首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Under drug selection pressure, emerging mutations render HIV-1 protease drug resistant, leading to the therapy failure in anti-HIV treatment. It is known that nine substrate cleavage site peptides bind to wild type (WT) HIV-1 protease in a conserved pattern. However, how the multidrug-resistant (MDR) HIV-1 protease binds to the substrate cleavage site peptides is yet to be determined. MDR769 HIV-1 protease (resistant mutations at residues 10, 36, 46, 54, 62, 63, 71, 82, 84, and 90) was selected for present study to understand the binding to its natural substrates. MDR769 HIV-1 protease was co-crystallized with nine substrate cleavage site hepta-peptides. Crystallographic studies show that MDR769 HIV-1 protease has an expanded substrate envelope with wide open flaps. Furthermore, ligand binding energy calculations indicate weaker binding in MDR769 HIV-1 protease-substrate complexes. These results help in designing the next generation of HIV-1 protease inhibitors by targeting the MDR HIV-1 protease.  相似文献   

2.
We have shown that the interaction of pepstatin A with human immunodeficiency virus-1 protease (HIV-1 protease) can be characterized by a high-affinity mode (Ki = 478 +/- 27 nM), resulting in pure competitive inhibition of the hydrolytic activity of HIV-1 protease toward the fluorogenic substrate. Binding of pepstatin in this mode induces a blue shift in the endogenous fluorescence arising from the tryptophan residues in HIV-1 protease. This shift is maximal in the presence of 10 microM pepstatin. Haloperidol, in contrast, interacts with HIV-1 protease with weaker affinity (Ki = 19 +/- 1 microM) in a mode which results in pure noncompetitive inhibition of the hydrolytic activity of HIV-1 protease. Binding of haloperidol in this mode induces a red shift in the endogenous fluorescence arising from the tryptophan residues in HIV-1 protease. This shift is maximal in the presence of 200 microM haloperidol. Addition of both pepstatin and haloperidol at concentrations in the range of their Ki values results in additive inhibition of the hydrolytic activity of HIV-1 protease, as well as an additive effect on the tryptophan fluorescence of protease. However, at saturating concentrations of pepstatin and haloperidol, the effect of haloperidol was predominant, as measured by the changes in the intrinsic fluorescence of HIV-1 protease.  相似文献   

3.
4.
Infection of T cells with HIV-1 induces apoptosis and modulates apoptosis regulatory molecules. Similar effects occur following treatment of cells with individual HIV-1 encoded proteins. While HIV-1 protease is known to be cytotoxic, little is known of its effect on apoptosis and apoptosis regulatory molecules. The ability of HIV-1 protease to kill cells, coupled with the degenerate substrate specificity of HIV-1 protease, suggests that HIV-1 protease may activate cellular factor(s) which, in turn, induce apoptosis. We demonstrate that HIV-1 protease directly cleaves and activates procaspase 8 in T cells which is associated with cleavage of BID, mitochondrial release of cytochrome c, activation of the downstream caspases 9 and 3, cleavage of DFF and PARP and, eventually, to nuclear condensation and DNA fragmentation that are characteristic of apoptosis. The effect of HIV-1 protease is not seen in T cell extracts which have undetectable levels of procaspase 8, indicating a specificity and requirement for procaspase 8.  相似文献   

5.
Human immunodeficiency virus type 2 (HIV-2) Nef is proteolytically cleaved by the HIV-2-encoded protease. The proteolysis is not influenced by the absence or presence of the N-terminal myristoylation. The main cleavage site is located between residues 39 and 40, suggesting a protease recognition sequence, GGEY-SQFQ. As observed previously for Nef protein from HIV-1, a large, stable core domain with an apparent molecular mass of 30 kDa is produced by the proteolytic activity. Cleavage of Nef from HIV-1 in two domains by its own protease or the protease from HIV-2 is also independent of Nef myristoylation. However, processing of HIV-1 Nef by the HIV-2 protease is less selective than that by the HIV-1 protease: the obtained core fragment is heterogeneous at its N terminus and has an additional cleavage site between amino acids 99 and 100. Preliminary experiments suggest that the full-length Nef of HIV-2 and the core domain are part of the HIV-2 particles, analogous to the situation reported recently for HIV-1.  相似文献   

