首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mechanosensitive channels in various eucaryotic cells are thought to be functionally and structurally coupled to the cortical cytoskeleton. However, the results of electrophysiological studies are rather controversial and the functional impact of cytoskeleton assembly-disassembly on stretch-activated channel properties remains unclear. Here, the possible involvement of cytoskeletal elements in the regulation of stretch-activated Ca2+-permeable channels was studied in human leukaemia K562 cells with the use of agents that selectively modify the actin or tubulin system. F-actin disassembly resulted in a considerable reduction of the amplitude of stretch-activated currents without significant change in channel open probability. The effects of treatments with cytochalasins or latrunculin were principally similar, developed gradually and consisted a strong decrease of single channel conductance. Microtubule disruption did not affect stretch-activated channels. The data presented here are in principal agreement with the general conclusion that mechanosensitive channel functions are largely dependent on the integrity of the cortical actin cytoskeleton. Specifically, changes in conductive properties of the pore may provide an essential mechanism of channel regulation underlying functional modulation of membrane currents. Our results allow one to speculate that microfilament organization may be an important determinant in modulating biophysical characteristics of stretch-activated cation channels in cells of blood origin.  相似文献   

2.
Mechanosensitive channels in various eucaryotic cells are thought to be functionally and structurally coupled to the cortical cytoskeleton. However, the results of electrophysiological studies are rather controversial and the functional impact of cytoskeleton assembly-disassembly on stretch-activated channel properties remains unclear. Here, the possible involvement of cytoskeletal elements in the regulation of stretch-activated Ca2+-permeable channels was studied in human leukaemia K562 cells with the use of agents that selectively modify the actin or tubulin system. F-actin disassembly resulted in a considerable reduction of the amplitude of stretch-activated currents without significant change in channel open probability. The effects of treatments with cytochalasins or latrunculin were principally similar, developed gradually and consisted a strong decrease of single channel conductance. Microtubule disruption did not affect stretch-activated channels. The data presented here are in principal agreement with the general conclusion that mechanosensitive channel functions are largely dependent on the integrity of the cortical actin cytoskeleton. Specifically, changes in conductive properties of the pore may provide an essential mechanism of channel regulation underlying functional modulation of membrane currents. Our results allow one to speculate that microfilament organization may be an important determinant in modulating biophysical characteristics of stretch-activated cation channels in cells of blood origin.  相似文献   

3.
Cholesterol is a critical regulator of lipid bilayer dynamics and plasma membrane organization in eukaryotes. A variety of ion channels have been shown to be modulated by cellular cholesterol and partition into cholesterol-enriched membrane rafts. However, very little is known about functional role of membrane cholesterol in regulation of mechanically gated channels that are ubiquitously present in living cells. In our previous study, the effect of methyl-beta-cyclodextrin (MbCD), cholesterol-sequestering agent, on Ca2+-permeable stretch-activated cation channels (SACs) has been described. Here, cell-attached patch-clamp method was employed to search for the mechanisms of cholesterol-dependent regulation of SACs and to clarify functional contribution of lipid bilayer and submembranous cytoskeleton to channel gating. Cholesterol-depleting treatment with MbCD significantly decreased open probability of SACs whereas alpha-cyclodextrin had no effect. F-actin disassembly fully restored high level of SAC activity in cholesterol-depleted cells. Particularly, treatment with cytochalasin D or latrunculin B abrogated inhibitory effect of MbCD on stretch-activated currents. Single channel analysis and fluorescent imaging methods indicate that inhibition of SACs after cholesterol depletion is mediated via actin remodeling initiated by disruption of lipid rafts. Our data reveal a novel mechanism of channel regulation by membrane cholesterol and lipid rafts.  相似文献   

4.
The mechanosensitive channel with large conductance of Escherichia coli is the first to be cloned among stretch-activated channels. Although its activity was characterized by a patch clamp method, a physiological role of the channel has not been proved. The marine bacterium, Vibrio alginolyticus, is sensitive to osmotic stress and cell lysis occurs under osmotic downshock. We introduced an mscL gene into Vibrio alginolyticus, and the mechanosensitive channel with large conductance functions was found to alleviate cell lysis by osmotic downshock. This is the first report to show a physiological role of the mechanosensitive channel with large conductance.  相似文献   

