that determine the lactose fermentative metabolism of Kluyveromyces marxianus UFV-3. K. marxianus UFV-3 and Kluyveromyces lactis JA6 were cultured in a minimal medium containing different lactose concentrations (ranging from 0.25 to 64 mmol l−1) under aerobic and hypoxic conditions to evaluate their growth kinetics, gene expression and enzymatic activity. The increase in lactose concentration and the decrease in oxygen level favoured ethanol yield for both yeasts but in K. marxianus UFV-3 the effect was more pronounced. Under hypoxic conditions, the activities of β-galactosidase and pyruvate decarboxylase from K. marxianus UFV-3 were significantly higher than those in K. lactis JA6. The expression of the LAC4 (β-galactosidase), RAG6 (pyruvate decarboxylase), GAL7 (galactose-1-phosphate uridylyltransferase) and GAL10 (epimerase) genes in K. marxianus UFV-3 was higher under hypoxic conditions than under aerobic conditions. The high expression of genes of the Leloir pathway, LAC4 and RAG6, associated with the high activity of β-galactosidase and pyruvate decarboxylase contribute to the high fermentative flux in K. marxianus UFV-3. These data on the fermentative metabolism of K. marxianus UFV-3 will be useful for optimising the conversion of cheese whey lactose to ethanol.  相似文献   

7.
Sensing of extracellular glucose is necessary for cells to adapt to glucose variation in their environment. In the respiratory yeast Kluyveromyces lactis, extracellular glucose controls the expression of major glucose permease gene RAG1 through a cascade similar to the Saccharomyces cerevisiae Snf3/Rgt2/Rgt1 glucose signaling pathway. This regulation depends also on intracellular glucose metabolism since we previously showed that glucose induction of the RAG1 gene is abolished in glycolytic mutants. Here we show that glycolysis regulates RAG1 expression through the K. lactis Rgt1 (KlRgt1) glucose signaling pathway by targeting the localization and probably the stability of Rag4, the single Snf3/Rgt2-type glucose sensor of K. lactis. Additionally, the control exerted by glycolysis on glucose signaling seems to be conserved in S. cerevisiae. This retrocontrol might prevent yeasts from unnecessary glucose transport and intracellular glucose accumulation.  相似文献   

8.
9.
Azospirillum brasilense isolated from the rhizosphere of different plants has the ability to excrete indole-3-acetic acid (IAA) into the culture media. Cosmid p0.2, isolated from an A. brasilense Sp245 genome library in pLAFR1, complements the Tn5-induced mutant SpM7918 of A. brasilense Sp6 which excretes reduced amounts of IAA. Restriction mapping and gene expression studies identified a BglII-EcoRI 4.3 kb fragment of p0.2 sufficient for the restoration of high levels of IAA production in mutant SpM7918. Tn5 mutagenesis localized the gene responsible on a 1.8 kb SmaI fragment. Nucleotide sequence analysis revealed that this fragment contains one complete open reading grame. The predicted protein sequence shows extensive homology with the indole-3-pyruvate decarboxylase of Enterobacter cloacae and the pyruvate decarboxylases of Saccharomyces cerevisiae and Zymomonas mobilis. The A. brasilense mutant Sp245a, constructed by homogenotization of a Tn5 insertion derivative of the 1.8 kb SmaI fragment, also displayed reduced IAA production. Introduction of the cloned wild-type gene into Rhizobium meliloti 1021 resulted in increased IAA production. Cell-free extracts prepared from R. meliloti and A. brasilense transconjugants harboring this gene could convert indole-3-pyruvic acid to indole-3-acetaldehyde and tryptophol. These results clearly demonstrate that IAA production in A. brasilense is mediated by indole-3-pyruvate decarboxylase.  相似文献   

10.
A cDNA fragment encoding the A catalytic domain of the Neocallimastix frontalis endoxylanase XYN3 was amplified and cloned by the polymerase chain reaction technique. The xyn3A DNA fragment was inserted between the Saccharomyces cerevisiae phosphoglycerate kinase gene promoter and terminator sequences on a multicopy episomal plasmid for Kluyveromyces lactis. The XYN3A domain was successfully expressed in K. lactis and functional endoxylanase was secreted by the yeast cells with the K. lactis killer toxin secretion signal. The XYN3A domain was also expressed in a strain of Penicillium roqueforti as a fusion protein (ShBLE::XYN3A) of the phleomycin-resistance gene product and the endoxylanase. Active endoxylanase was efficiently secreted from the fungal cells with the Trichoderma viride cellobiohydrolase (CBH1) secretion signal and processed by a related KEX2 endoprotease of the secretion pathway. Several differently glycosylated forms of the recombinant enzymes were secreted by the yeast and the filamentous fungus. Received: 10 November 1998 / Received revision: 8 March 1999 / Accepted: 14 March 1999  相似文献   

