首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three species within a deeply branching cluster of the Chloroflexi are the only microorganisms currently known to anaerobically transform polychlorinated biphenyls (PCBs) by the mechanism of reductive dechlorination. A selective PCR primer set was designed that amplifies the 16S rRNA genes of a monophyletic group within the Chloroflexi including Dehalococcoides spp. and the o-17/DF-1 group. Assays for both qualitative and quantitative analyses by denaturing gradient gel electrophoresis and most probable number-PCR, respectively, were developed to assess sediment microcosm enrichments that reductively dechlorinated PCBs 101 (2,2',4,5,5'-CB) and 132 (2,2',3,3',4,6'-CB). PCB 101 was reductively dechlorinated at the para-flanked meta position to PCB 49 (2,2',4,5'-CB) by phylotype DEH10, which belongs to the Dehalococcoides group. This same species reductively dechlorinated the para- and ortho-flanked meta-chlorine of PCB 132 to PCB 91 (2,2',3',4,6'-CB). However, another phylotype designated SF1, which is more closely related to the o-17/DF-1 group, was responsible for the subsequent dechlorination of PCB 91 to PCB 51 (2,2',4,6'-CB). Using the selective primer set, an increase in 16S rRNA gene copies was observed only with actively dechlorinating cultures, indicating that PCB-dechlorinating activities by both phylotype DEH10 and SF1 were linked to growth. The results suggest that individual species within the Chloroflexi exhibit a limited range of congener specificities and that a relatively diverse community of species within a deeply branching group of Chloroflexi with complementary congener specificities is likely required for the reductive dechlorination of different PCBs congeners in the environment.  相似文献   

2.
The specific dechlorination pathways for Aroclor 1260 were determined in Baltimore Harbor sediment microcosms developed with the 11 most predominant congeners from this commercial mixture and their resulting dechlorination intermediates. Most of the polychlorinated biphenyl (PCB) congeners were dechlorinated in the meta position, and the major products were tetrachlorobiphenyls with unflanked chlorines. Using PCR primers specific for the 16S rRNA genes of known PCB-dehalogenating bacteria, we detected three phylotypes within the microbial community that had the capability to dechlorinate PCB congeners present in Aroclor 1260 and identified their selective activities. Phylotype DEH10, which has a high level of sequence identity to Dehalococcoides spp., removed the double-flanked chlorine in 234-substituted congeners and exhibited a preference for para-flanked meta-chlorines when no double-flanked chlorines were available. Phylotype SF1 had similarity to the o-17/DF-1 group of PCB-dechlorinating bacteria. Phylotype SF1 dechlorinated all of the 2345-substituted congeners, mostly in the double-flanked meta position and 2356-, 236-, and 235-substituted congeners in the ortho-flanked meta position, with a few exceptions. A phylotype with 100% sequence identity to PCB-dechlorinating bacterium o-17 was responsible for an ortho and a double-flanked meta dechlorination reaction. Most of the dechlorination pathways supported the growth of all three phylotypes based on competitive PCR enumeration assays, which indicates that PCB-impacted environments have the potential to sustain populations of these PCB-dechlorinating microorganisms. The results demonstrate that the variation in dechlorination patterns of congener mixtures typically observed at different PCB impacted sites can potentially be mediated by the synergistic activities of relatively few dechlorinating species.  相似文献   