5.
Caffeine activates a mechanosensitive Ca(2+) channel in human red cells   总被引:1,自引:0,他引:1  
Cordero JF  Romero PJ 《Cell calcium》2002,31(5):189-200
Caffeine is known to activate influx of both mono- and divalent cations in various cell types, suggesting that this xanthine opens non-selective cation channels at the plasma membrane. This possibility was investigated in human erythrocytes, studying the caffeine action on net Ca(2+), Na(+) and K(+) movements in ATP-depleted cells. Whole populations and subpopulations of young and old erythrocytes were employed. Caffeine was tested in the presence of known mechanosensitive channel blockers (Gd(3+), neomycin and amiloride) and ruthenium red as a possible inhibitor. Caffeine enhanced net cation fluxes in a concentration-dependent way. In whole populations, the Ca(2+) entry elicited by 20 mM caffeine was fully suppressed by Gd(3+) (5 microM), amiloride (250 microM) and ruthenium red (100 microM) and partially blocked by neomycin (100 microM). The above blockers also inhibited caffeine-dependent Na(+) entry whilst showing antagonistic effects on the corresponding K(+) efflux. These compounds fully suppressed hypotonically-induced (-35 mOsm/kg) Ca(2+) influx at nearly the same concentrations completely blocking caffeine-stimulated Ca(2+) entry. The effect of inhibitors on Ca(2+) influx in young cells exceeded that in old cells at similar concentrations. The results clearly show that caffeine stimulates a stretch-activated Ca(2+) channel in human red cells and that aged cells are less susceptible to mechanosensitive channel blockers.  相似文献   

6.
Stress in the lipids of the cell membrane may be responsible for activating stretch-activated channels (SACs) in nonspecialized sensory cells such as cardiac myocytes, where they are likely to play a role in cardiac mechanoelectric feedback. We examined the influence of the mechanical microenvironment on the gating of stretch-activated potassium channels (SAKCs) in rat atrial myocytes. The goal was to examine the role of the cytoskeleton in the gating process. We recorded from blebs that have minimal cytoskeleton and cells treated with cytochalasin B (cyto-B) to disrupt filamentous actin. Histochemical and electron microscopic techniques confirmed that the bleb membrane was largely free of F-actin. Channel currents showed mechanosensitivity and potassium selectivity and were activated by low pH and arachidonic acid, similar to properties of TREK-1. Some patches showed a time-dependent decrease in current that may be adaptation or inactivation, and since this decrease appeared in control cells and blebs, it is probably not the result of adaptation in the cytoskeleton. Cyto-B treatment and blebbing caused an increase in background channel activity, suggesting a transfer of stress from actin to bilayer and then to the channel. The slope sensitivity of gating before and after cyto-B treatment was similar to that of blebs, implying the characteristic change of dimensions associated with channel gating was the same in the three mechanical environments. The mechanosensitivity of SAKCs appears to be the result of interaction with membrane lipids and not of direct involvement of the cytoskeleton.  相似文献   

7.
The article concentrates on the concepts of mechanosensitive ion channels that are present in practically all cells of an organism. Considered are kinetic scheme and activation principles of mechanic-sensitive ion channels. The forces affecting those channels are discussed in detail. The qualities of the channels in lipid monolayer, bilayer and real cell membrane are under consideration. Discussed are various models that analyze possibilities of channel opening depending on the membrane tension. Under discussion are the data received from studying single channels, currents in whole-cell configuration and cloned channels built into bilayer, liposomes and membrane blebs. Problems of transmitting mechanic energy to the channel through the bilayer and through the cytoskeleton are investigated. Inhibitors and activators of mechanosensitive ion channels are mentioned and their effects are considered. The functional classification of mechanosensitive ion channels is given. Described are cation SACs, potassium SACs, Ca(2+)-sensitive and Ca(2+)-insensitive SACs, anion SACs, nonselective SACs and SICs. It is proved that mechanosensitive ion channels can produce considerable currents enough to change the cell electrogenesis.  相似文献   

