首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Wang Y  Lu LX 《生理科学进展》2000,31(3):283-288
目  录一、参与胞吐作用的相关蛋白 (一)突触囊泡膜蛋白 (二)突触前膜有关蛋白 (三)胞液可溶性蛋白质 (四)其他蛋白质二、突触囊泡泊靠和融合的分子机制突触传递是神经系统实现其功能的最基本方式。详细阐述突触传递的机制对人们理解神经信息传递的特异性、行为和可塑性以及学习和记忆等都是至关重要的。近年来,随着分子生物学的发展,在分子水平阐明突触传递的机制才有可能。神经末梢的突触前部分通常含有两类囊泡:一是透明的较小囊泡,含有乙酰胆碱、儿茶酚胺等经典递质;另一类是有致密核心的较大囊泡,含有神经肽类物质。迄今研究较深…  相似文献   

2.
钙信使与植物激素信号传递   总被引:7,自引:0,他引:7  
钙信使与植物激素信号传递李德红王小菁潘瑞炽(华南师范大学生物系、激光生命科学研究所,广州510631)钙是植物必须的大量元素这一,植物的种子萌发、植株生长、成熟和衰老等都离不开Ca2+。钙在植物体中的功能研究有三个方面,即:细胞外钙的功能、细胞内钙的...  相似文献   

3.
钙在植物乙烯生成及信号传递中的生理作用   总被引:15,自引:0,他引:15  
Ca^2+对植物乙烯生成的调节与作用位点有关,胞外Ca^2+在维持质膜功能的同时,抑制乙烯生成,延缓衰老;过量Ca^2+进入胞质,胞内Ca^2+促进乙烯生成和衰老。内源CaM与乙烯生成关系密切,介入了乙烯代谢和外源激素对乙烯的调控。此外,Ca^2+是乙烯信号传递所必需的。  相似文献   

4.
T-钙粘附素是钙粘附素家族中的一个特殊成员,缺乏跨膜区和胞浆区,是通过糖基磷脂酰肌醇附着于细胞膜上.T-钙粘附素的异常表达参与到多种肿瘤的发生发展过程中,如肿瘤细胞的凋亡、增殖、侵袭和转移等过程.T-钙粘附素还可能参与肿瘤新生血管的形成和胞内外的信号传导过程.本文就T 钙粘附素在肿瘤发生发展过程中的作用及分子机制作一综述,该蛋白有可能成为肿瘤治疗的新靶点.  相似文献   

5.
Yang HW 《生理科学进展》2009,40(4):317-320
环氧合酶-2 (cyclooxygenase-2,COX-2)是催化花生四烯酸转化为前列腺素的限速酶,广泛参与脑创伤、缺血诱导的神经元损伤、炎症反应及神经变性性疾病等.COX-2在神经病理学中的作用与神经元的突触变化有关.增强或抑制COX-2表达可增强或抑制兴奋性谷氨酸能神经元的神经传递和长时程增强 (LTP),这些效应由COX-2的主要产物前列腺素E2(PGE2)及其受体亚型EP2所介导.因此,阐明COX-2在突触信号中的作用机制将有助于设计新的药物来预防、治疗及减轻神经源性炎症相关的神经紊乱性疾病.  相似文献   

6.
E-钙粘素是在胚胎发育中最早表达的分子之一,它可以与Catenin家族成员形成钙粘素/Catenin复合物参与多种细胞功能,对于胚胎植入和胎盘发生具有重要作用.通过RT-PCR、免疫组织化学、细胞粘附分析等方法,在人正常妊娠和输卵管妊娠母胎界面上,发现E-钙粘素主要定位于绒毛细胞滋养层细胞和滋养层细胞柱,从滋养层细胞柱近端向远端,其蛋白质水平逐渐降低.正常胎盘组织中E-钙粘素水平在妊娠早期较高,妊娠中期直至分娩期均维持低水平.在体外培养的人正常胎盘细胞滋养层细胞系(NPC细胞)中,转化生长因子β(TGFβ1)显著上调E-钙粘素蛋白和mRNA的表达,并呈现时间和剂量依赖性,同时,TGFβ1促进NPC细胞之间的粘附.上述结果表明,胎盘中存在E-钙粘素的旁分泌调节机制,E-钙粘素可通过调节滋养层细胞粘附而参与细胞侵润的有节制调控.  相似文献   

