首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The suppressors of cytokine signaling (SOCS) proteins inhibit cytokine action by direct interaction with Janus kinases or activated cytokine receptors. In addition to the N-terminal and Src homology 2 domains that mediate these interactions, SOCS proteins contain a C-terminal SOCS box. DNA data base searches have identified a number of other protein families that possess a SOCS box, of which the ankyrin repeat and SOCS box-containing (Asb) proteins constitute the largest. Although it is known that the SOCS proteins are involved in the negative regulation of cytokine signaling, the biological and biochemical functions of the Asbs are largely undefined. Using a proteomics approach, we demonstrate that creatine kinase B (CKB) interacts with Asb-9 in a specific, SOCS box-independent manner. This interaction increases the polyubiquitylation of CKB and decreases total CKB levels within the cell. The targeting of CKB for degradation by Asb-9 was primarily SOCS box-dependent and suggests that Asb-9 acts as a specific ubiquitin ligase regulating levels of this evolutionarily conserved enzyme.  相似文献   

2.
Suppressors of cytokine signaling (SOCS) proteins possess common structures, a SOCS box at the C-terminus and a SH2 domain at their center. These suppressors are inducible in response to cytokines and act as negative regulators of cytokine signaling. The ASB proteins also contain the SOCS box and the ankyrin repeat sequence at the N-terminus, but do not have the SH2 domain. Although Socs genes are directly induced by several cytokines, no Asb gene inducers have been identified. In this study, we screened the specific genes expressed in the course of differentiation of HL-60 cells, and demonstrated that ASB-2, one of the ASB proteins, was rapidly induced by all-trans retinoic acid (ATRA). Typical retinoid receptors (RARs) or retinoid X receptors (RXRs) binding element (RARE/RXRE) were presented in the promoter of the Asb-2 gene. We showed that RARalpha, one of the RARs, binds to the RARE/RXRE in the Asb-2 promoter. In addition, we demonstrated by luciferase reporter assay that this element was a functional RARE/RXRE. These findings indicate that ASB-2 is directly induced by ATRA and may act as a significant regulator, underlying such physiological processes as cell differentiation.  相似文献   

3.
Cytokine responses can be regulated by a family of proteins termed suppressors of cytokine signaling (SOCS) which can inhibit the JAK/STAT pathway in a classical negative-feedback manner. While the SOCS are thought to target signaling intermediates for degradation, relatively little is known about how their turnover is regulated. Unlike other SOCS family members, we find that SOCS2 can enhance interleukin-2 (IL-2)- and IL-3-induced STAT phosphorylation following and potentiate proliferation in response to cytokine stimulation. As a clear mechanism for these effects, we demonstrate that expression of SOCS2 results in marked proteasome-dependent reduction of SOCS3 and SOCS1 protein expression. Furthermore, we provide evidence that this degradation is dependent on the presence of an intact SOCS box and that the loss of SOCS3 is enhanced by coexpression of elongin B/C. This suggests that SOCS2 can bind to SOCS3 and elongin B/C to form an E3 ligase complex resulting in the degradation of SOCS3. Therefore, SOCS2 can enhance cytokine responses by accelerating proteasome-dependent turnover of SOCS3, suggesting a mechanism for the gigantism observed in SOCS2 transgenic mice.  相似文献   

4.
Inhibitors of cytokine signal transduction   总被引:29,自引:0,他引:29  
  相似文献   

5.
Suppressor of cytokine signaling 1 (SOCS1) is an obligate negative regulator of cytokine signaling and most importantly in vivo, signaling via the interferon-gamma (IFN-gamma) receptor. SOCS1, via its Src homology 2 domain, binds to phosphotyrosine residues in its targets, reducing the amplitude of signaling from cytokine receptors. SOCS1 is also implicated in blocking Toll-like receptor (TLR) signaling in macrophages activated by TLR agonists such as lipopolysaccharide (LPS), thus regulating multiple steps in the activation of innate immune responses. To rigorously test this, we isolated macrophages from Socs1-/- mice on multiple genetic backgrounds. We found no evidence that SOCS1 blocked TLR-activated pathways, endotoxin tolerance, or nitric oxide production. However, Socs1-/-;IFN-gamma-/- mice were extremely susceptible to LPS challenge, confirming previous findings. Because LPS induces IFN-beta production from macrophages, we tested whether SOCS1 regulates IFN-alpha/beta receptor signaling. We find that SOCS1 is required to inhibit IFN-alpha/beta receptor signaling in vitro. Furthermore, the absence of a single allele encoding TYK2, a JAK (Janus kinase) family member essential IFN-alpha/beta receptor signaling, rescued Socs1-/- mice from early lethality, even in the presence of IFN-gamma. We conclude that previous reports linking SOCS1 to TLR signaling are most likely due to effects on IFN-alpha/beta receptor signaling.  相似文献   

6.

