首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The spatial and temporal variations in soil respiration and its relationship with biophysical factors In forests near the Tropic of Cancer remain highly uncertain. To contribute towards an Improvement of actual estimates, soil respiration rates, soil temperature, and soil moisture were measured In three successional subtropical forests at the Dlnghuahan Nature Reserve (DNR) In southern China from March 2003 to February 2005. The overall objective of the present study was to analyze the temporal variations of soil respiration and Its biophysical dependence in these forests. The relationships between biophysical factors and soil respiration rates were compared In successional forests to test the hypothesis that these forests responded similarly to biophysical factors. The seasonality of soil respiration coincided with the seasonal climate pattern, with high respiration rates in the hot humid season (April-September) and with low rates In the cool dry season (October-March). Soil respiration measured at these forests showed a clear Increasing trend with the progressive succession. Annual mean (± SD) soil respiration rate In the DNR forests was (9.0 ± 4.6) Mg CO2-C/hm^2 per year, ranging from (6.1 ± 3.2) Mg CO2-C/hm^2 per year in early successional forests to (10.7 ± 4.9) Mg CO2-C/hm^2 per year in advanced successional forests. Soil respiration was correlated with both soil temperature and moisture. The T/M model, where the two biophysical variables are driving factors, accounted for 74%-82% of soil respiration variation In DNR forests. Temperature sensitivity decreased along progressive succession stages, suggesting that advanced-successional forests have a good ability to adjust to temperature. In contrast, moisture Increased with progressive succession processes. This increase is caused, in part, by abundant respirators In advanced-successional forest, where more soil moisture is needed to maintain their activities.  相似文献   

4.
5.
甲烷营养菌(methanotrophs)是一类以CH_4为唯一碳源和能源的细菌,广泛分布在水稻土、森林土、苔原土、泥炭地、海洋与湖泊底泥、堆肥、垃圾填埋场及地下水等环境中,并作为大气甲烷(CH_4)唯一的生物汇(库),在全球温室效应研究中备受关注.目前,关于土壤甲烷营养菌的研究主要包括菌株的多样性、生态分布以及环境因素对微生物氧化CH_4过程的影响.本文从甲烷营养菌的分类入手,概述稻田土壤CH_4的氧化与释放、旱地土壤CH_4的氧化以及影响土壤CH_4氧化的因素等方面的研究进展,同时介绍了土壤甲烷营养菌研究领域的几种主要的分子研究技术,以期为甲烷营养菌相关的研究提供参考.  相似文献   

6.
7.
8.
《Plant and Soil》1970,32(1-3):543-543
  相似文献   

9.
Health and the Soil   总被引:1,自引:0,他引:1  
  相似文献   

10.
In the extreme cold desert soil of the McMurdo Dry Valleys of Antarctica, we studied the effects of changing moisture and temperature on rates of decomposition and the activity and abundance of soil organisms. Our objective was to understand how moisture and temperature structure invertebrate communities and control important ecosystem processes and soil biotic activity in this extreme environment. First, in a field experiment, we manipulated soil moisture and temperature and compared cotton strip decomposition rates at two dry valley sites with different moisture regimes. At both sites, live nematode abundance and activity were unchanged by soil treatments over the 2-year study. In the same plots, the cotton strips did not decompose, despite soil warming and the addition of moisture. The results suggest that biological activity in the McMurdo Dry Valleys is severely limited and that soil organisms are not responsive to improving environmental conditions. Second, in microcosms, we manipulated dry valley soil moisture at a constant temperature of 10°C and measured the rates of key soil processes. Soil respiration, nitrification, and the decomposition of cotton strips were all greater in dry valley soils that were wetted to 10% moisture content, as compared to soils at 0.6%. These results indicate that the decomposition potential for dry valley soils is high when moisture and temperature limitations are removed. In the field, however, this process was extremely slow, and biota did not respond to improving environmental conditions. Soil processes appear to be limited primarily by the extreme desiccation of the dry valleys. Ecosystems processes are likely restricted to the brief periods following infrequent snowfall, melt, and soil wetting that permit the activity of soil microbes and biota. Received 23 May 2001; Accepted 7 September 2001.  相似文献   