7.
关军锋  李广敏 《植物学报》2000,17(5):413-418
Ca2+对植物乙烯生成的调节与作用位点有关,胞外Ca2+在维持质膜功能的同时,抑制乙烯生成,延缓衰老;过量Ca2+进入胞质,胞内Ca2+促进乙烯生成和衰老。内源CaM与乙烯生成关系密切,介入了乙烯代谢和外源激素对乙烯的调控。此外,Ca2+是乙烯信号传递所必需的。  相似文献   

8.
Chen XH  Shu SY 《生理科学进展》2004,35(2):173-176
钙神经素 (calcineurin ,CN)是一种钙依赖的蛋白磷酸酶 ,其催化亚基的基因编码具严格保守性。近年来研究证明其在学习和记忆中有重要作用 ,参与了大脑神经元突触效应的去增强、多种不同机制的长时程抑制 (LTD)、长时程增强 (LTP)、认知记忆、短期记忆向长期记忆的转换、脑老化等过程。深入研究CN参与学习和记忆的机制及其与记忆减退性疾病的关系 ,具有重要理论与实践意义  相似文献   

9.
用免疫组织化学方法研究21例新鲜乳腺浸润性导管癌标本中上皮钙粘附素(E-Cad-herin,ECD)的表达。结果发现ECD在62%(13/21例)乳腺癌中呈减少至消失表达;其中83%(5/6例)高分化乳腺癌(Ⅰ级)呈保留表达,在80%(12/15例)低分化乳腺癌(Ⅱ、Ⅲ级)呈异质性减弱至消失表达;ECD表达与腺管形成程度成正相关,与核分裂数负相关。表明上皮钙粘附素的存在与否,可能决定着乳腺癌的分化程度。  相似文献   

10.
吸烟小鼠呼吸道上皮细胞上皮钙粘附素表达的研究   总被引:8,自引:0,他引:8  
通过免疫荧光法检测不同吸烟时间小鼠呼吸道上皮细胞上皮钙粘附素(Ecadherin,Ecd)表达的动态变化,并采用显微荧光光度术进行定量分析。结果表明,首次吸烟1h后呼吸道上皮细胞Ecd表达与正常对照组比较明显下调(P<001),46W后降到最低水平。以后逐渐上调,吸烟8W后Ecd表达恢复正常,气管上皮细胞表达高于正常(P<001)。提示,Ecd表达的动态变化在呼吸道上皮细胞损伤与修复过程中起重要作用  相似文献   