Background  

The ankyrin repeat and suppressor of cytokine signalling (SOCS) box proteins (Asbs) are a large protein family implicated in diverse biological processes including regulation of proliferation and differentiation. The SOCS box of Asb proteins is important in a ubiquitination-mediated proteolysis pathway. Here, we aimed to evaluate expression and function of human Asb-9 (ASB9).  相似文献   

7.
Suppressor of cytokine signaling (SOCS) proteins are a family of Src homology 2-containing adaptor proteins. Cytokine-inducible Src homology domain 2-containing protein, SOCS1, SOCS2, and SOCS3 have been implicated in the down-regulation of cytokine signaling. The function of SOCS4, 5, 6, and 7 are not known. KIT receptor signaling is regulated by protein tyrosine phosphatases and adaptor proteins. We previously reported that SOCS1 inhibited cell proliferation in response to stem cell factor (SCF). By screening the other members of SOCS family, we identified SOCS6 as a KIT-binding protein. Using KIT mutants and peptides, we demonstrated that SOCS6 bound directly to KIT tyrosine 567 in the juxtamembrane domain. To investigate the function of this interaction, we constitutively expressed SOCS6 in cell lines. Ectopic expression of SOCS6 in Ba/F3-KIT cell line decreased cell proliferation in response to SCF but not SCF-induced chemotaxis. SOCS6 reduced SCF-induced activation of ERK1/2 and p38 but not activation of AKT or STATs in Ba/F3, murine embryonic fibroblast (MEF), or COS-7 cells. SOCS6 did not impair ERK and p38 activation by other stimuli. These results indicate that SOCS6 binds to KIT juxtamembrane region, which affects upstream signaling components leading to MAPK activation. Our results indicate that KIT signaling is regulated by several SOCS proteins and suggest a putative function for SOCS6 as a negative regulator of receptor tyrosine kinases.  相似文献   

8.
Asb-4 is a gene that is specifically expressed in the hypothalamic energy homeostasis-associated areas and is down-regulated in the arcuate nucleus of fasted Sprague Dawley and obese Zucker rats. It has two functional domains, the ankyrin repeat and the SOCS box. The function of Asb-4 is unclear. We used yeast two hybridization to search for protein(s) that interact with Asb-4. With Asb-4 minus its SOCS box (Asb-4/Deltasb) as a bait, we screened mouse testis and arcuate nucleus cDNA libraries and identified G-protein pathway suppressor 1 (GPS1, also known as CSN1) as an Asb-4 interacting protein. GPS1 co-immunoprecipitated with Asb-4 both in vitro and in human HEK293 cells. When Asb-4 and GPS1 were co-transfected into HEK293 cells, expression of Asb-4 reduced the protein level of GPS1. Deletion of the SOCS box (Asb4/Deltasb) did not abolish the inhibitory effect of Asb-4 on GPS1, indicating that the SOCS box was not needed for its inhibitory effect. In NIH 3T3 L1 cells, expression of GPS1 enhanced c-Jun NH2-terminal kinase (JNK) activity. Co-expression of Asb-4 with GPS1 inhibited JNK activity. Treatment of the cells with insulin (20 nM) stimulated JNK activity. Expression of GPS1 potentiated the stimulatory effect of insulin, whereas co-expression of Asb-4 along with GPS1 inhibited JNK activity. In HEK293 cells expression of GPS1 elevated phosphorylation of insulin receptor substrate 1 (IRS-1) at serine307, co-expression of Asb-4 with GPS1 reduced the IRS-1ser307 phosphorylation. The present study demonstrates that Asb-4 interacts with GPS1 and inhibits JNK activity.  相似文献   