11.
Listeria monocytogenes is a food-borne pathogen responsible for the potentially fatal disease listeriosis and terrestrial ecosystems have been hypothesized to be its natural reservoir. Therefore, identifying the key edaphic factors that influence its survival in soil is critical. We measured the survival of L. monocytogenes in a set of 100 soil samples belonging to the French Soil Quality Monitoring Network. This soil collection is meant to be representative of the pedology and land use of the whole French territory. The population of L. monocytogenes in inoculated microcosms was enumerated by plate count after 7, 14 and 84 days of incubation. Analysis of survival profiles showed that L. monocytogenes was able to survive up to 84 days in 71% of the soils tested, in the other soils (29%) only a short-term survival (up to 7 to 14 days) was observed. Using variance partitioning techniques, we showed that about 65% of the short-term survival ratio of L. monocytogenes in soils was explained by the soil chemical properties, amongst which the basic cation saturation ratio seems to be the main driver. On the other hand, while explaining a lower amount of survival ratio variance (11%), soil texture and especially clay content was the main driver of long-term survival of L. monocytogenes in soils. In order to assess the effect of the endogenous soils microbiota on L. monocytogenes survival, sterilized versus non-sterilized soils microcosms were compared in a subset of 9 soils. We found that the endogenous soil microbiota could limit L. monocytogenes survival especially when soil pH was greater than 7, whereas in acidic soils, survival ratios in sterilized and unsterilized microcosms were not statistically different. These results point out the critical role played by both the endogenous microbiota and the soil physic-chemical properties in determining the survival of L. monocytogenes in soils.  相似文献   

12.
为了比较分析盐碱土壤与非盐碱土壤微生物资源抗盐碱性差异,本研究利用含有不同浓度Na2CO3、NaHCO3和pH的培养基对盐碱土壤和非盐碱土壤细菌进行培养计数.结果显示:非盐碱土壤出菌数量随Na2CO3、pH和NaHCO3浓度升高而下降,盐碱土壤细菌出菌数量随着Na2CO3、pH和NaHCO3浓度升高先是升高然后下降,最高值分别出现在200 mmol/L NaHCO3、50 mmol/L Na2CO3和pH 9.0的分离平板上.此外,高Na2CO3、pH和NaHCO3浓度的平板中盐碱土壤出菌数量远高于非盐碱土壤;以上结果可见,耐盐碱细菌资源主要集中分布在盐碱土壤中,在非盐碱土壤中虽有分布,但是仅占有很少一部分.  相似文献   

13.
With respect to the adverse effects of chemical fertilization on the environment and their related expenses, especially when overused, alternative methods of fertilization have been suggested and tested. For example, the combined use of chemical fertilization with organic fertilization and/or biological fertilization is among such methods. It has been indicated that the use of organic fertilization with chemical fertilization is a suitable method of providing crop plants with adequate amount of nutrients, while environmentally and economically appropriate. In this article, the importance of soil microbes to the ecosystem is reviewed, with particular emphasis on the role of plant growth-promoting rhizobacteria, arbuscular mycorrhizal fungi, and endophytic bacteria in providing necessary nutrients for plant growth and yield production. Such microbes are beneficial to plant growth through colonizing plant roots and inducing mechanisms by which plant growth increases. Although there has been extensive research work regarding the use of microbes as a method of fertilizing plants, it is yet a question how the efficiency of such microbial fertilization to the plant can be determined and increased. In other words, how the right combination of chemical and biological fertilization can be determined. In this article, the most recent advances regarding the effects of microbial fertilization on plant growth and yield production in their combined use with chemical fertilization are reviewed. There are also some details related to the molecular mechanisms affecting the microbial performance and how the use of biological techniques may affect the efficiency of biological fertilization.  相似文献   

14.
土壤质量及其评价   总被引:94,自引:10,他引:94  
保持和提高土壤质量是实现农业可持续发展的基础,为此,必须清楚土壤质量的概念以及土壤质量的评价方法,本文综述了土壤质量的概念及其研究进展,土壤质量评价要以土壤的功能为基础,不同土壤的评价应采用不同的标准,土壤质量的评价是相对的而不是绝对的,介绍了国际上几种常用的土壤质量评价的方法,并对耕地土壤质量评价的指标选择进行了探讨。  相似文献   

15.
Plant-derived organic matter inputs are thought to be a key driver of soil bacterial community composition and associated soil processes. We sought to investigate the role of acid grassland vegetation on soil bacterial community structure by assessing bacterial diversity in combination with other soil variables in temporally and spatially distinct samples taken from a field-based plant removal experiment. Removal of aboveground vegetation resulted in reproducible differences in soil properties, soil respiration and bacterial diversity. Vegetated soils had significantly increased carbon and nitrogen concentrations and exhibited higher rates of respiration. Molecular analyses revealed that the soils were broadly dominated by Alphaproteobacterial and Acidobacterial lineages, with increased abundances of Alphaproteobacteria in vegetated soils and more Acidobacteria in bare soils. This field-based study contributes to a growing body of evidence documenting the effect of soil nutrient status on the relative abundances of dominant soil bacterial taxa, with Proteobacterial taxa dominating over Acidobacteria in soils exhibiting higher rates of C turnover. Furthermore, we highlight the role of aboveground vegetation in mediating this effect by demonstrating that plant removal can alter the relative abundances of dominant soil taxa with concomitant changes in soil CO2-C efflux.  相似文献   