3.
4.
Microbial reductive dechlorination of commercial polychlorinated biphenyl (PCB) mixtures (e.g., Aroclors) in aquatic sediments is crucial to achieve detoxification. Despite extensive efforts over nearly two decades, the microorganisms responsible for Aroclor dechlorination remained elusive. Here we demonstrate that anaerobic bacteria of the Dehalococcoides group derived from sediment of the Housatonic River (Lenox, MA) simultaneously dechlorinate 64 PCB congeners carrying four to nine chlorines in Aroclor 1260 in the sediment-free JN cultures. Quantitative real-time PCR showed that the Dehalococcoides cell titer in JN cultures amended with acetate and hydrogen increased from 7.07 × 106 ± 0.42 × 106 to 1.67 × 108 ± 0.04 × 108 cells/ml, concomitant with a 64.2% decrease of the PCBs with six or more chlorines in Aroclor 1260. No Dehalococcoides growth occurred in parallel cultures without PCBs. Aroclor 1260 dechlorination supported the growth of 9.25 × 108 ± 0.04 × 108 Dehalococcoides cells per μmol of chlorine removed. 16S rRNA gene-targeted PCR analysis of known dechlorinators (i.e., Desulfitobacterium, Dehalobacter, Desulfuromonas, Sulfurospirillum, Anaeromyxobacter, Geobacter, and o-17/DF-1-type Chloroflexi organisms) ruled out any involvement of these bacterial groups in the dechlorination. Our results suggest that the Dehalococcoides population present in the JN cultures also catalyzes in situ dechlorination of Aroclor 1260 in the Housatonic River. The identification of Dehalococcoides organisms as catalysts of extensive Aroclor 1260 dechlorination and our ability to propagate the JN cultures under defined conditions offer opportunities to study the organisms' ecophysiology, elucidate nutritional requirements, identify reductive dehalogenase genes involved in PCB dechlorination, and design molecular tools required for bioremediation applications.  相似文献   

5.
Microbial reductive dechlorination of the persistent polychlorinated biphenyls (PCBs) is attracting much attention in cleanup of the contaminated environment. Nevertheless, most PCB dechlorinating cultures require presence of sediment or sediment substitutes to maintain their dechlorination activities which hinders subsequent bacterial enrichment and isolation processes. The information on enriching sediment-free PCB dechlorinating cultures is still limited. In this study, 18 microcosms established with soils and sediments were screened for their dechlorination activities on a PCB mixture – Aroclor 1260. After one year of incubation, 10 out of 18 microcosms showed significant PCB dechlorination with distinct dechlorination patterns (e.g., Process H, N and T classified based on profiles of PCB congeners loss and new congeners formation). Through serial transfers in defined medium, six sediment-free PCB dechlorinating cultures (i.e., CW-4, CG-1, CG-3, CG-4, CG-5 and SG-1) were obtained without amending any sediment or sediment-substitutes. PCB dechlorination Process H was the most frequently observed dechlorination pattern, which was found in four sediment-free cultures (CW-4, CG-3, CG-4 and SG-1). Sediment-free culture CG-5 showed the most extensive PCB dechlorination among the six cultures, which was mediated by Process N, resulting in the accumulation of penta- (e.g., 236-24-CB) and tetra-chlorobiphenyls (tetra-CBs) (e.g., 24-24-CB, 24-25-CB, 24-26-CB and 25-26-CB) via dechlorinating 30.44% hepta-CBs and 59.12% hexa-CBs after three months of incubation. For culture CG-1, dechlorinators mainly attacked double flanked meta-chlorines and partially ortho-chlorines, which might represent a novel dechlorination pattern. Phylogenetic analysis showed distinct affiliation of PCB dechlorinators in the microcosms, including Dehalogenimonas and Dehalococcoides species. This study broadens our knowledge in microbial reductive dechlorination of PCBs, and provides essential information for culturing and stimulating PCB dechlorinators for in situ bioremediation applications.  相似文献   

