首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract Acetate turnover was measured in slurries of anoxic methanogenic paddy soil after addition of carrier-free [2-14C]-acetate. Acetate concentrations stayed fairly constant for about 1–2 days indicating steady state between production and consumption reactions. Depending on the experiment, acetate concentrations were between 100 and 3000 μM. Turnover rates were determined from the logarithmic decrease of [2-14C]-acetate or from the accumulation of acetate in the presence of chloroform resulting in similar values, i.e. 12–13 nmol h−1g−1d.w. soil at 17°C and 36–88 nmol h−1g−1d.w. at 30°C. Acetate consumption was completely inhibited by chloroform. The respiratory index (RI) was < 0.27. Hence, acetate was apparently consumed by methanogenic bacteria. About 80–90% of the CH4 produced originated from the methyl group of acetate. The role of homoacetogenesis for acetate production was studied by measuring the incorporation of radioactive bicarbonate into acetate. In different experiments, CO2 incorporation accounted for fractions of 1–60% of the acetate produced, about 10% being the most likely value for steady-state conditions. The fraction increased at high H2 concentrations and decreased at high acetate concentrations. The rate of H2 production that was required for chemolithotrophic acetate production from CO2 was two orders of magnitude higher than the actually measured rate. Hence, most of the CO2 incorporation into acetate was caused by electron donors other than H2 (e.g., carbohydrates) and/or by exchange reactions.  相似文献   

2.
3.
4.
Abstract The effect of temperature on CH4 production, turnover of dissolved H2, and enrichment of H2-utilizing anaerobic bacteria was studied in anoxic paddy soil and sediment of Lake Constance. When anoxic paddy soil was incubated under an atmosphere of H2/CO2, rates of CH4 production increased 25°C, but decreased at temperatures lower than 20°C. Chloroform completely inhibited methano-genesis in anoxic paddy soil and lake sediment, but did not or only partially inhibit the turnover of dissolved H2, especially at low incubation temperatures. Cultures with H2 as energy source resulted in the enrichment of chemolithotrophic homoacetogenic bacteria whenever incubation temperatures were lower than 20°C. Hydrogenotrophic methanogens could only be enriched at 30°C from anoxic paddy soil. A homoacetogen  相似文献   

5.
6.
Rice field soils turn anoxic upon flooding. The complete mineralization of organic matter, e.g. cellulose, to gaseous products is then accomplished by the sequential reduction of nitrate, ferric iron, sulfate and finally by methanogenesis. Therefore, the anaerobic turnover of [U-(14)C]cellulose was investigated in fresh, non-methanogenic and in preincubated, methanogenic slurries of Italian rice field soil. In anoxic soil slurries freshly prepared from air-dried soil [U-(14)C]cellulose was converted to (14)CO(2) and (14)CH(4) in a ratio of 3:1. In methanogenic soil slurries, on the other hand, which had been preincubated for 45 days under anaerobic conditions, [U-(14)C]cellulose was converted to (14)CO(2) and (14)CH(4) in the ratio of 1:1. The turnover times (7-14 days) of cellulose degradation were not significantly different (P0.05) in fresh and methanogenic soil. Chloroform addition abolished CH(4) production, but only slightly (30%) inhibited cellulose degradation in both fresh and methanogenic soil. Under both soil conditions, [(14)C]acetate was the only labeled intermediate detected. A maximum of 24% of the applied radioactivity was transiently accumulated as [(14)C]acetate in both fresh and methanogenic soil slurries. However, when methanogenesis was inhibited by chloroform, 46% and 66% of the applied radioactivity were recovered as [(14)C]acetate in fresh and methanogenic soil, respectively. Only non-radioactive propionate accumulated during the incubation with [U-(14)C]cellulose, especially in the presence of chloroform, indicating that propionate was produced from substrates other than cellulose.  相似文献   