8.
TRPA1, a poorly selective Ca(2+)-permeable cation channel, is expressed in peripheral sensory neurons, where it is considered to contribute to a variety of sensory processes such as the detection of painful stimuli. Furthermore, TRPA1 was also identified in hair cells of the inner ear, but its involvement in sensing mechanical forces is still being controversially discussed. Amphipathic molecules such as trinitrophenol and chlorpromazine have been shown to provide useful tools to study mechanosensitive channels. Depending on their charge, they partition in the inner or outer sheets of the lipid bilayer, causing a curvature of the membrane, which has been demonstrated to activate or inhibit mechanosensitive ion channels. In the present study, we investigated the effect of these molecules on TRPA1 gating. TRPA1 was robustly activated by the anionic amphipathic molecule trinitrophenol. The whole-cell and single channel properties resemble those previously described for TRPA1. Moreover, we could show that the toxin GsMTx-4 acts on TRPA1. In addition to its recently described role as an inhibitor of stretch-activated ion channels, it serves as a potent activator of TRPA1 channels. On the other hand, the positively charged drug chlorpromazine modulates activated TRPA1 currents in a voltage-dependent way. The exposure of activated TRPA1 channels to chlorpromazine led to a block at positive potentials and an increased open probability at negative potentials. The variability in the shape of the I-V curve gives a first indication that native mechanically activated TRPA1 currents must not necessarily exhibit the same biophysical properties as ligand-activated TRPA1 currents.  相似文献   

9.
Oocytes of the South African clawed toad Xenopus laevis possess in their plasma membrane a so-called stretch-activated cation channel (SAC) which is activated by gently applying positive or negative pressure (stretch) to the membrane patch containing the channels. We show here that this mechanosensitive channel acted as a spontaneously opening, stretch-independent non-selective cation channel (NSCC) in more than half of the oocytes that we investigated. In 55% of cell-attached patches (total number of patches, 58) on 30 oocytes from several different donors, we found NSCC opening events. These currents were increased by elevating the membrane voltage or raising the temperature. NSCC and SAC currents shared some properties regarding the relative conductances of Na+>Li+>Ca2+, gating behaviour and amiloride sensitivity. Stretch-independent currents could be clearly distinguished from stretch induced SAC currents by their voltage and temperature dependence. Open events of NSCC increased strongly when temperature was raised from 21 to 27 degrees C. NSCC currents could be partly inhibited by high concentrations of extracellular Gd3+ and amiloride (100 and 500 microM, respectively). We further show exemplarily that NSCC can seriously hamper investigations when oocytes are used for the expression of foreign ion channels. In particular, NSCC complicated investigations on cation channels with small conductance as we demonstrate for a 4 pS epithelial Na+ channel (ENaC) from guinea pig distal colon. Our studies on NSCCs suggest the involvement of these channels in oocyte temperature response and ion transport regulation. From our results we suggest that NSCC and SAC currents are carried by one protein operating in different modes.  相似文献   

10.
Cloning of a stretch-inhibitable nonselective cation channel   总被引:5,自引:0,他引:5  
A homologue of the capsaicin receptor-nonselective cation channel was cloned from the rat kidney to investigate a mechanosensitive channel. We found this channel to be inactivated by membrane stretch and have designated it stretch-inactivated channel (SIC). SIC encodes a 563-amino acid protein with putative six transmembrane segments. The cDNA was expressed in mammalian cells, and electophysiological studies were performed. SIC-induced large cation currents were found to be regulated by cell volume, with currents being stimulated by cell shrinkage and inhibited by cell swelling. Single channel analysis showed a conductance of 250 pS with cation permeability (PCl/PNa < 0.1), and the channel possessed some of the characteristics of a stretch-inactivated channel in that it was permeable to calcium, sensitive to membrane stretch, and blocked by Gd3+. Therefore, we cloned one of the mechanosensitive cation channels of mammals, which is considered to regulate Ca2+ influx in response to mechanical stress on the cell membrane.  相似文献   

