首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The biggest unsolved problems in chloroplast evolution are the origins of dinoflagellate and euglenoid chloroplasts,which have envelopes of three membranes not two like plants and chromists, and of the sporozoan plastid, bounded by four smooth membranes. I review evidence that all three of these protozoan plastid types originated by secondary symbiogenesis from eukaryotic symbionts. Instead of separate symbiogenetic events, I argue that dinoflagellate and sporozoan plastids are directly related and that the common ancestor of dinoflagellates and Sporozoa was photosynthetic. I suggest that the last common ancestor of all Alveolata was photosynthetic and acquired its chlorophyll c-containing plastids in the same endosymbiogenetic event as those of Chromista. Chromistaand Alveolata are postulated to be a clade designated chrornalveolates. I propose that euglenoids obtained their plastids from the same(possibly ulvophycean) green alga as chlorarachneans and that Discicristata (Euglenozoa plus Percolozoa) and Cercozoa (the group including chlorarachneans) form a clade designated cabozoa (protozoa with chlorophyll a + b). If both theories are correct, there were only two secondary symbiogenetic events (witnessed by the chlorarachnean and cryptomonad nucleormorphs) in the history of life, not seven as commonly assumed. This greatly reduces the postulated number of independent origins of chloroplast protein-targeting machinery and of gene transfers from endosymbiont to host nuclei. I discuss the membrane and plastid losses and innovations in protein targeting implied by these theories, the comparative evidence for them, and their implications for eukaryote megaphylogeny. The principle of evolutionary conservatism leads to a novel theory for the function of periplastid vesicles in membrane biogenesis ofchlorarachneans and chromists and of the key steps in secondary symbiogenesis. Protozoan classification is also slightly revised by abandoning the probably polyphyletic infrakingdom Actinopoda, grouping Foraminifera and Radiolaria as a new infrakingdom Retaria,placing Heliozoa within a revised infrakingdom Sarcomastigota, establishing a new flagellate phylum Loukozoa for Jakobea plus Anaeromonadea within an emended subkingdom Eozoa, and ranking Archezoa as an infrakingdom within Eozoa.  相似文献   

2.
Membrane heredity and early chloroplast evolution   总被引:1,自引:0,他引:1  
Membrane heredity was central to the unique symbiogenetic origin from cyanobacteria of chloroplasts in the ancestor of Plantae (green plants, red algae, glaucophytes) and to subsequent lateral transfers of plastids to form even more complex photosynthetic chimeras. Each symbiogenesis integrated disparate genomes and several radically different genetic membranes into a more complex cell. The common ancestor of Plantae evolved transit machinery for plastid protein import. In later secondary symbiogeneses, signal sequences were added to target proteins across host perialgal membranes: independently into green algal plastids (euglenoids, chlorarachneans) and red algal plastids (alveolates, chromists). Conservatism and innovation during early plastid diversification are discussed.  相似文献   

3.
The history of euglenoids may have begun as early as ~2 bya. These early phagotrophs ate cyanobacteria, archaea, and eubacteria, and the subsequent appearance of red algae and chromalveolates provided euglenoids with additional food sources. Following the appearance of green algae, euglenoids acquired a chloroplast via a secondary endosymbiotic event with a green algal ancestor. This endosymbiosis also involved a massive transfer of nuclear‐encoded genes from the symbiont nucleus to the host. Expecting these genes to have a green algal origin, this research has shown, through the use of DNA‐sequences and the analysis of phylogenetic relationships, that many housekeeping genes have a red algal/chromalveolate ancestry. This suggested that many other endosymbiotic/horizontal gene transfers, which brought genes from chromalveolates to euglenoids, may have been taking place long before the acquisition of the chloroplast. The investigation of the origin of the enzymes involved in the tetrapyrrole synthesis pathway provided insights into horizontal gene transfer in euglenoids and demonstrated that the euglenoid nuclear genome is a mosaic comprised of genes from the ancestral lineage plus genes transferred endosymbiotically/horizontally from green, red, and chromalveolates lineages.  相似文献   