7.
The anaerobic degradation of different fractions of rice straw in anoxic paddy soil was investigated. Rice straw was divided up into stem, leaf sheath and leaf blade. The different straw fractions were mixed with paddy soil and incubated under anoxic conditions. Fermentation of straw components started immediately and resulted in transient accumulation of acetate, propionate, butyrate, isobutyrate, valerate, isovalerate and caproate with much higher concentrations in the presence than in the absence of straw. Also some unidentified compounds with UV absorption could be detected. The maximum concentrations of these compounds were different when using different straw fractions, suggesting differences in the degradation pathway of these straw fractions during the early phase of incubation, i.e. with Fe(III) and sulfate serving as oxidants. When concentrations of the intermediates decreased to background values, CH(4) production started. Rates of CH(4)unamended soil. During the methanogenic phase, the percentage contribution of fermentation products to CH(4) production was determined by inhibition with 2-bromoethanesulfonate (BES). Acetate (48-83%) and propionate (18-28%) were found to be the main intermediates of the carbon flow to CH(4), irrespective of the fraction of the rice straw or its absence. Mass balance calculations showed that 84-89% of CH(4) was formed via acetate in the various incubations. Radiotracer experiments showed that 11-27% of CH(4) was formed from H(2)/CO(2), thus confirming that acetate contributed 73-89% to methanogenesis. Our results show that the addition of rice straw and the fraction of the straw affected the fermentation pattern only in the early phase of degradation, but had no effect on the degradation pathway during the later methanogenic phase.  相似文献   

8.
Abstract Interspecies H2 transfer within methanogenic bacterial associations (MBA) accounted for 95–97% of the conversion of 14CO2 to 14CH4 in anoxic paddy soil. Only 3–5% of the 14CH4 were produced from the turnover of dissolved H2. The H2-syntrophic MBA developed within 5 days after the paddy soil had been submerged and placed under anoxic atmosphere. Afterwards, both the contribution of MBA to H2-dependent methanogenesis and the turnover of dissolved H2 did not change significantly for up to 7 months of incubation. However, while the rates of H2-dependent methanogenesis stayed relatively constant, the rates of total methanogenesis decreased. The contribution of MBA to H2-dependent methanogenesis was further enhanced to 99% when the temperature was shifted from 30°C to 17°C, or when the soil had been planted with rice. This enhancement was partially due to an increased utilization of dissolved H2 by chloroform-insensitive non-methanogenic bacteria, most probably homoacetogens, so that CH4 production was almost completely restricted to H2-syntrophic MBA. The activity of MBA, as measured by the conversion of 14CO2 to 14CH4, was stimulated by glucose, lactate, and ethanol to a similar or greater extent than by exogenous H2. Propionate and acetate had no effect.  相似文献   

9.
Bacterial populations and pathways involved in acetate and propionate consumption were studied in anoxic brackish sediment from the Grosser Jasmunder Bodden, German Baltic Sea. Uptake of acetate and propionate from the porewater was studied using stable carbon isotope-labeled compounds. Labeled acetate was not produced as an intermediate during propionate uptake experiments, and propionate consumption was not affected by the addition of acetate. In parallel, incorporation of labeled acetate and propionate into phospholipid-derived fatty acids (PLFA) was studied to indicate bacterial populations involved in the consumption of these substrates. The (13)C-acetate label was mainly recovered in even-numbered PLFA (16:1omega7c, 16:0 and 18:1omega7c). In contrast, primarily odd-numbered PLFA (a15:0, 15:0, 17:1omega6 and 17:0) and the even-numbered i16:0 were labeled after incubation with (13)C-propionate. Although single PLFA labeled with propionate are commonly found in sulfate reducers, the complete PLFA-labeling pattern does not resemble any of the know strains. However, the acetate-labeling pattern is similar to Desulfotomaculum acetoxidans and Desulfofrigus spp., two acetate-consuming, sulfate reducers. In conclusion, our data suggest that acetate and propionate were predominantly consumed by different, specialized groups of sulfate-reducing bacteria.  相似文献   