16.
Soil conditions and plant growth'   总被引:13,自引:0,他引:13  
Plants can respond to soil conditions in ways that can not readily be explained in terms of the ability of the roots to take up water and nutrients. Roots may sense difficult conditions in the soil and thence send inhibitory signals to the shoots which harden the plants against the consequences of a deteriorating or restrictive environment, especially if the plants' water supply is at risk. Generally, this behaviour can be interpreted as feedforward responses to the soil becoming too dry or too hard, or to the available soil volume being very small as with bonsai plants, or to roots' becoming infected with pathogens. However, soil that is too soft or in which the roots are forced to grow in very large pores can also induce large conservative responses, the significance of which is unclear. The inhibitory signals may affect stomatal conductance, cell expansion, cell division and the rate of leaf appearance. Their nature is still under debate, and the debate is becoming increasingly complex, which probably signifies that a network of hormonal and other responses is involved in attuning the growth and development of a plant to its environment.  相似文献   

17.
The assessment of the soil resource of any region has two parts, namely, an inventory of the kinds of soil and their distribution, and knowledge of the way each kind can be used and its performance under a range of circumstances. Soil varies substantially and intricately over short distances in most parts of the world. Inventory by field survey and air-photo interpretation must be done at a local scale. Inventories may be combined so that an individual nation state or region of similar size can know what kinds of soil it has, how much and where they are, how much each can produce, how to manage each in perpetuity, and the risks of degradation in use. Local classifications, with classes defined simply and identifiably on aerial photographs, will serve for mapping, and in combination with classical statistics can provide sound estimates from stratified sampling and agronomic experimentation.<br>Sound assessment should also be at this local scale initially. This should combine fundamental understanding of the soil''s behaviour, strategic agronomic research on regional stations, and on-farm trials. The last are crucial for estimating productivity of the soil in practice.<br>Data from all sources can be stored, sorted and displayed by geographic information systems that now have abundant capacity. They should be indexed by soil class and other attributes, with clear distinction being made between assessments of productive potential and basic data. They should be publicly accessible, to ensure that data are readily available and never lost.<br>Estimates of the soil resource and its productivity for large regions, nation states, and the world can be compiled from local surveys by sampling through a ''bottom-up'' procedure. <br>  相似文献   

18.
Soil biota and invasive plants   总被引:4,自引:0,他引:4  
Interactions between plants and soil biota resist invasion by some nonnative plants and facilitate others. In this review, we organize research and ideas about the role of soil biota as drivers of invasion by nonnative plants and how soil biota may fit into hypotheses proposed for invasive success. For example, some invasive species benefit from being introduced into regions of the world where they encounter fewer soil-borne enemies than in their native ranges. Other invasives encounter novel but strong soil mutualists which enhance their invasive success. Leaving below-ground natural enemies behind or encountering strong mutualists can enhance invasions, but indigenous enemies in soils or the absence of key soil mutualists can help native communities resist invasions. Furthermore, inhibitory and beneficial effects of soil biota on plants can accelerate or decelerate over time depending on the net effect of accumulating pathogenic and mutualistic soil organisms. These 'feedback' relationships may alter plant-soil biota interactions in ways that may facilitate invasion and inhibit re-establishment by native species. Although soil biota affect nonnative plant invasions in many different ways, research on the topic is broadening our understanding of why invasive plants can be so astoundingly successful and expanding our perspectives on the drivers of natural community organization.  相似文献   

19.
Soil saccharide extraction and detection   总被引:6,自引:0,他引:6  
Extraction of soil saccharides involves the use of reagents effective in breaking hydrogen and covalent bonds between soil constituents and the saccharides. Of the many extractants proposed for saccharide determination, water is commonly used for extraction of water-soluble mono- and polysaccharides in soil. Analysis of these water extracts by colorimetric assays (anthrone-sulfuric acid and phenol-sulfuric acid methods) often show color development indicating that saccharides are present. However, high performance liquid chromatography (HPLC) and gas chromatography analyses have indicated that these colorimetric assays are prone to errors due to interferences from inorganic soil constituents such as Cl, NO3 and Fe+3. When water extracts (25° or 80°C) are put through deionization resins to remove interferences little to no saccharides are present when assayed by the phenol-sulfuric acid analysis. The inability of water to extract saccharides from soil or microbial polymers was confirmed by HPLC analysis. The phenol-sulfuric acid assay was found to be acceptable for saccharide analysis of soil extracts only after being subjected to resin deionization for interference removal. The anthrone-sulfuric acid method is not considered acceptable for determining saccharides in soil.  相似文献   

20.
Web alert of soil and groundwater remediation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号