11.
Long-lasting synaptic plasticity involves changes in both synaptic morphology and electrical signaling (here referred to as structural and functional plasticity). Recent studies have revealed a myriad of molecules and signaling processes that are critical for each of these two forms of plasticity, but whether and how they are mechanistically linked to achieve coordinated changes remain controversial.It is well accepted that functional plasticity at the excitatory synapse is dependent upon the activities of glutamate receptors. While the activation of NMDARs (N-methyl-D-aspartic acid receptors) and/or mGluRs (metabotropic glutamate receptors) is required for the induction of many forms of plasticity, AMPARs (alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptors), the principal mediators of fast excitatory synaptic transmission, are the ultimate targets of modifications that express functional plasticity. Investigations exploring structural plasticity have been mainly focused on the small membranous protrusions on the dendrites called spines. The morphological regulation of these spines is mediated by the reorganization of the actin cytoskeleton, the predominant structural component of the synapse. In this regard, the Rho family of GTPases, particularly Rac1, RhoA and Cdc42, is found to be the central regulator of spine actin and structural plasticity of the synapse.It is thought that the collaborative interaction between functional and structural factors underlies the sustained or permanent nature of long-lasting synaptic plasticity such as long-term potentiation (LTP) and long-term depression (LTD), the most extensively studied forms of synaptic plasticity widely regarded as cellular mechanisms for learning and memory. However, data specifically pertaining to whether and how these two distinct components are linked at the molecular level remain sparse. In this regard, we have identified a number of synaptic proteins that are involved in both structural and functional changes during mGluR-dependent LTD (mGluR-LTD). Among these are the GluA2 (formerly called GluR2) subunit of AMPARs, Rac1 and Rac1-activated kinases. We have discovered that these proteins interact and reciprocally regulate each other, which led us to hypothesize that the GluA2–Rac1 interaction may serve as a coordinator between functional and morphological plasticity. In this review, we will briefly discuss the available evidence to support such a hypothesis.  相似文献   

12.
Invadosomes are adhesive mechanosensory modules composed of a dense F-actin core surrounded by a ring of adhesion molecules and able to infiltrate compact tissue environment in physiological and pathological conditions. These structures comprise podosomes that are found in a variety of cells under physiological conditions and invadopodia in transformed or cancer cells. Invadosomes are regulated by extracellular matrix signals and are endowed with degradative machinery for extracellular matrix. The ability of extracellular matrix signals to orchestrate the building, dynamics, and function of invadosomes is based on mechano-chemical integrin outside-in signaling and requires integrin cross-talk. This review highlights recent findings that place Src as an inducer and PKC as an amplifier in the assembly of integrin stimulated invadosome through mechanotransduction and polarized endo/exocytic trafficking pathways for key proteolytic and enzymatic activities in a temporally and spatially confined manner.  相似文献   

13.
GABA-mediated synaptic inhibition is crucial in neural circuit operations. In mammalian brains, the development of inhibitory synapses and innervation patterns is often a prolonged postnatal process, regulated by neural activity. Emerging evidence indicates that gamma-aminobutyric acid (GABA) acts beyond inhibitory transmission and regulates inhibitory synapse development. Indeed, GABA(A) receptors not only function as chloride channels that regulate membrane voltage and conductance but also play structural roles in synapse maturation and stabilization. The link from GABA(A) receptors to postsynaptic and presynaptic adhesion is probably mediated, partly by neuroligin-reurexin interactions, which are potent in promoting GABAergic synapse formation. Therefore, similar to glutamate signaling at excitatory synapse, GABA signaling may coordinate maturation of presynaptic and postsynaptic sites at inhibitory synapses. Defining the many steps from GABA signaling to receptor trafficking/stability and neuroligin function will provide further mechanistic insights into activity-dependent development and possibly plasticity of inhibitory synapses.  相似文献   

14.
Cadherins are critically involved in tissue development and tissue homeostasis. We demonstrate here that neuronal cadherin (N-cadherin) is cleaved specifically by the disintegrin and metalloproteinase ADAM10 in its ectodomain. ADAM10 is not only responsible for the constitutive, but also for the regulated, shedding of this adhesion molecule in fibroblasts and neuronal cells directly regulating the overall levels of N-cadherin expression at the cell surface. The ADAM10-induced N-cadherin cleavage resulted in changes in the adhesive behaviour of cells and also in a dramatic redistribution of beta-catenin from the cell surface to the cytoplasmic pool, thereby influencing the expression of beta-catenin target genes. Our data therefore demonstrate a crucial role of ADAM10 in the regulation of cell-cell adhesion and on beta-catenin signalling, leading to the conclusion that this protease constitutes a central switch in the signalling pathway from N-cadherin at the cell surface to beta-catenin/LEF-1-regulated gene expression in the nucleus.  相似文献   