4.
Phototrophic chromalveolates possess plastids surrounded by either 3 or 4 membranes, revealing their secondary endosymbiotic origin from an engulfed eukaryotic alga. In cryptophytes, a member of the chromalveolates, the organelle is embedded within a designated region of the host's rough endoplasmic reticulum (RER). Its eukaryotic compartments other than the plastid were reduced to the mere remains of its former cytosol, the periplastid compartment (PPC, PP space), and its nucleus, the nucleomorph, separated from the RER by its former plasma membrane, the periplast membrane (PPM). In the nucleomorph genome of the cryptophyte Guillardia theta, we identified several genes sharing homology with components of the ER-associated degradation (ERAD) machinery of yeast and higher eukaryotes, namely ORF201 and ORF477, homologs of membrane-bound proteins, Der1p (Degradation in the ER protein 1) and the RING-finger ubiquitin ligase Hrd1, and a truncated version of Udf1, a cofactor of Cdc48, a lumenal ATPase. Exemplarily, studies on the Der1-homolog ORF201 showed that this protein partially rescued a yeast deletion mutant, indicating the existence of a functional PPC-specific ERAD-like system in cryptophytes. With the noninvestigated exception of haptophytes a phylogenetically and mechanistically related system is apparently present in all chromalveolates with 4 membrane-bound plastids because amongst others, PPC-specific Derlins (Der1-like proteins), CDC48 and its cofactor Ufd1 were identified in the nuclear genomes of diatoms and apicomplexa. These proteins are equipped with the required topogenic signals to direct them into the periplastid compartment of their secondary symbionts. Based on our findings, we suggest that all chromalveolates with 4 membrane-bound plastids express an ERAD-derived machinery in the PPM of their secondary plastid, coexisting physically and systematically adjacent to the host's own ERAD system. We propose herewith that this system was functionally adapted to mediate transport of nucleus-encoded PPC/plastid preproteins from the RER into the periplastid space.  相似文献   

5.
6.
Stentor niger collected in the suburbs of Hiroshima contained in its cytoplasm several hundreds of endosymbiotic algae and innumerable brownish pigment granules. The body of the ciliate was dark due to a mixture of the green endosymbiotic algae and brown pigment granules. The algae belonged to the genus Chlorella; each was enclosed in a perialgal vacuole and dispersed uniformly in the host cytoplasm from the myoneme layer inward to the center of the ciliate. The cell wall and plasma membrane of the alga enclosed a nucleus, chloroplast, mitochondrion, Golgi complex, accumulation bodies, myelinated vesicles, and many ribosomes. The chloroplast occupied more than half of the volume of the alga and contained a conspicuous pyrenoid. Algal multiplication occurred by two successive divisions of an alga, leading to four autospores within a perialgal vacuole; the walls of the vacuole invaginated to separate the autospores each into its own vacuole. Three types of pigment granules were scattered uniformly throughout the cytoplasm of the ciliate. The ultrastructure of the membranellar region, somatic cortex, and macro- and micronucleus of the ciliate are also described.  相似文献   

7.
The chromalveolate "supergroup" is of key interest in contemporary phycology, as it contains the overwhelming majority of extant algal species, including several phyla of key importance to oceanic net primary productivity such as diatoms, kelps, and dinoflagellates. There is also intense current interest in the exploitation of these algae for industrial purposes, such as biodiesel production. However, the evolution of the constituent species, and in particular the origin and radiation of the chloroplast genomes, remains poorly understood. In this review, we discuss current theories of the origins of the extant red alga-derived chloroplast lineages in the chromalveolates and the potential ramifications of the recent discovery of large numbers of green algal genes in chromalveolate genomes. We consider that the best explanation for this is that chromalveolates historically possessed a cryptic green algal endosymbiont that was subsequently replaced by a red algal chloroplast. We consider how changing selective pressures acting on ancient chromalveolate lineages may have selectively favored the serial endosymbioses of green and red algae and whether a complex endosymbiotic history facilitated the rise of chromalveolates to their current position of ecological prominence.  相似文献   