10.
In anoxic paddy soil, rice straw is decomposed to CH(4) and CO(2) by a complex microbial community consisting of hydrolytic, fermenting, syntrophic and methanogenic microorganisms. Here, we investigated which of these microbial groups colonized the rice straw and which were localized in the soil. After incubation of rice straw in anoxic soil slurries for different periods, the straw pieces were removed from the soil, and both slurry and straw were studied separately. Although the potential activities of polysaccharolytic enzymes were higher in the soil slurry than in the straw incubations, the actual release of reducing sugars was higher in the straw incubations. The concentrations of fermentation products, mainly acetate and propionate, increased steadily in the straw incubations, whereas only a little CH(4) was formed. In the soil slurries, on the other hand, fermentation products were low, whereas CH(4) production was more pronounced. The production of CH(4) or of fermentation products in the separated straw and soil incubations accounted in sum for 54-82% of the CH(4) formed when straw was not removed from the soil. Syntrophic propionate degradation to acetate, CO(2) and H(2) was thermodynamically more favourable in the soil than in the straw fraction. These results show that hydrolysis and primary fermentation reactions were mainly localized on the straw pieces, whereas the syntrophic and methanogenic reactions were mainly localized in the soil. The percentage of bacterial relative to total microbial 16S rRNA content was higher on the straw than in the soil, whereas it was the opposite for the archaeal 16S rRNA content. It appears that rice straw is mainly colonized by hydrolytic and fermenting bacteria that release their fermentation products into the soil pore water where they are further degraded to CH(4). Hence, complete methanogenic degradation of straw in rice soil seems to involve compartmentalization.  相似文献   

11.
Sulfate reduction in methanogenic bioreactors   总被引:9,自引:0,他引:9  
Abstract: In the anaerobic treatment of sulfate-containing wastewater, sulfate reduction interferes with methanogenesis. Both mutualistic and competitive interactions between sulfate-reducing bacteria and methanogenic bacteria have been observed. Sulfate reducers will compete with methanogens for the common substrates hydrogen, formate and acetate. In general, sulfate reducers have better growth kinetic properties than methanogens, but additional factors which may be of importance in the competition are adherence properties, mixed substrate utilization, affinity for sulfate of sulfate reducers, relative numbers of bacteria, and reactor conditions such as pH, temperature and sulfide concentration. Sulfate reducers also compete with syntrophic methanogenic consortia involved in the degradation of substrates like propionate and butyrate. In the absence of sulfate these methanogenic consortia are very important, but in the presence of sulfate they are thought to be easily outcompeted by sulfate reducers. However, at relatively low sulfate concentrations, syntrophic degradation of propionate and butyrate coupled to HZ removal via sulfate reduction rather than via methanogenesis may become important. A remarkable feature of some sulfate reducers is their ability to grow fermentatively or to grow in syntrophic association with methanogens in the absence of sulfate.  相似文献   

12.
The present study investigated the metabolism of different acetate:propionate ratios (0.25, 0.33, 0.5, 1.0, 2.0, 3.0, 4.0) in equimolar carbon concentration during an anaerobic decomposition process under defined laboratory conditions and evaluated the engaged methanogenic community. Significant differences on a metabolic level (gas production, gas composition, volatile fatty acid (VFA) concentration) were observed between acetate:propionate ratios ≤1 and ≥2. Generally ratios ≥2 resulted in a faster methane production and VFA decomposition compared to ratios ≤1. Regarding the composition of the methanogenic community as well as the abundance of Methanosarcinales these differences were not reflected in an appropriate manner when DNA based methods (dHPLC and qPCR) were applied. However, by a culture based approach these differences could be documented showing a significant difference in the number of cultivable methanogens between initial acetate:propionate ratios ≤1 and ≥2.  相似文献   