6.
The upper Housatonic River and Woods Pond (Lenox, Mass.), a shallow impoundment on the river, are contaminated with polychlorinated biphenyls (PCBs), the residue of partially dechlorinated Aroclor 1260. Certain PCB congeners have the ability to activate or “prime” anaerobic microorganisms in Woods Pond sediment to reductively dehalogenate the Aroclor 1260 residue. We proposed that brominated biphenyls might have the same effect and tested the priming activities of 14 mono-, di-, and tribrominated biphenyls (350 μM) in anaerobic microcosms of sediment from Woods Pond. All of the brominated biphenyls were completely dehalogenated to biphenyl, and 13 of them primed PCB dechlorination. Measured in terms of chlorine removal and decrease in the proportion of hexa- through nonachlorobiphenyls, the microbial PCB dechlorination primed by several brominated biphenyls was nearly twice as effective as that primed by chlorinated biphenyls. Congeners containing a meta bromine primed Dechlorination Process N (flanked meta dechlorination), and congeners containing an unflanked para bromine primed Dechlorination Process P (flanked para dechlorination). Two ortho-substituted congeners, 2-bromobiphenyl and 2,6-dibromobiphenyl (2-BB and 26-BB), also primed Process N dechlorination. The most effective primers were 26-BB, 245-BB, 25-3-BB, and 25-4-BB. The microbial dechlorination primed by 26-BB converted ~75% of the hexa- through nonachlorobiphenyls to tri- and tetrachlorobiphenyls in 100 days and removed ~75% of the PCBs that are most persistent in humans. These results represent a major step toward identifying an effective method for accelerating PCB dechlorination in situ. The challenge now is to identify naturally occurring compounds that are safe and effective primers.  相似文献   

7.
We have employed a method of enrichment that allows us to significantly increase the rate of reductive polychlorinated biphenyl (PCB) dechlorination. This method shortens the time required to investigate the effects that culture conditions have on dechlorination and provides an estimate of the potential activity of the PCB-dechlorinating anaerobes. The periodic supplementation of sterile sediment and PCB produced an enhanced, measurable, and sustained rate of dechlorination. We observed volumetric rates of the dechlorination of 2,3,6-trichlorobiphenyl (2,3,6-CB) to 2,6-dichlorobiphenyl (2,6-CB) of more than 300 μmol liter-1 day-1 when the cultures were supplemented daily. A calculation of this activity that is based on an estimate of the number of dechlorinating anaerobes present indicates that 1.13 pmol of 2,3,6-CB was dechlorinated to 2,6-CB day-1 bacterial cell-1. This rate is similar to that of the reductive dechlorination of 3-chlorobenzoate by Desulfomonile tiedjei. Methanogenesis declined from 585.3 to 125.9 μmol of CH4 liter-1 day-1, while dechlorination increased from 8.2 to 346.0 μmol of 2,3,6-CB dechlorinated to 2,6-CB liter-1 day-1.  相似文献   

8.
Microcosms capable of reductive dechlorination of polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs) were constructed in glass bottles by seeding them with a polluted river sediment and incubating them anaerobically with an organic medium. All of the PCDD/F congeners detected were equally reduced without the accumulation of significant amounts of less-chlorinated congeners as the intermediate or end products. Alternatively, large amounts of catechol and salicylic acid were produced in the upper aqueous phase. Thus, the dechlorination of PCDD/Fs and the oxidative degradation of the dechlorinated products seemed to take place simultaneously in the microcosm. Denaturing gel gradient electrophoresis and clone library analyses of PCR-amplified 16S rRNA genes from the microcosm showed that members of the phyla Firmicutes, Proteobacteria, and Bacteroidetes predominated. A significant number of Chloroflexi clones were also detected. Quantitative real-time PCR with specific primer sets showed that the 16S rRNA genes of a putative dechlorinator, “Dehalococcoides,” and its relatives accounted for 0.1% of the total rRNA gene copies of the microcosm. Most of the clones thus obtained formed a cluster distinct from the typical “Dehalococcoides” group. Quinone profiling indicated that ubiquinones accounted for 18 to 25% of the total quinone content, suggesting the coexistence and activity of ubiquinone-containing aerobic bacteria. These results suggest that the apparent complete dechlorination of PCDD/Fs found in the microcosm was due to a combination of the dechlorinating activity of the “Dehalococcoides”-like organisms and the oxidative degradation of the dechlorinated products by aerobic bacteria with aromatic hydrocarbon dioxygenases.  相似文献   