6.
Human immunodeficiency virus type 1 (HIV-1) and HIV-2 proteases are dimers of identical subunits. We made a construct for the expression of recombinant one-chain HIV-2 protease dimer, which, like the previously described one-chain HIV-1 protease dimer, is fully active. The constructs for the one-chain dimers of HIV-1 and HIV-2 proteases were modified to produce hybrid one-chain dimers consisting of both HIV-1 and HIV-2 protease monomers. Although the monomers share only 47.5% sequence identity, the hybrid one-chain dimers are fully active, suggesting that the folding of both HIV-1 and HIV-2 protease monomers is functionally similar.  相似文献   

7.
Human T-cell leukemia virus type 1 (HTLV-1) is associated with a number of human diseases; therefore, its protease is a potential target for chemotherapy. To compare the specificity of HTLV-1 protease with that of human immunodeficiency virus type 1 (HIV-1) protease, oligopeptides representing naturally occurring cleavage sites in various retroviruses were tested. The number of hydrolyzed peptides as well as the specificity constants suggested a substantially broader specificity of the HIV protease. Amino acid residues of HTLV-1 protease substrate-binding sites were replaced by equivalent ones of HIV-1 protease. Most of the single and multiple mutants had altered specificity and a dramatically reduced folding and catalytic capability, suggesting that mutations are not well tolerated in HTLV-1 protease. The catalytically most efficient mutant was that with the flap residues of HIV-1 protease. The inhibition profile of the mutants was also determined for five inhibitors used in clinical practice and inhibitor analogs of HTLV-1 cleavage sites. Except for indinavir, the HIV-1 protease inhibitors did not inhibit wild type and most of the mutant HTLV-1 proteases. The wild type HTLV-1 protease was inhibited by the reduced peptide bond-containing substrate analogs, whereas the mutants showed various degrees of weakened binding capability. Most interesting, the enzyme with HIV-1-like residues in the flap region was the most sensitive to the HIV-1 protease inhibitors and least sensitive to the HTLV-1 protease inhibitors, indicating that the flap plays an important role in defining the specificity differences of retroviral proteases.  相似文献   

8.
A rapid sensitive method for the quantitation in vitro of HIV-1 protease activity has been developed. A fluorogenic compound, N alpha-benzoyl-Arg-Gly-Phe-Pro-MeO-beta-naphthylamide, which contains Phe-Pro, a dipeptide bond recognized by HIV-1 protease, was used as substrate. The substrate was hydrolyzed by HIV-1 protease into a fluorescent naphthylated product (Pro-MeO-beta-naphthylamide). Fluorescence due to the release of Pro-MeO-beta-naphthylamide was measured continuously by spectrofluorometry. This oligopeptide was found to be a good substrate for HIV-1 protease. The Km and kappa cat for the hydrolysis of N alpha-benzoyl-Arg-Gly-Phe-Pro-MeO-beta- naphthylamide by HIV-1 protease were calculated to be 2.0 +/- 0.2 mM and 75 +/- 6 s-1, respectively. These values are comparable with those of other natural substrates of HIV-1 protease. The method is highly sensitive, reproducible, and suited to a variety of applications, including the analysis of large numbers of samples for detailed enzymological studies.  相似文献   

9.
10.
Dimerization of HIV-1 protease subunits is essential for its proteolytic activity, which plays a critical role in HIV-1 replication. Hence, the inhibition of protease dimerization represents a unique target for potential intervention of HIV-1. We developed an intermolecular fluorescence resonance energy transfer-based HIV-1-expression assay employing cyan and yellow fluorescent protein-tagged protease monomers. Using this assay, we identified non-peptidyl small molecule inhibitors of protease dimerization. These inhibitors, including darunavir and two experimental protease inhibitors, blocked protease dimerization at concentrations of as low as 0.01 microm and blocked HIV-1 replication with IC(50) values of 0.0002-0.48 microm. These agents also inhibited the proteolytic activity of mature protease. Other approved anti-HIV-1 agents examined except tipranavir, a CCR5 inhibitor, and soluble CD4 failed to block the dimerization event. Once protease monomers dimerize to become mature protease, mature protease is not dissociated by this dimerization inhibition mechanism, suggesting that these agents block dimerization at the nascent stage of protease maturation. The proteolytic activity of mature protease that managed to undergo dimerization despite the presence of these agents is likely to be inhibited by the same agents acting as conventional protease inhibitors. Such a dual inhibition mechanism should lead to highly potent inhibition of HIV-1.  相似文献   