11.
Changes in the level of membrane cholesterol regulate a variety of signaling processes including those mediated by acylated signaling molecules that localize to lipid rafts. Recently several types of ion channels have been shown to have cholesterol-dependent activity and to localize to lipid rafts. In this study, we have investigated the role of cholesterol in the regulation of ion transport in colonic epithelial cells. We observed that methyl-beta-cyclodextrin (MbetaCD), a cholesterol-sequestering molecule, activated transepithelial short circuit current (Isc), but only from the basolateral side. Similar results were obtained with a cholesterol-binding agent, filipin, and with the sphingomyelin-degrading enzyme, sphingomyelinase. Experiments with DeltaF508CFTR mutant mice indicated that raft disruption affected CFTR-mediated anion secretion, while pharmacological studies showed that this effect was due to activation of basolateral large conductance Ca2+-activated K+ (BK) channels. Sucrose density gradient centrifugation studies demonstrated that BK channels were normally present in the high-density fraction containing the detergent-insoluble cytoskeleton, and that following treatment with MbetaCD, BK channels redistributed into detergent-soluble fractions. Our evidence therefore implicates novel high-density cholesterol-enriched plasma membrane microdomains in the modulation of BK channel activation and anion secretion in colonic epithelia.  相似文献   

12.
Mechanosensitive channels are detected in all cells and are speculated to play a key role in many functions including osmoregulation, growth, hearing, balance, and touch. In prokaryotic cells, a direct gating of mechanosensitive channels by membrane tension was clearly demonstrated because the purified channels could be functionally reconstituted in a lipid bilayer. No such evidence has been presented yet in the case of mechanosensitive channels from animal cells. TREK-1, a two-pore domain K+ channel, was the first animal mechanosensitive channel identified at the molecular level. It is the target of a large variety of agents such as volatile anesthetics, neuroprotective agents, and antidepressants. We have produced the mouse TREK-1 in yeast, purified it, and reconstituted the protein in giant liposomes amenable to patch clamp recording. The protein exhibited the expected electrophysiological properties in terms of kinetics, selectivity, and pharmacology. Negative pressure (suction) applied through the pipette had no effect on the channel, but positive pressure could completely and reversibly close the channel. Our interpretation of these data is that the intrinsic tension in the lipid bilayer is sufficient to maximally activate the channel, which can be closed upon modification of the tension. These results indicate that TREK-1 is directly sensitive to membrane tension.  相似文献   

13.
All cells contain mechanosensitive ion channels, yet the molecular identities of most are unknown. The purpose of our study was to determine what encodes the Xenopus oocyte's mechanosensitive cation channel. Based on the idea that homologues to known channels might contribute to the stretch channels, we screened a Xenopus oocyte cDNA library with cation channel probes. Whereas other screens were negative, P2X probes identified six isoforms of the P2X4 subtype of ATP-gated channels. From RNase protection assays and RT-PCR, we demonstrated that Xenopus oocytes express P2X4 mRNA. In expression studies, four isoforms produced functional ATP-gated ion channels; however, one, xP2X4c, had a conserved cysteine replaced by a tyrosine and failed to give rise to functional channels. By changing the tyrosine to a cysteine, we showed that this cysteine was crucial for function. We raised antibodies against a Xenopus P2X4 C-terminal peptide to investigate xP2X4 protein expression. This affinity purified anti-xP2X4 antibody recognized a 56 kDa glycosylated Xenopus P2X4 protein expressed in stably transfected HEK-293 cells and in P2X4 cDNA injected oocytes overexpressing the cloned P2X4 channels; however, it failed to recognize proteins in control, uninjected oocytes. This suggests that P2X4 channels and mechanosensitive cation channels are not linked. Instead, oocyte P2X4 mRNA may be part of the stored pool of stable maternal mRNA that remains untranslated until later developmental stages.  相似文献   