9.
  An anaerobic methanogenic microbial consortium, developed in a granular form, exhibited extensive dechlorination of defined polychlorinated biphenyl (PCB) congeners. A 2,3,4,5,6-pentachlorobiphenyl was dechlorinated to biphenyl via 2,3,4,6-tetrachlorobiphenyl, 2,4,6-trichlorobiphenyl, 2,4-dichlorobi-phenyl and 2-chlorobiphenyl (CB). Removal of chlorine atoms from all three positions of the biphenyl ring, i.e., ortho, meta and para, was observed during this reductive dechlorination process. Biphenyl was identified as one of the end-products of the reductive dechlorination by GC-MS. After 20 weeks, the concentrations of the dechlorination products 2,4,6-CB, 2,4-CB, 2-CB and biphenyl were 8.1, 41.2, 3.0 and 47.8 μM respectively, from an initial 105 μM 2,3,4,5,6-CB. The extent and pattern of the dechlorination were further confirmed by the dechlorination of lightly chlorinated congeners including 2-CB, 3-CB, 4-CB, 2,4-CB and 2,6-CB individually. This study indicates that the dechlorination of 2,3,4,5,6-CB to biphenyl is due to ortho, meta and para dechlorination by this anaerobic microbial consortium. Received: 30 April 1996 / Received revision: 26 July 1996 / Accepted: 5 August 1996  相似文献   

10.
A microorganism whose growth is linked to the dechlorination of polychlorinated biphenyls (PCBs) with doubly flanked chlorines was identified. Identification was made by reductive analysis of community 16S ribosomal DNA (rDNA) sequences from a culture enriched in the presence of 2,3,4,5-tetrachlorobiphenyl (2,3,4,5-CB), which was dechlorinated at the para position. Denaturing gradient gel electrophoresis (DGGE) analysis of total 16S rDNA extracted from the culture led to identification of three operational taxonomic units (OTUs 1, 2, and 3). OTU 1 was always detected when 2,3,4,5-CB or other congeners with doubly flanked chlorines were present and dechlorinated. Only OTUs 2 and 3 were detected in the absence of PCBs and when other PCBs (i.e., PCBs lacking doubly flanked chlorines) were not dechlorinated. Partial sequences of OTUs 2 and 3 exhibited 98.2% similarity to the sequence of "Desulfovibrio caledoniensis" (accession no. DCU53465). A sulfate-reducing vibrio isolated from the culture generated OTUs 2 and 3. This organism could not dechlorinate 2,3,4,5-CB. From these results we concluded that OTU 1 represents the dechlorinating bacterium growing in a coculture with a Desulfovibrio sp. The 16S rDNA sequence of OTU 1 is most similar to the 16S rDNA sequence of bacterium o-17 (89% similarity), an ortho-PCB-dechlorinating bacterium. The PCB dechlorinator, designated bacterium DF-1, reductively dechlorinates congeners with doubly flanked chlorines when it is supplied with formate or H(2)-CO(2) (80:20).  相似文献   