11.
Abstract Processing of human immunodeficiency virus (HIV) proteins by the HIV-1 protease is essential for HIV infectivity. In addition, several studies have revealed cleavage of human proteins by this viral protease during infection; however, no large-scale HIV-1 protease degradomics study has yet been performed. To identify putative host substrates in an unbiased manner and on a proteome-wide scale, we used positional proteomics to identify peptides reporting protein processing by the HIV-1 protease, and a catalogue of over 120 cellular HIV-1 protease substrates processed in vitro was generated. This catalogue includes previously reported substrates as well as recently described interaction partners of HIV-1 proteins. Cleavage site alignments revealed a specificity profile in good correlation with previous studies, even though the ELLE consensus motif was not cleaved efficiently when incorporated into peptide substrates due to subsite cooperativity. Our results are further discussed in the context of HIV-1 infection and the complex substrate recognition by the viral protease.  相似文献   

12.
The success of highly active antiretroviral therapy (HAART) in anti-HIV therapy is severely compromised by the rapidly developing drug resistance. HIV-1 protease inhibitors, part of HAART, are losing their potency and efficacy in inhibiting the target. Multi-drug resistant (MDR) 769 HIV-1 protease (resistant mutations at residues 10, 36, 46, 54, 62, 63, 71, 82, 84, 90) was selected for the present study to understand the binding to its natural substrates. The nine crystal structures of MDR769 HIV-1 protease substrate hepta-peptide complexes were analyzed in order to reveal the conserved structural elements for the purpose of drug design against MDR HIV-1 protease. Our structural studies demonstrated that highly conserved hydrogen bonds between the protease and substrate peptides, together with the conserved crystallographic water molecules, played a crucial role in the substrate recognition, substrate stabilization and protease stabilization. In addition, the absence of the key flap-ligand bridging water molecule might imply a different catalytic mechanism of MDR769 HIV-1 protease compared to that of wild type (WT) HIV-1 protease.  相似文献   

13.
A novel strategy was used to irreversibly inhibit HIV-1 protease. The inhibitor was designed to form a disulfide bond with Cys95, present at the dimerization interface of HIV-1 protease. The inhibitor was shown to be active against HIV-1 protease with K(inact) = 3.7 microM and V(inact) = 0.012 min(-1).  相似文献   

14.
Inhibition of HIV-1 protease enzyme can render the Human Immunodeficiency Virus (HIV-1) non-infectious in vitro. Previous studies have shown that several shorter peptides were discovered as HIV-1 protease inhibitors. In this context, a series of shorter synthetic hexapeptides, Leu-Leu-Glu-Tyr-Val-Xaa (Xaa=Phe, Met, Tyr and Trp), were designed. The synthesized hexa peptides were screened for their HIV-1 protease inhibition. These peptides showed moderately good HIV-1 protease inhibition when compared to acetyl pepstatin.  相似文献   

15.
A 99-amino acid protein having the deduced sequence of the protease from human immunodeficiency virus type 2 (HIV-2) was synthesized by the solid phase method and tested for specificity. The folded peptide catalyzes specific processing of a recombinant 43-kDa GAG precursor protein (F-16) of HIV-1. Although the protease of HIV-2 shares only 48% amino acid identity with that of HIV-1, the HIV-2 enzyme exhibits the same specificity toward the HIV-1 GAG precursor. Fragments of 34, 32, 24, 10, and 9 kDa were generated from F-16 GAG incubated with the protease. N-terminal amino acid sequence analysis of proteolytic fragments indicate that cleavage sites recognized by HIV-2 protease are identical to those of HIV-1 protease. The verified cleavage sites in F-16 GAG appear to be processed independently, as indicated by the formation of the intermediate fragments P32 and P34 in nearly equal ratios. The site nearest the amino terminus is quite conserved between the two viral GAG proteins (...VSQNY-PIVQN...in HIV-1,...KGGNY-PVQHV...in HIV-2). In contrast, the putative second site (...IPFAA-AQQKG...) of HIV-2 GAG shares minimal sequence identity with site 2 of HIV-1 GAG (...SATIM-MQRGN...). These sequence variations in the substrates suggest higher order structural features that may influence recognition by the proteases. Pepstatin A inhibits HIV-2 protease, whereas 1,10-phenanthroline and phenylmethylsulfonylfluoride do not; these results are in agreement with the finding that proteases of HIV and other retroviruses are aspartyl proteases.  相似文献   