8.
Endosymbiosis has spread photosynthesis to many branches of the eukaryotic tree; however, the history of photosynthetic organelle (plastid) gain and loss remains controversial. Fortuitously, endosymbiosis may leave a genomic footprint through the transfer of endosymbiont genes to the "host" nucleus (endosymbiotic gene transfer, EGT). EGT can be detected through comparison of host genomes to uncover the history of past plastid acquisitions. Here we focus on a lineage of chlorophyll c-containing algae and protists ("chromalveolates") that are postulated to share a common red algal secondary endosymbiont. This plastid is originally of cyanobacterial origin through primary endosymbiosis and is closely related among the Plantae (i.e., red, green, and glaucophyte algae). To test these ideas, an automated phylogenomics pipeline was used with a novel unigene data set of 5,081 expressed sequence tags (ESTs) from the haptophyte alga Emiliania huxleyi and genome or EST data from other chromalveolates, red algae, plants, animals, fungi, and bacteria. We focused on nuclear-encoded proteins that are targeted to the plastid to express their function because this group of genes is expected to have phylogenies that are relatively easy to interpret. A total of 708 genes were identified in E. huxleyi that had a significant Blast hit to at least one other taxon in our data set. Forty-six of the alignments that were derived from the 708 genes contained at least one other chromalveolate (i.e., besides E. huxleyi), red and/or green algae (or land plants), and one or more cyanobacteria, whereas 15 alignments contained E. huxleyi, one or more other chromalveolates, and only cyanobacteria. Detailed phylogenetic analyses of these data sets turned up 19 cases of EGT that did not contain significant paralogy and had strong bootstrap support at the internal nodes, allowing us to confidently identify the source of the plastid-targeted gene in E. huxleyi. A total of 17 genes originated from the red algal lineage, whereas 2 genes were of green algal origin. Our data demonstrate the existence of multiple red algal genes that are shared among different chromalveolates, suggesting that at least a subset of this group may share a common origin.  相似文献   

9.
Current understanding of the plastid proteome comes almost exclusively from studies of plants and red algae. The proteome in these taxa has a relatively simple origin via integration of proteins from a single cyanobacterial primary endosymbiont and the host. However, the most successful algae in marine environments are the chlorophyll c-containing chromalveolates such as diatoms and dinoflagellates that contain a plastid of red algal origin derived via secondary or tertiary endosymbiosis. Virtually nothing is known about the plastid proteome in these taxa. We analyzed expressed sequence tag data from the toxic "Florida red tide" dinoflagellate Karenia brevis that has undergone a tertiary plastid endosymbiosis. Comparative analyses identified 30 nuclear-encoded plastid-targeted proteins in this chromalveolate that originated via endosymbiotic or horizontal gene transfer (HGT) from multiple different sources. We identify a fundamental divide between plant/red algal and chromalveolate plastid proteomes that reflects a history of mixotrophy in the latter group resulting in a highly chimeric proteome. Loss of phagocytosis in the "red" and "green" clades effectively froze their proteomes, whereas chromalveolate lineages retain the ability to engulf prey allowing them to continually recruit new, potentially adaptive genes through subsequent endosymbioses and HGT. One of these genes is an electron transfer protein (plastocyanin) of green algal origin in K. brevis that likely allows this species to thrive under conditions of iron depletion.  相似文献   