11.
Bacterial enrichment cultures developed with Baltimore Harbor (BH) sediments were found to reductively dechlorinate 2,3,5,6-tetrachlorobiphenyl (2,3,5,6-CB) when incubated in a minimal estuarine medium containing short-chain fatty acids under anaerobic conditions with and without the addition of sediment. Primary enrichment cultures formed both meta and ortho dechlorination products from 2,3,5,6-CB. The lag time preceding dechlorination decreased from 30 to less than 20 days as the cultures were sequentially transferred into estuarine medium containing dried, sterile BH sediment. In addition, only ortho dechlorination was observed following transfer of the cultures. Sequential transfer into medium without added sediment also resulted in the development of a strict ortho-dechlorinating culture following a lag of more than 100 days. Upon further transfer into the minimal medium without sediment, the lag time decreased to less than 50 days. At this stage all cultures, regardless of the presence of sediment, would produce 2,3,5-CB and 3,5-CB from 2,3,5,6-CB. The strict ortho-dechlorinating activity in the sediment-free cultures has remained stable for more than 1 year through several transfers. These results reveal that the classical microbial enrichment technique using a minimal medium with a single polychlorinated biphenyl (PCB) congener selected for ortho dechlorination of 2,3,5,6-CB. Furthermore, this is the first report of sustained anaerobic PCB dechlorination in the complete absence of soil or sediment.Anaerobic dechlorination of polychlorinated biphenyls (PCBs) has been demonstrated in situ and with laboratory microcosms containing sediment (reviewed in reference 1a). However, sustained PCB dechlorination has never been shown to occur in the absence of soil or sediments. Morris et al. (6) demonstrated a sediment requirement for the stimulation of PCB dechlorination within freshwater sediment slurries. Wu and Wiegel have recently described PCB-dechlorinating enrichments which required soil for the successful transfer of PCB-dechlorinating activity (9). In addition, no anaerobic microorganisms that dechlorinate PCBs have been isolated or characterized, and this may be due in part to the soil or sediment requirement. The inability to isolate dechlorinating organisms or maintain dechlorination without sediment has limited biogeochemical and physiological investigations into the mechanisms of PCB dechlorination.Dechlorination (ortho, meta, and para) of single PCB congeners has been observed following anaerobic incubation of Baltimore Harbor (BH) sediment under estuarine or marine conditions (2). While sediments from several sites within BH are contaminated with PCBs (1, 5), background contamination of sediment is not necessarily a prerequisite for the development of PCB dechlorination in laboratory microcosms. Wu et al. (8) recently demonstrated meta and ortho dechlorination of Aroclor 1260 when it was added to the same BH sediments. These results showed that more than one dechlorinating activity could be developed with these sediments. It has been proposed that discrete microbial populations are responsible for specific PCB dechlorinations (1a). Consistent with this idea, the ortho dechlorination observed with BH sediments may be catalyzed by discrete microbial populations. In addition, these organisms may be able to couple PCB dechlorination with growth. Therefore we have attempted to select for ortho PCB-dechlorinating organisms by enrichment under minimal conditions with high levels of 2,3,5,6-tetrachlorobiphenyl. We also speculated that given the proper conditions, a PCB-dechlorinating population could be maintained in an actively dechlorinating state in the absence of sediment. Here we report that a distinct PCB-dechlorinating activity, namely, ortho dechlorination, was selected for through sequential transfer initiated with sediments from BH and sustained in the absence of soil or sediment. This is the first report of sustained anaerobic PCB-dechlorinating activity in the total absence of sediment.  相似文献   

12.
The specific dechlorination pathways for Aroclor 1260 were determined in Baltimore Harbor sediment microcosms developed with the 11 most predominant congeners from this commercial mixture and their resulting dechlorination intermediates. Most of the polychlorinated biphenyl (PCB) congeners were dechlorinated in the meta position, and the major products were tetrachlorobiphenyls with unflanked chlorines. Using PCR primers specific for the 16S rRNA genes of known PCB-dehalogenating bacteria, we detected three phylotypes within the microbial community that had the capability to dechlorinate PCB congeners present in Aroclor 1260 and identified their selective activities. Phylotype DEH10, which has a high level of sequence identity to Dehalococcoides spp., removed the double-flanked chlorine in 234-substituted congeners and exhibited a preference for para-flanked meta-chlorines when no double-flanked chlorines were available. Phylotype SF1 had similarity to the o-17/DF-1 group of PCB-dechlorinating bacteria. Phylotype SF1 dechlorinated all of the 2345-substituted congeners, mostly in the double-flanked meta position and 2356-, 236-, and 235-substituted congeners in the ortho-flanked meta position, with a few exceptions. A phylotype with 100% sequence identity to PCB-dechlorinating bacterium o-17 was responsible for an ortho and a double-flanked meta dechlorination reaction. Most of the dechlorination pathways supported the growth of all three phylotypes based on competitive PCR enumeration assays, which indicates that PCB-impacted environments have the potential to sustain populations of these PCB-dechlorinating microorganisms. The results demonstrate that the variation in dechlorination patterns of congener mixtures typically observed at different PCB impacted sites can potentially be mediated by the synergistic activities of relatively few dechlorinating species.  相似文献   