15.
16.
Washbourne P 《Neuron》2004,44(6):901-902
Posttranslational modifications such as palmitoylation have the ability to modulate protein localization and function. The reversible addition of the fatty acid palmitate to proteins has been known to occur in neurons for a considerable amount of time and has been noticed to be of particular importance at synapses. In this issue of Neuron, Huang et al. and Fukata et al. describe their studies of palmitoyl transferases and how these enzymes specifically catalyze the modification of a number of synaptic proteins, including the postsynaptic scaffolding protein PSD-95.  相似文献   

17.
18.
Integrins are ubiquitous trans-membrane adhesion molecules that mediate the interaction of cells with the extracellular matrix (ECM). Integrins link cells to the ECM by interacting with the cell cytoskeleton. In cases such as leukocyte binding, integrins mediate cell-cell interactions and cell-ECM interactions. Recent research indicates that integrins also function as signal transduction receptors, triggering a number of intracellular signaling pathways that regulate cell behavior and development. A number of integrins are known to stimulate changes in intracellular calcium levels, resulting in integrin activation. Although changes in intracellular calcium regulate a vast number of cellular functions, this review will discuss the stimulation of calcium signaling by integrins and the role of intracellular calcium in the regulation of integrin-mediated adhesion.  相似文献   

19.
Carbon monoxide (CO), a gaseous second messenger, arises in biological systems during the oxidative catabolism of heme by the heme oxygenase (HO) enzymes. HO exists as constitutive (HO-2, HO-3) and inducible isoforms (HO-1), the latter which responds to regulation by multiple stress-stimuli. HO-1 confers protection in vitro and in vivo against oxidative cellular stress. Although the redox active compounds that are generated from HO activity (i.e. iron, biliverdin-IXalpha, and bilirubin-IXa) potentially modulate oxidative stress resistance, increasing evidence points to cytoprotective roles for CO. Though not reactive, CO regulates vascular processes such as vessel tone, smooth muscle proliferation, and platelet aggregation, and possibly functions as a neurotransmitter. The latter effects of CO depend on the activation of guanylate cyclase activity by direct binding to the heme moiety of the enzyme, stimulating the production of cyclic 3':5'-guanosine monophosphate. CO potentially interacts with other intracellular hemoprotein targets, though little is known about the functional significance of such interactions. Recent progress indicates that CO exerts novel anti-inflammatory and anti-apoptotic effects dependent on the modulation of the p38 mitogen activated protein kinase (MAPK)-signaling pathway. By virtue of these effects, CO confers protection in oxidative lung injury models, and likely plays a role in HO-1 mediated tissue protection.  相似文献   

20.
Cell adhesion molecule (CAM) expression is highly regulated during nervous system development to control cell migration, neurite outgrowth, fasciculation, and synaptogenesis. Using electrical stimulation of mouse dorsal root ganglion (DRG) neurons in cell culture, this work shows that N-cadherin expression is regulated by neuronal firing, and that expression of different CAMs is regulated by distinct patterns of neural impulses. N-cadherin was down-regulated by 0.1 or 1 Hz stimulation, but NCAM mRNA and protein levels were not altered by stimulation. L1 was down-regulated by 0.1 Hz stimulation, but not by 0.3 Hz, 1 Hz, or pulsed stimulation. N-cadherin expression was lowered with faster kinetics than L1 (1 vs. 5 days), and L1 mRNA returned to higher levels after terminating the stimulus. The RSLE splice variant of L1 was not regulated by action potential stimulation, and activity-dependent influences on L1 expression were blocked by target-derived influences. The results are consistent with changes in firing pattern accompanying DRG development and suggest that functional activity can influence distinct developmental processes by regulating the relative abundance of different CAMs. © 1997 John Wiley & Sons, Inc. J Neurobiol 33: 735–748, 1997
  • 1 This is a US Government work and, as such, is in the public domain in the United States of America.
  •   相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号