9.
Interleukin-6 is involved in the regulation of many biological activities such as gene expression, cell proliferation, and differentiation. The control of the termination of cytokine signaling is as important as the regulation of initiation of signal transduction pathways. Three families of proteins involved in the down-regulation of cytokine signaling have been described recently: (i) SH2 domain-containing protein-tyrosine phosphatases (SHP), (ii) suppressors of cytokine signaling (SOCS), and (iii) protein inhibitors of activated STATs (PIAS). We have analyzed the interplay of two inhibitors in the signal transduction pathway of interleukin-6 and demonstrate that the tyrosine phosphatase SHP2 and SOCS3 do not act independently but are functionally linked. The activation of one inhibitor modulates the activity of the other; Inhibition of SHP2 activation leads to increased SOCS3-mRNA levels, whereas increased expression of SOCS3 results in a reduction of SHP2 phosphorylation after activation of the interleukin-6 signal transduction pathway. Furthermore, we show that tyrosine 759 in gp130 is essential for both SHP2 and SOCS3 but not for SOCS1 to exert their inhibitory activities on interleukin-6 signal transduction. Besides SHP2, SOCS3 also interacts with the Tyr(P)-759 peptide of gp130. Taken together, our results suggest differences in the function of SOCS1 and SOCS3 and a link between SHP2 and SOCS3.  相似文献   

10.
Suppressor of cytokine signaling 1 (SOCS1) is rapidly induced following stimulation by several cytokines. SOCS1 negatively regulates cytokine receptor signal transduction by inhibiting Janus family tyrosine kinases. Lack of such feedback regulation underlies the premature death of SOCS1(-/-) mice due to unbridled IFN-gamma signaling. We used mouse embryo fibroblasts derived from SOCS1(-/-) mice to investigate the role of SOCS1 in IFN-gamma signaling pathways. SOCS1(-/-) fibroblasts were exquisitely sensitive to the IFN-gamma-mediated growth arrest and showed sustained STAT1 phosphorylation. However, SOCS1(-/-) fibroblasts were inefficient in MHC class II surface expression following IFN-gamma stimulation, despite a marked induction of the MHC class II transactivator and MHC class II gene expression. Retroviral transduction of wild-type SOCS1 relieved the growth-inhibitory effects of IFN-gamma in SOCS1(-/-) fibroblasts by inhibiting STAT1 activation. SOCS1R105K, carrying a mutation within the phosphotyrosine-binding pocket of the Src homology 2 domain, did not inhibit STAT1 phosphorylation, yet considerably inhibited IFN-gamma-mediated growth arrest. Strikingly, expression of SOCS1R105K restored the IFN-gamma-induced MHC class II expression in SOCS1(-/-) cells, indicating that expression of SOCS1 facilitates MHC class II expression in fibroblasts. Our results show that SOCS1, in addition to its negative regulatory role of inhibiting Janus kinases, has an unanticipated positive regulatory function in retarding the degradation of IFN-gamma-induced MHC class II proteins in fibroblasts.  相似文献   

11.
12.
Suppressors of cytokine signaling (SOCS) are negative feedback inhibitors of cytokine and growth factor signal transduction. Although the affect of SOCS proteins on the Jak-STAT pathway has been well characterized, their role in the regulation of other signaling modules is not well understood. In the present study, we demonstrate that SOCS3 physically interacts with the SH2/SH3-containing adapter proteins Nck and Crk-L, which are known to couple activated receptors to multiple downstream signaling pathways and the actin cytoskeleton. Our data show that the SOCS3/Nck and SOCS3/Crk-L interactions depend on tyrosine phosphorylation of SOCS3 Tyr(221) within the conserved SOCS box motif and intact SH2 domains of Nck and Crk-L. Furthermore, SOCS3 Tyr(221) forms a YXXP motif, which is a consensus binding site for the Nck and Crk-L SH2 domains. Expression of SOCS3 in NIH3T3 cells induces constitutive recruitment of a Nck-GFP fusion protein to the plasma membrane and constitutive tyrosine phosphorylation of endogenous Nck. Our findings suggest that SOCS3 regulates multiple cytokine and growth factor-activated signaling pathways by acting as a recruitment factor for adapter proteins.  相似文献   