13.
14.
The relative importance of methanogenesis and sulfate reduction in freshwater sediment supplemented with acetate was investigated. Addition of acetate stimulated both methane formation and sulfate reduction, indicating that an active aceticlastic population of methanogens and sulfate reducers was present in the sediment. Sulfate reducers were most important in the consumption of acetate. However, when sulfate reducers were inhibited, acetate was metabolised at a similar rate by methanogens. Acetate, propionate and valerate accumulated only when both processes were inhibited by the combined addition of 2-bromo-ethane sulfonate and molybdate. The relative amounts of acetate, propionate and valerate were 93, 6 and 1 mol%, respectively. These results demonstrate the role of acetate as a key intermediate in the terminal step of organic matter mineralisation in the sediment. Addition of chloroform inhibited both methanogenesis and sulfate reduction. We studied the inhibitory effect of CHCl(3) on homoacetogenic bacteria, sulfate-reducing bacteria and methanogens. The results showed that inhibition by CHCl(3) correlates with microorganisms, which operate the acetyl-CoA cleavage pathway. We propose that chloroform can be used to elucidate the role of different metabolic types of sulfate reducers to sulfate reduction in natural environments.  相似文献   

15.
16.
17.
Fermentation balances and growth yields were determined with various bacteria fermenting lactate to acetate plus propionate either via methylmalonyl-CoA or via acrylyl-CoA. All strains fermented lactate to acetate plus propionate at approximately a 1:2 ratio. Growth yields of Propionibacterium freudenreichii were more than twice as high as those of Clostridium homopropionicum or Veillonella parvula. Hydrogen was formed as a side product to a significant extent only by V. parvula and Pelobacter propionicus; the latter formed hydrogen preferentially when using ethanol as substrate. Acrylyl-CoA reductase of C. homopropionicum and Clostridium neopropionicum was found nearly exclusively in the cytoplasm thus confirming that this reduction step is unlikely to be involved in energy conservation. C. homopropionicum exhibited higher K(S) and higher micro(max) values, as well as higher specific substrate turnover rates than P. freudenreichii. The results allow us to conclude that C. homopropionicum using the acrylyl-CoA pathway with low growth yield obtains its specific competitive advantage compared to P. freudenreichii not through higher substrate affinity or metabolic shift toward enhanced acetate-plus-hydrogen formation but through faster specific substrate turnover.  相似文献   

18.
19.
20.
Glycolate is a bulk chemical which has been widely used in textile, food processing, and pharmaceutical industries. Glycolate can be produced from sugars by microbial fermentation. However, when using glucose as the sole carbon source, the theoretical maximum carbon molar yield of glycolate is 0.67 mol/mol due to the loss of carbon as CO2. In this study, a synergetic system for simultaneous utilization of acetate and glucose was designed to increase the carbon yield. The main function of glucose is to provide NADPH while acetate to provide the main carbon backbone for glycolate production. Theoretically, 1 glucose and 5 acetate can produce 6 glycolate, and the carbon molar yield can be increased to 0.75 mol/mol. The whole synthetic pathway was divided into two modules, one for converting acetate to glycolate and another to utilize glucose to provide NADPH. After engineering module I through activation of acs, gltA, aceA and ycdW, glycolate titer increased from 0.07 to 2.16 g/L while glycolate yields increased from 0.04 to 0.35 mol/mol-acetate and from 0.03 to 1.04 mol/mol-glucose. Module II was then engineered to increase NADPH supply. Through deletion of pfkA, pfkB, ptsI and sthA genes as well as upregulating zwf, pgl and tktA, glycolate titer increased from 2.16 to 4.86 g/L while glycolate yields increased from 0.35 to 0.82 mol/mol-acetate and from 1.04 to 6.03 mol/mol-glucose. The activities of AceA and YcdW were further increased to pull the carbon flux to glycolate, which increased glycolate yield from 0.82 to 0.92 mol/mol-acetate. Fed-batch fermentation of the final strain NZ-Gly303 produced 73.3 g/L glycolate with a productivity of 1.04 g/(L·h). The acetate to glycolate yield was 0.85 mol/mol (1.08 g/g), while glucose to glycolate yield was 6.1 mol/mol (2.58 g/g). The total carbon molar yield was 0.60 mol/mol, which reached 80% of the theoretical value.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号