10.
How easy is it to acquire an organelle? How easy is it to lose one? Michael Gray considers the latest evidence in this regard concerning the chromalveolates.How easy is it to acquire an organelle? How easy is it to lose one? These questions underpin the current debate about the evolution of the plastid—that is, chloroplast—the organelle of photosynthesis in eukaryotic cells.The origin of the plastid has been traced to an endosymbiosis between a eukaryotic host cell and a cyanobacterial symbiont, the latter gradually ceding genetic control to the former through endosymbiotic gene transfer (EGT). The resulting organelle now relies for its biogenesis and function on the expression of a small set of genes retained in the shrunken plastid genome, as well as a much larger set of transferred nuclear genes encoding proteins synthesized in the cytosol and imported into the organelle.This scenario accounts for the so-called primary plastids in green algae and their land plant relatives, in red algae and in glaucophytes, which together comprise Plantae (or Archaeplastida)—one of five or six recognized eukaryotic supergroups (Adl et al, 2005). In other algal types, plastids are ‘second-hand''—they have been acquired not by taking up a cyanobacterium, but by taking up a primary-plastid-containing eukaryote (sometimes a green alga, sometimes a red alga) to produce secondary plastids. In most of these cases, all that remains of the eukaryotic symbiont is its plastid; the genes coding for plastid proteins have moved from the endosymbiont to the host nucleus. A eukaryotic host—which may or may not itself have a plastid—might also take up a secondary-plastid symbiont (generating tertiary plastids), or a secondary-plastid host might take up a primary-plastid symbiont. You get the picture: plastid evolution is complicated!Several excellent recent reviews present expanded accounts of plastid evolution (Reyes-Prieto et al, 2007; Gould et al, 2008; Archibald, 2009; Keeling, 2009). Here, I focus on one particular aspect of plastid evolutionary theory, the ‘chromalveolate hypothesis'', proposed in 1999 by Tom Cavalier-Smith (1999).The chromalveolate hypothesis seeks to explain the origin of chlorophyll c-containing plastids in several eukaryotic groups, notably cryptophytes, alveolates (ciliates, dinoflagellates and apicomplexans), stramenopiles (heterokonts) and haptophytes—together dubbed the ‘chromalveolates''. The plastid-containing members of this assemblage are mainly eukaryotic algae with secondary plastids that were acquired through endosymbiosis with a red alga. The question is: how many times did such an endosymbiosis occur within the chromalveolate grouping?A basic tenet of the chromalveolate hypothesis is that the evolutionary conversion of an endosymbiont to an organelle should be an exceedingly rare event, and a hard task for a biological system to accomplish, because the organism has to ‘learn'' how to target a large number of nucleus-encoded proteins—the genes of many of which were acquired by EGT—back into the organelle. Our current understanding of this targeting process is detailed in the reviews cited earlier. Suffice it to say that the evolutionary requirements appear numerous and complex—sufficiently so that the chromalveolate hypothesis posits that secondary endosymbiosis involving a red alga happened only once, in a common ancestor of the various groups comprising the chromalveolates.Considerable molecular and phylogenetic data have been marshalled over the past decade in support of the chromalveolate hypothesis; however, no single data set specifically unites all chromalveolates, even though there is compelling evidence for various subgroup relationships (Keeling, 2009). Moreover, within the proposed chromalveolate assemblage, plastid-containing lineages are interspersed with plastid-lacking ones—for example, ciliates in the alveolates, and oomycetes such as Phytophthora in the stramenopiles. The chromalveolate hypothesis rationalizes such interspersion by assuming that the plastid was lost at some point during the evolution of the aplastidic lineages. The discovery in such aplastidic lineages of genes of putatively red algal origin, and in some cases suggestive evidence of a non-photosynthetic plastid remnant, would seem to be consistent with this thesis, although these instances are still few and far between.In this context, two recent papers are notable in that the authors seek to falsify, through rigorous testing, several explicit predictions of the chromalveolate hypothesis—and in both cases they succeed in doing so. Because molecular phylogenies have failed to either robustly support or robustly disprove the chromalveolate hypothesis, Baurain et al (2010) devised a phylogenomic falsification of the chromalveolate hypothesis that does not depend on full resolution of the eukaryotic tree. They argued that if the chlorophyll c-containing chromalveolate lineages all derive from a single red algal ancestor, then similar amounts of sequence from the three compartments should allow them to recover chromalveolate monophyly in all cases. The statistical support levels in their analysis refuted this prediction, leading them to “reject the chromalveolate hypothesis as falsified in favour of more complex evolutionary scenarios involving multiple higher order eukaryote–eukaryote endosymbioses”.In another study, Stiller et al (2009) applied statistical tests to several a priori assumptions relating to the finding of genes of supposed algal origin in the aplastidic chromalveolate taxon Phytophthora. These authors determined that the signal from these genes “is inconsistent with the chromalveolate hypothesis, and better explained by alternative models of sequence and genome evolution”.So, is the chromalveolate hypothesis dead? These new studies are certainly the most serious challenge yet. Additional data, including genome sequences of poorly characterized chromalveolate lineages, will no doubt augment comparative phylogenomic studies aimed at evaluating the chromalveolate hypothesis—which these days is looking decidedly shaky.  相似文献   