13.
Cytokines have been implicated in the progression of acetaminophen (APAP)-induced acute liver injury. Suppressors of cytokine signaling (SOCS) proteins are negative regulators of cytokine signaling by inhibiting the JAK-STAT pathway, but their role in APAP hepatotoxicity is unknown. In this present study, we attempted to explore the role of SOCS3 in T cells in APAP-induced liver injury. Mice with a cell-specific overexpression of SOCS3 in T cells (SOCS3Tg, in which Tg is transgenic) exhibited exaggerated hepatic injury after APAP challenge, as evidenced by increased serum alanine aminotransferase levels, augmented hepatic necrosis, and decreased survival relative to the wild-type mice. Adaptive transfer of SOCS3Tg-CD4(+) T cells into T and B cell-deficient RAG-2(-/-) mice resulted in an exacerbated liver injury relative to the control. In SOCS3Tg mice, hepatocyte apoptosis was enhanced with decreased expression of antiapoptotic protein bcl-2, whereas hepatocyte proliferation was reduced with altered cell cycle-regulatory proteins. Levels of IFN-gamma and TNF-alpha in the circulation were augmented in SOCS3Tg mice relative to the control. Studies using neutralizing Abs indicated that elevated IFN-gamma and TNF-alpha were responsible for the exacerbated hepatotoxicity in SOCS3Tg mice. Activation of STAT1 that is harmful in liver injury was augmented in SOCS3Tg hepatocytes. Alternatively, hepatoprotective STAT3 activation was decreased in SOCS3Tg hepatocytes, an event that was associated with augmented SOCS3 expression in the hepatocytes. Altogether, these results suggest that forced expression of SOCS3 in T cells is deleterious in APAP hepatotoxicity by increasing STAT1 activation while decreasing STAT3 activation in hepatocytes, possibly through elevated IFN-gamma and TNF-alpha.  相似文献   

14.
Suppressor of cytokine signaling (SOCS) proteins are key regulators of innate and adaptive immunity. There is no described biological role for SOCS4, despite broad expression in the hematopoietic system. We demonstrate that mice lacking functional SOCS4 protein rapidly succumb to infection with a pathogenic H1N1 influenza virus (PR8) and are hypersusceptible to infection with the less virulent H3N2 (X31) strain. In SOCS4-deficient animals, this led to substantially greater weight loss, dysregulated pro-inflammatory cytokine and chemokine production in the lungs and delayed viral clearance. This was associated with impaired trafficking of influenza-specific CD8 T cells to the site of infection and linked to defects in T cell receptor activation. These results demonstrate that SOCS4 is a critical regulator of anti-viral immunity.  相似文献   

15.
Suppressor of cytokine signaling 1-deficient (SOCS1(-/-)) mice, which are lymphopenic, die <3 wk after birth of a T cell-mediated autoimmune inflammatory disease characterized by leukocyte infiltration and destruction of vital organs. Notably, Foxp3(+) regulatory T cells (Tregs) have been shown to be particularly potent in inhibiting inflammation-associated autoimmune diseases. We observed that SOCS1(-/-) mice were deficient in peripheral Tregs despite enhanced thymic development. The adoptive transfer of SOCS1-sufficient Tregs, CD4(+) T lymphocytes, or administration of SOCS1 kinase inhibitory region (KIR), a peptide that partially restores SOCS1 function, mediated a statistically significant but short-term survival of SOCS1(-/-) mice. However, the adoptive transfer of SOCS1-sufficient CD4(+) T lymphocytes, combined with the administration of SOCS1-KIR, resulted in a significant increase in the survival of SOCS1(-/-) mice both short and long term, where 100% death occurred by day 18 in the absence of treatment. Moreover, the CD4(+)/SOCS1-KIR combined therapy resulted in decreased leukocytic organ infiltration, reduction of serum IFN-γ, and enhanced peripheral accumulation of Foxp3(+) Tregs in treated mice. These data show that CD4(+)/SOCS1-KIR combined treatment can synergistically promote the long-term survival of perinatal lethal SOCS1(-/-) mice. In addition, these results strongly suggest that SOCS1 contributes to the stability of the Foxp3(+) Treg peripheral population under conditions of strong proinflammatory environments.  相似文献   