11.
Summary Three alcohol dehydrogenase (ADH) genes have recently been characterized in the yeast Kluyveromyces lactis. We report on a fourth ADH in K. lactis (KADH II: KADH2 gene) which is highly similar to other ADHs in K. lactis and Saccharomyces cerevisiae. KADH II appears to be a cytoplasmic enzyme, and after expression of KADH2 in S. cerevisiae enzyme activity comigrated with a K. lactis ADH present in cells grown in glucose or in ethanol. KADH I was also expressed in S. cerevisiae and it comigrated with a major ADH species expressed under glucose growth conditions in K. lactis. The substrate specificities for KADH I and KADH II were shown to be more similar to that of SADH II than to SADH I. SADH I cannot efficiently utilize long chain alcohols, in contrast to other cytoplasmic yeast ADHs, presumably because of the presence of a methionine (residue 271) in its substrate binding cleft. A comparison of the DNA sequences of ADHs among K. lactis, S. cerevisiae and Schizosaccharomyces pombe suggests that the ancestral yeast species contained one cytoplasmic ADH. After divergence from S. pombe, the ADH in the ancestor to K. lactis and S. cerevisiae was duplicated, and one ADH became localized to the mitochondrion, presumably for the oxidative use of ethanol. Following the speciation of S. cerevisiae and K. lactis, the gene encoding the cytoplasmic ADH in S. cerevisiae duplicated, which resulted in the development of the SADH II protein as the primary oxidative enzyme in place of SADH III. In contrast, the K. lactis mitochondrial ADH duplicated to give rise to the highly expressed KADH3 and KADH4 genes, both of which may still play primary roles in oxidative metabolism. These data suggest that K. lactis and S. cerevisiae use different compartments for their metabolism of ethanol. Our results also indicate that the complex regulatory circuits controlling the glucose-repressible SADH2 in S. cerevisiae are a recent acquisition from regulatory networks used for the control of genes other than SADH2.
  相似文献   

12.
13.
14.
15.
Three recombinant DNA vectors carrying the β-galactosidase structural gene, LAC4, from the yeast Kluyveromyces lactis were constructed and transformed into Saccharomyces cerevisiae. All transformants expressed the β-galactosidase activity of LAC4. However, the level of enzyme activity varied, being highest in cells transformed with vectors which are maintained as multicopy plasmids and lowest in cells transformed with a vector which integrates into chromosomes. Enzyme levels probably reflect gene dosage. LAC4 is very stable when integrated into a chromosome, but unstable when carried on a plasmid. Therefore, stability is a property of the recombinant vector rather than of LAC4, LAC4-coded β-galactosidase synthesized in either S. cerevisiae or in K. lactis is the same as judged by two-dimensional polyacrylamide gel electrophoresis. However, S. cerevisiae transformed with  相似文献   

16.
17.
18.
The small nuclear gene SOM1 of Saccharomyces cerevisiae was isolated as a multicopy suppressor of a mutation in the IMP1 gene, which encodes the mitochondrial inner membrane peptidase subunit 1 (Imp1). Analysis revealed that Som1 and Imp1 are components of a mitochondrial protein export system, and interaction between these two proteins is indicated by the genetic suppression data. Here we describe the identification of a gene from Kluyveromyces lactis, which restores respiratory function to a S. cerevisiae SOM1 deletion mutant at 28° C. The sequence of the K. lactis gene predicts a protein product of 8.1-kDa, comprising 71 amino acid residues, with a putative mitochondrial signal sequence at its N-terminus. The protein is 50% identical to its S.cerevisiae counterpart. The expression pattern of a homologous sequence in Leishmania major suggests a more general role for SOM1 in mitochondrial biogenesis and protein sorting. The various Som1 proteins exhibit a highly conserved region and a remarkable pattern of cysteine residues. A protein of the expected size was transcribed and translated in vitro. The Som1 protein was detected in fractions of S. cerevisiae enriched for mitochondria and found to be associated with the inner mitochondrial membrane. Received: 22 July 1997 / Accepted: 27 October 1997  相似文献   

19.
The Kluyveromyces lactis SLN1 phosphorelay system includes the osmosensor histidine kinase Sln1, the phosphotransfer protein Ypd1 and the response regulator Ssk1. Here we show that K. lactis has a functional phosphorelay system. In vitro assays, using a heterologous histidine kinase, show that the phosphate group is accepted by KlYpd1 and transferred to KlSsk1. Upon hyperosmotic stress the phosphorelay is inactivated, KlYpd1 is dephosphorylated in a KlSln1 dependent manner, and only the version of KlSsk1 that lacks the phosphate group interacts with the MAPKKK KlSsk2. Interestingly, inactivation of the KlPtp2 phosphatase in a ΔKlsln1 mutant did not lead to KlHog1 constitutive phosphorylation. KlHog1 can replace ScHog1p and activate the hyperosmotic response in Saccharomyces cerevisiae, and when ScSln1 is inactivated, KlHog1 becomes phosphorylated and induces cell lethality. All these observations indicate that the phosphorelay negatively regulates KlHog1. Nevertheless, in the absence of KlSln1 or KlYpd1, no constitutive phosphorylation is detected and cells are viable, suggesting that a strong negative feedback that is independent of KlPtp2 operates in K. lactis. Compared with S. cerevisiae, K. lactis has only a moderate accumulation of glycerol and fails to produce trehalose under hyperosmotic stress, indicating that regulation of osmolyte production is different in K. lactis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号