13.
1,2-Dichloropropane (1,2-D), a widespread groundwater contaminant, can be reductively dechlorinated to propene by anaerobic bacteria. To shed light on the populations involved in the detoxification process, a comprehensive 16S rRNA gene-based bacterial community analysis of two enrichment cultures derived from geographically distinct locations was performed. Analysis of terminal restriction fragments, amplicons obtained with dechlorinator-specific PCR primers, and enumeration with quantitative real-time PCR as well as screening clone libraries all implied that Dehalococcoides populations were involved in 1,2-D dechlorination in both enrichment cultures. Physiological traits (e.g., dechlorination in the presence of ampicillin and a requirement for hydrogen as the electron donor) supported the involvement of Dehalococcoides populations in the dechlorination process. These findings expand the spectrum of chloroorganic compounds used by Dehalococcoides species as growth-supporting electron acceptors. The combined molecular approach allowed a comparison between different 16S rRNA gene-based approaches for the detection of Dehalococcoides populations.  相似文献   

14.
Five polychlorinated biphenyl (PCB)-degrading bacteria were tested for the ability to differentiate between the enantiomers of four atropisomeric PCB congeners (2,2′,3,6-tetra-CB; 2,2′,3,3′,6-penta-CB; 2,2′,3,4′,6-penta-CB; and 2,2′,3,5′,6-penta-CB) after growth in the presence of tryptone-soytone, biphenyl, carvone, or cymene. Enantioselectivity was shown to vary with respect to strain, congener, and cosubstrate.  相似文献   

15.
Reductive dechlorination of Aroclor 1260 was investigated in anaerobic slurries of estuarine sediments from Baltimore Harbor (Baltimore, Md.). The sediment slurries were amended with 800 ppm Aroclor 1260 with and without the addition of 350 μM 2,3,4,5-tetrachlorobiphenyl (2,3,4,5-CB) or 2,3,5,6-tetrachlorobiphenyl (2,3,5,6-CB) and incubated in triplicate at 30°C under methanogenic conditions in an artificial estuarine medium. After 6 months, extensive meta dechlorination and moderate ortho dechlorination of Aroclor 1260 occurred in all incubated cultures except for sterilized controls. Overall, total chlorines per biphenyl decreased by up to 34%. meta chlorines per biphenyl decreased by 65, 55, and 45% and ortho chlorines declined by 18, 12, and 9%, respectively, when 2,3,4,5-CB, 2,3,5,6-CB, or no additional congener was supplied. This is the first confirmed report of microbial ortho dechlorination of a commercial polychlorinated biphenyl mixture. In addition, compared with incubated cultures supplied with Aroclor 1260 alone, the dechlorination of Aroclor 1260 plus 2,3,4,5-CB or 2,3,5,6-CB occurred with shorter lag times (31 to 60 days versus 90 days) and was more extensive, indicating that the addition of a single congener stimulated the dechlorination of Aroclor 1260.  相似文献   

16.
The rate, extent, and pattern of dechlorination of four Aroclors by inocula prepared from two polychlorinated biphenyl (PCB)-contaminated sediments were compared. The four mixtures used, Aroclors 1242, 1248, 1254, and 1260, average approximately three, four, five, and six chlorines, respectively, per biphenyl molecule. All four Aroclors were dechlorinated with the loss of meta plus para chlorines ranging from 15 to 85%. Microorganisms from an Aroclor 1242-contaminated site in the upper Hudson River dechlorinated Aroclor 1242 to a greater extent than did microorganisms from Aroclor 1260-contaminated sediments from Silver Lake, Mass. The Silver Lake inoculum dechlorinated Aroclor 1260 more rapidly than the Hudson River inoculum did and showed a preferential removal of meta chlorines. For each inoculum the rate and extent of dechlorination tended to decrease as the degree of chlorination of the Aroclor increased, especially for Aroclor 1260. The maximal observed dechlorination rates were 0.3, 0.3, and 0.2 μg-atoms of Cl removed per g of sediment per week for Aroclors 1242, 1248, and 1254, respectively. The maximal observed dechlorination rates for Hudson River and Silver Lake organisms for Aroclor 1260 were 0.04 and 0.21 μg-atoms of Cl removed per g of sediment per week, respectively. The dechlorination patterns obtained suggested that the Hudson River microorganisms were more capable than the Silver Lake organisms of removing the last para chlorine. These results suggest that there are different PCB-dechlorinating microorganisms at different sites, with characteristic specificities for PCB dechlorination.  相似文献   