11.
Plastids (photosynthetic organelles of plants and algae) are known to have spread between eukaryotic lineages by secondary endosymbiosis, that is, by the uptake of a eukaryotic alga by another eukaryote. But the number of times this has taken place is controversial. This is particularly so in the case of eukaryotes with plastids derived from red algae, which are numerous and diverse. Despite their diversity, it has been suggested that all these eukaryotes share a recent common ancestor and that their plastids originated in a single endosymbiosis, the so-called "chromalveolate hypothesis." Here we describe a novel molecular character that supports the chromalveolate hypothesis. Fructose-1,6-bisphosphate aldolase (FBA) is a glycolytic and Calvin cycle enzyme that exists as two nonhomologous types, class I and class II. Red algal plastid-targeted FBA is a class I enzyme related to homologues from plants and green algae, and it would be predicted that the plastid-targeted FBA from algae with red algal secondary endosymbionts should be related to this class I enzyme. However, we show that plastid-targeted FBA of heterokonts, cryptomonads, haptophytes, and dinoflagellates (all photosynthetic chromalveolates) are class II plastid-targeted enzymes, completely unlike those of red algal plastids. The chromalveolate enzymes form a strongly supported group in FBA phylogeny, and their common possession of this unexpected plastid characteristic provides new evidence for their close relationship and a common origin for their plastids.  相似文献   

12.
Despite their importance to evolution, ecology, and cell biology, eukaryotes that acquired plastids through secondary endosymbiosis remain poorly studied from a genomic standpoint. Chromalveolata, a eukaryotic supergroup proposed to have descended from a heterotrophic eukaryote that acquired a red algal plastid by secondary endosymbiosis, includes four major lineages (alveolates, cryptophytes, haptophytes, and heterokonts). The chromalveolates exhibit remarkable diversity of cellular organization, and the available data suggest that they exhibit equal diversity in their genome organization. One of the most obvious differences in cellular organization is the retention of a highly reduced red algal nucleus in cryptophytes (also known as cryptomonads), but there are other major differences among chromalveolate lineages, including the loss of photosynthesis in multiple lineages. Although the hypothesis of chromalveolate monophyly is appealing, there is limited support for the hypothesis from nuclear genes, and questions have even been raised about the monophyly of chromalveolate plastids. Evidence for the chromalveolate hypothesis from large‐scale nuclear data sets is reviewed, and alternative hypotheses are described. The potential for integrating information from chromalveolate genomics into functional genomics is described, emphasizing both the methodological challenges and the opportunities for future phylogenomic analyses of these groups.  相似文献   