16.
The HIV-1 protease is a major target of inhibitor drugs in AIDS therapies. The therapies are impaired by mutations of the HIV-1 protease that can lead to resistance to protease inhibitors. These mutations are classified into major mutations, which usually occur first and clearly reduce the susceptibility to protease inhibitors, and minor, accessory mutations that occur later and individually do not substantially affect the susceptibility to inhibitors. Major mutations are predominantly located in the active site of the HIV-1 protease and can directly interfere with inhibitor binding. Minor mutations, in contrast, are typically located distal to the active site. A central question is how these distal mutations contribute to resistance development. In this article, we present a systematic computational investigation of stability changes caused by major and minor mutations of the HIV-1 protease. As most small single-domain proteins, the HIV-1 protease is only marginally stable. Mutations that destabilize the folded, active state of the protease therefore can shift the conformational equilibrium towards the unfolded, inactive state. We find that the most frequent major mutations destabilize the HIV-1 protease, whereas roughly half of the frequent minor mutations are stabilizing. An analysis of protease sequences from patients in treatment indicates that the stabilizing minor mutations are frequently correlated with destabilizing major mutations, and that highly resistant HIV-1 proteases exhibit significant fractions of stabilizing mutations. Our results thus indicate a central role of minor mutations in balancing the marginal stability of the protease against the destabilization induced by the most frequent major mutations.  相似文献   

17.
The effect of amino acid variability between human immunodeficiency virus type 1 (HIV-1) clades on structure and the emergence of resistance mutations in HIV-1 protease has become an area of significant interest in recent years. We determined the first crystal structure of the HIV-1 CRF01_AE protease in complex with the p1-p6 substrate to a resolution of 2.8 A. Hydrogen bonding between the flap hinge and the protease core regions shows significant structural rearrangements in CRF01_AE protease compared to the clade B protease structure.  相似文献   

18.
The monoclonal antibody 1696, elicited by HIV-1 protease, inhibits the activity of both HIV-1 and HIV-2 proteases with inhibition constants in the low nanomolar range. The antibody cross-reacts with peptides derived from the N-terminal region of both proteases. The crystal structure of the recombinant single-chain Fv fragment of 1696 complexed with an N-terminal peptide from the HIV-2 protease has been determined at 1.88A resolution. Interactions of the peptide with scFv1696 are compared with the previously reported structure of scFv1696 in complex with the corresponding peptide from HIV-1 protease. The origin of cross-reactivity of mAb1696 with HIV proteases is discussed.  相似文献   

19.
New and simple human immunodeficiency virus type 1 (HIV-1) protease expression methods in Escherichia coli were developed using the T7 phage promoter system. In order to suppress leaky HIV-1 protease expression under the control of the T7 polymerase, two new methods were tested. One involved the introduction of supplementary T7 promoter regions into host cells [E. coli BL-21(DE3)] containing the HIV-1 protease gene under the control of the T7 promoter. It was expected that the supplementary T7 promoter regions would compete with the HIV-1 protease expression vector for the T7 polymerase binding. The other involved the infection of late-log-phase cultures of E.␣coli JM109 harboring the same HIV-1 protease expression vector with the M13 phage expressing T7 polymerase. Both methods were effective, and transformants with the mature HIV-1 protease expression vector showed ten times higher HIV-1 protease activity than activities obtained with the autoprocessing vector. The expression systems described here are convenient and are also easily applicable for the expression of other proteins toxic for E. coli. Received: 5 September 1996 / Received last revision: 1 November 1996 / Accepted: 15 November 1996  相似文献   

20.
A series of HIV-1 protease inhibitors having new tetrahydrofuran P2/P2' groups have been synthesised and tested for protease inhibition and antiviral activity. Six novel 4-aminotetrahydrofuran derivatives were prepared starting from commercially available isopropylidene-alpha-D-xylofuranose yielding six symmetrical and six unsymmetrical inhibitors. Promising sub nanomolar HIV-1 protease inhibitory activities were obtained. The X-ray crystal structure of the most potent inhibitor (23, K(i) 0.25 nM) co-crystallised with HIV-1 protease is discussed and the binding compared with inhibitors 1a and 1b.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号