17.
A novel Dehalococcoides isolate capable of metabolic trichloroethene (TCE)-to-ethene reductive dechlorination was obtained from contaminated aquifer material. Growth studies and 16S rRNA gene-targeted analyses suggested culture purity; however, the careful quantitative analysis of Dehalococcoides 16S rRNA gene and chloroethene reductive dehalogenase gene (i.e., vcrA, tceA, and bvcA) copy numbers revealed that the culture consisted of multiple, distinct Dehalococcoides organisms. Subsequent transfers, along with quantitative PCR monitoring, yielded isolate GT, possessing only vcrA. These findings suggest that commonly used qualitative 16S rRNA gene-based procedures are insufficient to verify purity of Dehalococcoides cultures. Phylogenetic analysis revealed that strain GT is affiliated with the Pinellas group of the Dehalococcoides cluster and shares 100% 16S rRNA gene sequence identity with two other Dehalococcoides isolates, strain FL2 and strain CBDB1. The new isolate is distinct, as it respires the priority pollutants TCE, cis-1,2-dichloroethene (cis-DCE), 1,1-dichloroethene (1,1-DCE), and vinyl chloride (VC), thereby producing innocuous ethene and inorganic chloride. Strain GT dechlorinated TCE, cis-DCE, 1,1-DCE, and VC to ethene at rates up to 40, 41, 62, and 127 μmol liter−1 day−1, respectively, but failed to dechlorinate PCE. Hydrogen was the required electron donor, which was depleted to a consumption threshold concentration of 0.76 ± 0.13 nM with VC as the electron acceptor. In contrast to the known TCE dechlorinating isolates, strain GT dechlorinated TCE to ethene with very little formation of chlorinated intermediates, suggesting that this type of organism avoids the commonly observed accumulation of cis-DCE and VC during TCE-to-ethene dechlorination.  相似文献   

18.
A major obstacle in the implementation of the reductive dechlorination process at chloroethene-contaminated sites is the accumulation of the intermediate vinyl chloride (VC), a proven human carcinogen. To shed light on the microbiology involved in the final critical dechlorination step, a sediment-free, nonmethanogenic, VC-dechlorinating enrichment culture was derived from tetrachloroethene (PCE)-to-ethene-dechlorinating microcosms established with material from the chloroethene-contaminated Bachman Road site aquifer in Oscoda, Mich. After 40 consecutive transfers in defined, reduced mineral salts medium amended with VC, the culture lost the ability to use PCE and trichloroethene (TCE) as metabolic electron acceptors. PCE and TCE dechlorination occurred in the presence of VC, presumably in a cometabolic process. Enrichment cultures supplied with lactate or pyruvate as electron donor dechlorinated VC to ethene at rates up to 54 μmol liter−1day−1, and dichloroethenes (DCEs) were dechlorinated at about 50% of this rate. The half-saturation constant (KS) for VC was 5.8 μM, which was about one-third lower than the concentrations determined for cis-DCE and trans-DCE. Similar VC dechlorination rates were observed at temperatures between 22 and 30°C, and negligible dechlorination occurred at 4 and 35°C. Reductive dechlorination in medium amended with ampicillin was strictly dependent on H2 as electron donor. VC-dechlorinating cultures consumed H2 to threshold concentrations of 0.12 ppm by volume. 16S rRNA gene-based tools identified a Dehalococcoides population, and Dehalococcoides-targeted quantitative real-time PCR confirmed VC-dependent growth of this population. These findings demonstrate that Dehalococcoides populations exist that use DCEs and VC but not PCE or TCE as metabolic electron acceptors.  相似文献   