13.
Diatoms and other chlorophyll-c containing, or chromalveolate, algae are among the most productive and diverse phytoplankton in the ocean. Evolutionarily, chlorophyll-c algae are linked through common, although not necessarily monophyletic, acquisition of plastid endosymbionts of red as well as most likely green algal origin. There is also strong evidence for a relatively high level of lineage-specific bacterial gene acquisition within chromalveolates. Therefore, analyses of gene content and derivation in chromalveolate taxa have indicated particularly diverse origins of their overall gene repertoire. As a single group of functionally related enzymes spanning two distinct gene families, fructose 1,6-bisphosphate aldolases (FBAs) illustrate the influence on core biochemical pathways of specific evolutionary associations among diatoms and other chromalveolates with various plastid-bearing and bacterial endosymbionts. Protein localization and activity, gene expression, and phylogenetic analyses indicate that the pennate diatom Phaeodactylum tricornutum contains five FBA genes with very little overall functional overlap. Three P. tricornutum FBAs, one class I and two class II, are plastid localized, and each appears to have a distinct evolutionary origin as well as function. Class I plastid FBA appears to have been acquired by chromalveolates from a red algal endosymbiont, whereas one copy of class II plastid FBA is likely to have originated from an ancient green algal endosymbiont. The other copy appears to be the result of a chromalveolate-specific gene duplication. Plastid FBA I and chromalveolate-specific class II plastid FBA are localized in the pyrenoid region of the chloroplast where they are associated with β-carbonic anhydrase, which is known to play a significant role in regulation of the diatom carbon concentrating mechanism. The two pyrenoid-associated FBAs are distinguished by contrasting gene expression profiles under nutrient limiting compared with optimal CO2 fixation conditions, suggestive of a distinct specialized function for each. Cytosolically localized FBAs in P. tricornutum likely play a role in glycolysis and cytoskeleton function and seem to have originated from the stramenopile host cell and from diatom-specific bacterial gene transfer, respectively.  相似文献   

14.
Plastids and mitochondria each arose from a single endosymbiotic event and share many similarities in how they were reduced and integrated with their host. However, the subsequent evolution of the two organelles could hardly be more different: mitochondria are a stable fixture of eukaryotic cells that are neither lost nor shuffled between lineages, whereas plastid evolution has been a complex mix of movement, loss and replacement. Molecular data from the past decade have substantially untangled this complex history, and we now know that plastids are derived from a single endosymbiotic event in the ancestor of glaucophytes, red algae and green algae (including plants). The plastids of both red algae and green algae were subsequently transferred to other lineages by secondary endosymbiosis. Green algal plastids were taken up by euglenids and chlorarachniophytes, as well as one small group of dinoflagellates. Red algae appear to have been taken up only once, giving rise to a diverse group called chromalveolates. Additional layers of complexity come from plastid loss, which has happened at least once and probably many times, and replacement. Plastid loss is difficult to prove, and cryptic, non-photosynthetic plastids are being found in many non-photosynthetic lineages. In other cases, photosynthetic lineages are now understood to have evolved from ancestors with a plastid of different origin, so an ancestral plastid has been replaced with a new one. Such replacement has taken place in several dinoflagellates (by tertiary endosymbiosis with other chromalveolates or serial secondary endosymbiosis with a green alga), and apparently also in two rhizarian lineages: chlorarachniophytes and Paulinella (which appear to have evolved from chromalveolate ancestors). The many twists and turns of plastid evolution each represent major evolutionary transitions, and each offers a glimpse into how genomes evolve and how cells integrate through gene transfers and protein trafficking.  相似文献   