14.
Stretch-activated cation channels in human fibroblasts.   总被引:2,自引:1,他引:1       下载免费PDF全文
Nonconfluent fibroblasts are relatively depolarized when compared with confluent fibroblasts, and transient hyperpolarizations result from a range of external stimuli as well as internal cellular activities. This electrical activity ceases, along with growth and mitogenic activity, when the cells become confluent. A calcium-activated potassium conductance is thought to be responsible for these hyperpolarizations, but in human fibroblasts the large calcium-activated potassium channel is not stretch-activated. We report here the identification of single stretch-activated cation channels in human fibroblasts, using the cell-attached and inside-out patch clamp techniques. The most prominent channel had a conductance of approximately 60 pS (picoSeimens) in 140 mM potassium and was permeable to potassium and sodium. The channel showed significant adaptation of activity when stretch was maintained over a period of several seconds, but a static component persisted for much longer periods. Higher conductance channels were also observed in a few excised patches.  相似文献   

15.
The voltage dependence of stretch-activated cation channels in leech central neurons was studied in cell-free configurations of the patch-clamp technique. We established that stretch-activated channels excised from identified cell bodies of desheathed ganglia, as well as from neurons in culture, were slowly and reversibly activated by depolarizing membrane potentials. Negative pressure stimuli, applied to the patch pipette during a slow periodical modulation of membrane potential, enhanced channel activity, whereas positive pressures depressed it. Voltage-induced channel activation was observed, with soft glass pipettes, both in inside-out and outside-out membrane patches, at negative and positive reference potentials, respectively. The results presented in this study demonstrate that membrane depolarization induces slow activation of stretch-activated channels of leech central neurons. This phenomenon is similar to that found in Xenopus oocytes, however, some peculiar features of the voltage dependence in leech stretch-activated channels indicate that specific membrane-glass interactions might not necessarily be involved. Moreover, following depolarization, stretch-activated channels in membrane patches from neurons in culture exhibited significantly shorter delay to activation (sec) than their counterparts from neurons of freshly isolated ganglia (hundreds of sec).  相似文献   

16.
In order to better understand the cellular mechanisms underlying LH and FSH secretion, we have addressed the contribution of lipid rafts to the secretion of gonadotropins. We used methyl-beta-cyclodextrin (MbetaCD), a cholesterol-sequestering agent, on an LbetaT2 murine gonadotroph cell line and on primary cultures of ovine pituitary cells. We found that in both systems, cholesterol depletion by MbetaCD induced a fast and substantial release of LH in the absence of natural stimulation by GnRH. In ovine pituitary cells, MbetaCD-mediated LH release was shown to be independent of protein synthesis. Twenty-four hours after MbetaCD treatment, there was no loss of cell viability and full recovery of LH secretory capabilities, as determined by GnRH or MbetaCD treatment. In addition, our data suggest the existence of a pool of LH that is not released by GnRH treatment but that is released by MbetaCD treatment. Finally, in ovine pituitary cells, MbetaCD treatment induced FSH secretion. Importantly, these in vitro data are supported by in vivo studies, because MbetaCD injected into the pituitary glands of anaesthetized sheep reproducibly induced a peak of LH release.  相似文献   

17.
Dutta R  Robinson KR 《Plant physiology》2004,135(3):1398-1406
Pollen tube growth requires a Ca2+ gradient, with elevated levels of cytosolic Ca2+ at the growing tip. This gradient's magnitude oscillates with growth oscillation but is always maintained. Ca2+ influx into the growing tip is necessary, and its magnitude also oscillates with growth. It has been widely assumed that stretch-activated Ca2+ channels underlie this influx, but such channels have never been reported in either pollen grains or pollen tubes. We have identified and characterized stretch-activated Ca2+ channels from Lilium longiflorum pollen grain and tube tip protoplasts. The channels were localized to a small region of the grain protoplasts associated with the site of tube germination. In addition, we find a stretch-activated K+ channel as well as a spontaneous K+ channel distributed over the entire grain surface, but neither was present at the germination site or at the tip. Neither stretch-activated channel was detected in the grain protoplasts unless the grains were left in germination medium for at least 1 h before protoplast preparation. The stretch-activated channels were inhibited by a spider venom that is known to block stretch-activated channels in animal cells, but the spontaneous channel was unaffected by the venom. The venom also stopped pollen tube germination and elongation and blocked Ca2+ entry into the growing tip, suggesting that channel function is necessary for growth.  相似文献   