19.
The purpose of this study was the enrichment and phylogenetic identification of bacteria that dechlorinate 4,5,6,7-tetrachlorophthalide (commercially designated “fthalide”), an effective fungicide for rice blast disease. Sequential transfer culture of a paddy soil with lactate and fthalide produced a soil-free enrichment culture (designated the “KFL culture”) that dechlorinated fthalide by using hydrogen, which is produced from lactate. Phylogenetic analysis based on 16S rRNA genes revealed the dominance of two novel phylotypes of the genus Dehalobacter (FTH1 and FTH2) in the KFL culture. FTH1 and FTH2 disappeared during culture transfer in medium without fthalide and increased in abundance with the dechlorination of fthalide, indicating their growth dependence on the dechlorination of fthalide. Dehalobacter restrictus TEA is their closest relative, with 97.5% and 97.3% 16S rRNA gene similarities to FTH1 and FTH2, respectively.4,5,6,7-Tetrachlorophthalide (commercially designated “fthalide”) is an effective fungicide for rice blast disease, which inhibits melanin biosynthesis and the formation of the mature appressorial cells of the rice blast pathogen on the host plant (5, 16). Fthalide has been reported to be reductively dechlorinated in soil (16) and compost (28), although its fates in paddy soil and the fthalide-dechlorinating bacteria are unknown. Besides fthalide, polychlorinated aromatic compounds are known to be reductively dechlorinated by the bacteria of several phyla. Six strains of Desulfitobacterium spp. of the phylum Firmicutes (2, 3, 6, 10, 23, 29) and Desulfomonile tiedjei DCB-1 of the phylum Proteobacteria (21) can dechlorinate polychlorinated phenols. Three strains of the phylum Chloroflexi can dechlorinate a variety of compounds, including polychlorinated phenols, benzenes, biphenyls, or dibenzo-p-dioxins: Dehalococcoides ethenogenes 195 (9, 19), Dehalococcoides sp. strain CBDB1 (1, 4), and strain DF-1 of Chloroflexi, collectively called the “o-17/DF-1 group” (18). Dehalococcoides spp. utilize hydrogen as an electron donor and acetate as a carbon source for growth coupled to the reductive dechlorination of chlorinated compounds (1, 12, 13, 19, 26). In contrast, Desulfitobacterium spp. can dechlorinate chlorinated compounds not only with hydrogen, but also organic acids, such as formate, pyruvate, lactate, or butyrate (3, 10, 23). Strain DF-1 can utilize hydrogen and formate for the dechlorination of polychlorinated biphenyls (PCBs) (18).In this study, bacteria that dechlorinate fthalide were enriched from a paddy soil with sequentially transferred cultures using a soil-free medium supplemented with single organic acids. Acetate, formate, lactate, and butyrate were used in this study because they are frequently used in the enrichment of dechlorinators and release hydrogen at different concentrations (8, 11, 14). Fthalide-dechlorinating bacteria in the enriched culture were phylogenetically identified based on the 16S rRNA gene with PCR-denaturing gradient gel electrophoresis (DGGE), a 16S rRNA gene clone library, and quantitative real-time PCR (qPCR).  相似文献   

20.
Reductive dechlorination of the ortho moiety of polychlorinated biphenyls (PCBs) as well as of meta and para moieties is shown to occur in anaerobic enrichments of Baltimore Harbor sediments. These estuarine sediments ortho dechlorinated 2,3,5,6-chlorinated biphenyl (CB), 2,3,5-CB, and 2,3,6-CB in freshwater or estuarine media within a relatively short period of 25 to 44 days. ortho dechlorination developed within 77 days in marine medium. High levels of ortho dechlorination (>90%) occurred when harbor sediments were supplied with only 2,3,5-CB. Incubation with 2,3,4,5,6-CB or 2,3,4,5-CB resulted in the formation of the ortho dechlorination product 3,5-CB; however, para dechlorination of these congeners always preceded ortho chlorine removal. ortho dechlorination of PCBs is an exceedingly rare event that has not been reported previously for marine or estuarine conditions. The activity was reproducible and could be sustained through sequential transfers. In contrast, freshwater sediments incubated under the same conditions exhibited only meta and para dechlorinations. The results indicate that unique anaerobic dechlorinating activity is catalyzed by microorganisms in the estuarine sediments from Baltimore Harbor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号