15.
Here we use phylogenomics with expressed sequence tag (EST) data from the ecologically important coccolithophore-forming alga Emiliania huxleyi and the plastid-lacking cryptophyte Goniomonas cf. pacifica to establish their phylogenetic positions in the eukaryotic tree. Haptophytes and cryptophytes are members of the putative eukaryotic supergroup Chromalveolata (chromists [cryptophytes, haptophytes, stramenopiles] and alveolates [apicomplexans, ciliates, and dinoflagellates]). The chromalveolates are postulated to be monophyletic on the basis of plastid pigmentation in photosynthetic members, plastid gene and genome relationships, nuclear "host" phylogenies of some chromalveolate lineages, unique gene duplication and replacements shared by these taxa, and the evolutionary history of components of the plastid import and translocation systems. However the phylogenetic position of cryptophytes and haptophytes and the monophyly of chromalveolates as a whole remain to be substantiated. Here we assess chromalveolate monophyly using a multigene dataset of nuclear genes that includes members of all 6 eukaryotic supergroups. An automated phylogenomics pipeline followed by targeted database searches was used to assemble a 16-protein dataset (6,735 aa) from 46 taxa for tree inference. Maximum likelihood and Bayesian analyses of these data support the monophyly of haptophytes and cryptophytes. This relationship is consistent with a gene replacement via horizontal gene transfer of plastid-encoded rpl36 that is uniquely shared by these taxa. The haptophytes + cryptophytes are sister to a clade that includes all other chromalveolates and, surprisingly, two members of the Rhizaria, Reticulomyxa filosa and Bigelowiella natans. The association of the two Rhizaria with chromalveolates is supported by the approximately unbiased (AU)-test and when the fastest evolving amino acid sites are removed from the 16-protein alignment.  相似文献   

16.
Plastids (the photosynthetic organelles of plants and algae) ultimately originated through an endosymbiosis between a cyanobacterium and a eukaryote. Subsequently, plastids spread to other eukaryotes by secondary endosymbioses that took place between a eukaryotic alga and a second eukaryote. Recently, evidence has mounted in favour of a single origin for plastids of apicomplexans, cryptophytes, dinoflagellates, haptophytes, and heterokonts (together with their non-photosynthetic relatives, collectively termed chromalveolates). As of yet, however, no single molecular marker has been described which supports a common origin for all of these plastids. One piece of the evidence for a single origin of chromalveolate plastids came from plastid-targeted glyceraldehyde-3-phosphate dehydrogenase (GAPDH), which originated by a gene duplication of the cytosolic form. However, no plastid GAPDH has been characterized from haptophytes, leaving an important piece of the puzzle missing. We have sequenced genes encoding cytosolic, mitochondrial-targeted, and plastid-targeted GAPDH proteins from a number of haptophytes and heterokonts, and found the haptophyte homologues to branch within the strongly supported clade of chromalveolate plastid-targeted GAPDH genes. Interestingly, plastid-targeted GAPDH genes from the haptophytes were more closely related to apicomplexan genes than was expected. Overall, the evolution of plastid-targeted GAPDH reinforces other data for a red algal ancestry of apicomplexan plastids, and raises a number of questions about the importance of plastid loss and the possibility of cryptic plastids in non-photosynthetic lineages such as ciliates.  相似文献   

17.
ABSTRACT. The establishment of a new plastid organelle by secondary endosymbiosis represents a series of events of massive complexity, and yet we know it has taken place multiple times because both green and red algae have been taken up by other eukaryotic lineages. Exactly how many times these events have succeeded, however, has been a matter of debate that significantly impacts how we view plastid evolution, protein targeting, and eukaryotic relationships. On the green side it is now largely accepted that two independent events led to plastids of euglenids and chlorarachniophytes. How many times red algae have been taken up is less clear, because there are many more lineages with red alga‐derived plastids (cryptomonads, haptophytes, heterokonts, dinoflagellates and apicomplexa) and the relationships between these lineages are less clear. Ten years ago, Cavalier‐Smith proposed that these plastids were all derived from a single endosymbiosis, an idea that was dubbed the chromalveolate hypothesis. No one observation has yet supported the chromalveolate hypothesis as a whole, but molecular data from plastid‐encoded and plastid‐targeted proteins have provided strong support for several components of the overall hypothesis, and evidence for cryptic plastids and new photosynthetic lineages (e.g. Chromera) have transformed our view of plastid distribution within the group. Collectively, these data are most easily reconciled with a single origin of the chromalveolate plastids, although the phylogeny of chromalveolate host lineages (and potentially Rhizaria) remain to be reconciled with this plastid data.  相似文献   