18.
The accurate biological function of mechanosensitive (MS) channels is crucial for maintaining the viability of living cells. For instance, in vascular endothelial cells, calcium influx from the extracellular environment into cytoplasm is regulated by stretch-activated channels. However, the mechanism by which cells sense force remains unclear. For this study, we hypothesized that gating of ion channels is simply regulated by the direct mechanical stress induced in a membrane. We modeled a membrane channel using crystallographic data of the bacteria Mycobacterium tuberculosis (Tb-MscL) because MscL homologs are integral membrane proteins with sequence similarity to most known ion channels. Molecular dynamics (MD) simulations were performed to elucidate the gating mechanism of the channel protein in response to the fluid shear stress. Results suggest that the stretched membrane drives the interfacial part of the protein–membrane complex to expand and maintains the stability of the constricted part of the transmembrane pore. Moreover, structural similarities between Tb-MscL and the family of ligand-gated ion channels suggest that the conformational change of this model in response to fluid shear stress is useful for modeling the gating mechanism in a broad class of gated channels.  相似文献   

19.
Bacterial cyclic nucleotide gated (bCNG) channels are generally a nonmechanosensitive subset of the mechanosensitive channel of small conductance (MscS) superfamily. bCNG channels are composed of an MscS channel domain, a linking domain, and a cyclic nucleotide binding domain. Among bCNG channels, the channel domain of Ss-bCNGa, a bCNG channel from Synechocystis sp. PCC 6803, is most identical to Escherichia coli (Ec) MscS. This channel also exhibits limited mechanosensation in response to osmotic downshock assays, making it the only known full-length bCNG channel to respond to hypoosmotic stress. Here, we compare and contrast the ability of Ss-bCNGa to gate in response to mechanical tension with Se-bCNG, a nonmechanosensitive bCNG channel, and Ec-MscS, a prototypical mechanosensitive channel. Compared with Ec-MscS, Ss-bCNGa only exhibits limited mechanosensation, which is most likely a result of the inability of Ss-bCNGa to form the strong lipid contacts needed for significant function. Unlike Ec-MscS, Ss-bCNGa displays a mechanical response that increases with protein expression level, which may result from channel clustering driven by interchannel cation?C?? interactions.  相似文献   

20.
The spider peptide GsMTx4, at saturating concentration of 5 μM, is an effective and specific inhibitor for stretch-activated mechanosensitive (MS) channels found in a variety of eukaryotic cells. Although the structure of the peptide has been solved, the mode of action remains to be determined. Because of its amphipathic structure, the peptide is proposed to interact with lipids at the boundaries of the MS channel proteins. In addition, GsMTx4 has antimicrobial effects, inhibiting growth of several species of bacteria in the range of 5–64 μM. Previous studies on prokaryotic MS channels, which serve as model systems to explore the principle of MS channel gating, have shown that various amphipathic compounds acting at the protein–lipid interface affect MS channel gating. We have therefore analyzed the effect of different concentrations of extracellular GsMTx4 on MS channels of small conductance, MscS and MscK, in the cytoplasmic membrane of wild-type E. coli spheroplasts using the patch-clamp technique. Our study shows that the peptide GsMTx4 exhibits a biphasic response in which peptide concentration determines inhibition or potentiation of activity in prokaryotic MS channels. At low peptide concentrations of 2 and 4 μM the gating of the prokaryotic MS channels was hampered, manifested by a decrease in pressure sensitivity. In contrast, application of peptide at concentrations of 12 and 20 μM facilitated prokaryotic MS channel opening by increasing the pressure sensitivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号