16.
Suppressors of cytokine signaling (SOCS) are cytokine-inducible proteins that modulate receptor signaling via tyrosine kinase pathways. We investigate the role of SOCS in renal disease, analyzing whether SOCS regulate IgG receptor (FcgammaR) signal pathways. In experimental models of immune complex (IC) glomerulonephritis, the renal expression of SOCS family genes, mainly SOCS-3, significantly increased, in parallel with proteinuria and renal lesions, and the proteins were localized in glomeruli and tubulointerstitium. Induction of nephritis in mice with a deficiency in the FcgammaR gamma-chain (gamma(-/-) mice) resulted in a decrease in the renal expression of SOCS-3 and SOCS-1. Moreover, blockade of FcgammaR by Fc fragment administration in rats with ongoing nephritis selectively inhibited SOCS-3 and SOCS-1, without affecting cytokine-inducible Src homology 2-containing protein and SOCS-2. In cultured human mesangial cells (MC) and monocytes, IC caused a rapid and transient induction of SOCS-3 expression. Similar kinetics was observed for SOCS-1, whereas SOCS-2 expression was very low. MC from gamma(-/-) mice failed to respond to IC activation, confirming the participation of FcgammaR. Interestingly, IC induced tyrosine phosphorylation of SOCS-3 and Tec tyrosine kinase, and both proteins coprecipitated in lysates from IC-stimulated MC, suggesting intracellular association. IC also activated STAT pathway in MC, which was suppressed by SOCS overexpression, mainly SOCS-3. In SOCS-3 knockdown studies, specific antisense oligonucleotides inhibited mesangial SOCS-3 expression, leading to an increase in the IC-induced STAT activation. Our results indicate that SOCS may play a regulatory role in FcgammaR signaling, and implicate SOCS as important modulators of cell activation during renal inflammation.  相似文献   

17.
The SOCS box: a tale of destruction and degradation   总被引:26,自引:0,他引:26  
Although initially identified in the suppressor of cytokine signaling (SOCS) family of proteins, the C-terminal SOCS box has now been identified in more than 40 proteins in nine different families. Growing evidence suggests that the SOCS box, similar to the F-box, acts as a bridge between specific substrate-binding domains and the more generic proteins that comprise a large family of E3 ubiquitin protein ligases. In this way, SOCS proteins regulate protein turnover by targeting proteins for polyubiquitination and, therefore, for proteasome-mediated degradation.  相似文献   

18.
Influenza A virus (IAV) triggers a contagious respiratory disease that produces considerable lethality. Although this lethality is likely due to an excessive host inflammatory response, the negative feedback mechanisms aimed at regulating such a response are unknown. In this study, we investigated the role of the eight "suppressor of cytokine signaling" (SOCS) regulatory proteins in IAV-triggered cytokine expression in human respiratory epithelial cells. SOCS1 to SOCS7, but not cytokine-inducible Src homology 2-containing protein (CIS), are constitutively expressed in these cells and only SOCS1 and SOCS3 expressions are up-regulated upon IAV challenge. Using distinct approaches affecting the expression and/or the function of the IFNalphabeta receptor (IFNAR)1, the viral sensors TLR3 and retinoic acid-inducible gene I (RIG-I) as well as the mitochondrial antiviral signaling protein (MAVS, a RIG-I signaling intermediate), we demonstrated that SOCS1 and SOCS3 up-regulation requires a TLR3-independent, RIG-I/MAVS/IFNAR1-dependent pathway. Importantly, by using vectors overexpressing SOCS1 and SOCS3 we revealed that while both molecules inhibit antiviral responses, they differentially modulate inflammatory signaling pathways.  相似文献   

19.
Suppressor of cytokine signaling 1 (SOCS1) is an intracellular inhibitor of cytokine, growth factor, and hormone signaling. Socs1-/- mice die before weaning from a multiorgan inflammatory disease. Neonatal Socs1-/- mice display severe hypoglycemia and hypoinsulinemia. Concurrent interferon gamma gene deletion (Ifng-/-) prevented inflammation and corrected the hypoglycemia. In hyperinsulinemic clamp studies, however, Socs1-/- Ifng-/- mice had enhanced hepatic insulin sensitivity demonstrated by greater suppression of endogenous glucose production compared with controls with no difference in glucose disposal. Socs1-/- Ifng-/- mice had elevated liver insulin receptor substrate 2 expression (IRS-2) and IRS-2 tyrosine phosphorylation. This was associated with lower phosphoenolpyruvate carboxykinase mRNA expression. These effects were not associated with elevated hepatic AMP-activated protein kinase activity. Hepatic insulin sensitivity and IRS-2 levels play central roles in the pathogenesis of type 2 diabetes. Socs1 deficiency increases IRS-2 expression and enhances hepatic insulin sensitivity in vivo indicating that inhibition of SOCS1 may be a logical strategy in type 2 diabetes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号