18.
The chlorophyll c-containing algae comprise four major lineages: dinoflagellates, haptophytes, heterokonts, and cryptophytes. These four lineages have sometimes been grouped together based on their pigmentation, but cytological and rRNA data had suggested that they were not a monophyletic lineage. Some molecular data support monophyly of the plastids, while other plastid and host data suggest different relationships. It is uncontroversial that these groups have all acquired plastids from another eukaryote, probably from the red algal lineage, in a secondary endosymbiotic event, but the number and sequence of such event(s) remain controversial. Understanding chlorophyll c-containing plastid relationships is a first step towards determining the number of endosymbiotic events within the chromalveolates. We report here phylogenetic analyses using 10 plastid genes with representatives of all four chromalveolate lineages. This is the first organellar genome-scale analysis to include both haptophytes and dinoflagellates. Concatenated analyses support the monophyly of the chlorophyll c-containing plastids and suggest that cryptophyte plastids are the basal member of the chlorophyll c-containing plastid lineage. The gene psbA, which has at times been used for phylogenetic purposes, was found to differ from the other genes in its placement of the dinoflagellates and the haptophytes, and in its lack of support for monophyly of the green and red plastid lineages. Overall, the concatenated data are consistent with a single origin of chlorophyll c-containing plastids from red algae. However, these data cannot test several key hypothesis concerning chromalveolate host monophyly, and do not preclude the possibility of serial transfer of chlorophyll c-containing plastids among distantly related hosts.  相似文献   

19.
The chromalveolate hypothesis proposed by Cavalier-Smith (J Euk Microbiol 46:347–366, 1999) suggested that all the algae with chlorophyll c (heterokonts, haptophytes, cryptophytes, and dinoflagellates), as well as the ciliates, apicomplexans, oomycetes, and other non-photosynthetic relatives, shared a common ancestor that acquired a chloroplast by secondary endosymbiosis of a red alga. Much of the evidence from plastid and nuclear genomes supports a red algal origin for plastids of the photosynthetic lineages, but the number of secondary endosymbioses and the number of plastid losses have not been resolved. The issue is complicated by the fact that nuclear genomes are mosaics of genes acquired over a very long time period, not only by vertical descent but also by endosymbiotic and horizontal gene transfer. Phylogenomic analysis of the available whole-genome data has suggested major alterations to our view of eukaryotic evolution, and given rise to alternative models. The next few years may see even more changes once a more representative collection of sequenced genomes becomes available.  相似文献   

20.
Kodama Y  Fujishima M 《Protist》2009,160(1):65-74
Each symbiotic Chlorella of the ciliate Paramecium bursaria is enclosed in a perialgal vacuole derived from the host digestive vacuole to protect from lysosomal fusion. To understand the timing of differentiation of the perialgal vacuole from the host digestive vacuole, algae-free P. bursaria cells were fed symbiotic C. vulgaris cells for 1.5min, washed, chased and fixed at various times after mixing. Acid phosphatase activity in the vacuoles enclosing the algae was detected by Gomori's staining. This activity appeared in 3-min-old vacuoles, and all algae-containing vacuoles demonstrated activity at 30min. Algal escape from these digestive vacuoles began at 30min by budding of the digestive vacuole membrane into the cytoplasm. In the budded membrane, each alga was surrounded by a Gomori's thin positive staining layer. The vacuoles containing a single algal cell moved quickly to and attached just beneath the host cell surface. Such vacuoles were Gomori's staining negative, indicating that the perialgal vacuole membrane differentiates soon after the algal escape from the host digestive vacuole. This is the first report demonstrating the timing of differentiation of the perialgal vacuole membrane during infection of P. bursaria with symbiotic Chlorella.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号