首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
D J Patel 《Biopolymers》1979,18(3):553-569
The duplex-to-strand transition of the self-complementary sequence dG-dC-dG-dC has been probed at the exchangeable and nonexchangeable protons and backbone phosphates by high-resolution nmr spectroscopy. The Watson-Crick imino and amino hydrogen-bonded protons, as well as the exposed amino protons, could be followed through the duplex-to-strand transition and provide information on base-pair stability at the tetranucleotide duplex level. The magnitudes of the experimental upfield nonexchangeable base-proton chemical shifts on duplex formation are consistent with calculations based on base-pair overlap geometries of the B-DNA type. The variation of the 31P chemical shifts in dG-dC-dG-dC with temperature appear to monitor changes in the ω,ω′ rotation angles about the O? P bonds in the postmelting transition temperature region. The complex formed between the antitumor anthracycline antibiotic daunomycin and the dG-dC-dG-dC duplex was probed at the nucleic acid and the antibiotic resonances as a function of temperature. The experimental complexation shifts of the observable daunomycin resonances have put constraints on possible overlap geometries between the intercalating anthracycline ring and adjacent base pairs.  相似文献   

2.
The structure of the netropsin . dG-dG-dA-dA-dT-dT-dC-dC complex (one antibiotic molecule/self-complementary octanucleodide duplex) and its dynamics as a function of temperature have been monitored by the nuclear magnetic resonances of the Watson-Crick protons, the nonexchangeable base and sugar protons and the backbone phosphates. The antibiotic forms a complex with the nucleic acid duplex at the dA . dT-containing tetranucleotide segment dA-dA-dT-dT, with slow migration amongst potential binding sites at low temperature. The downfield shifts in the exchangeable protons of netropsin on complex formation demonstrate the contributions of hydrogen-bonding interactions between the antibiotic and the nucleic acid to the stability of the complex. Complex formation results in changes in the glycosidic torsion angles of both thymidine residues and one deoxyadenosine residue as monitored by chemical shift changes in the thymine C-6 and adenine C-8 protons. The close proximity of the pyrrole rings of the antibiotic and the base-pair edges in the minor groove is manifested in the downfield shifts (0.3--0.5 ppm) of the pyrrole C-3 protons of netropsin and one adenine C-2 proton and one thymine N-3 base-pair proton on complex formation. The internucleotide phosphates of the octanucleotide undergo 31P chemical shift changes on addition of netropsin and these may reflect, in part, contributions from electrostatic interactions between the charged ends of the antibiotic and the backbone phosphates of the nucleic acid.  相似文献   

3.
Dinshaw J. Patel 《Biopolymers》1977,16(8):1635-1656
We have monitored the helix-coil transition of the self-complementary d-CpCpGpG and d-GpGpCpC sequences (20mM strand concentration) at the base pairs, sugar rings, and backbone phosphates by 360-MHz proton and 145.7-MHz phosphorus nmr spectroscopy in 0.1M phosphate solution between 5 and 95°C. The guanine 1-imino Watson-Crick hydrogen-bonded protons, characteristic of the duplex state, are observed below 10°C, with solvent exchange occurring by transient opening of the tetranucleotide duplexes. The cytosine 4-amino Watson-Crick hydrogen-bonded protons resonate 1.5 ppm downfield from the exposed protons at the same position in the tetranucleotide duplexes, with slow exchange indicative of restricted rotation about the C-N bond below 15°C. The guanine 2-amino exchangeable protons in the tetranucleotide sequence exhibit very broad resonances at low temperatures and narrow average resonances above 20°C, corresponding to intermediate and fast rotation about the C-N bond, respectively. Solvent exchange is slower at the amino protons compared to the imino protons since the latter broaden out above 10°C. The well-resolved nonexchangeable base proton chemical shifts exhibit helix-coil transition midpoints between 37 and 42°C. The transition midpoints and the temperature dependence of the chemical shifts at low temperatures were utilized to differentiate between resonances located at the terminal and internal base pairs while the H-5 and H-6 doublets of individual cytosines were related by spin decoupling studies. For each tetranucleotide duplex, the cytosine H-5 resonances exhibit the largest chemical shift change associated with the helix-coil transition, a result predicted from calculations based on nearest-neighbor atomic diamagnetic anisotropy and ring current contributions for a B-DNA duplex. There is reasonable agreement between experimental and calculated chemical shift changes for the helix-coil transition at the internal base pairs but the experimental shifts exceed the calculated values at the terminal base pairs due to end-to-end aggregation at low temperatures. Since the guanine H-8 resonances of the CpCpGpG and d-CpCpGpG sequences exhibit upfield shifts of 0.6–0.8 and <0.1 ppm, respectively, on duplex formation, these RNA and DNA tetranucleotides with the same sequence must adopt different base-pair overlap geometries. The large chemical shift changes associated with duplex formation at the sugar H-1′ triplets are not detected at the other sugar protons and emphasize the contribution of the attached base at the 1′ position. The coupling sum between the H-1′ and the H-2′ and H-2″ protons equals 15–17 Hz at all four sugar rings for the d-CpCpGpG and d-GpGpCpC duplexes (25°C), consistent with a C-3′ exo sugar ring pucker for the deoxytetranucleotides in solution. The temperature dependent phosphate chemical shifts monitor changes in the ω,ω′ angles about the O-P backbone bonds, in contrast to the base-pair proton chemical shifts, which monitor stacking interactions.  相似文献   

4.
The nonexchangeable base and sugar proton nmr resonances and the 260 and 278-nm uv-absorbance bands of the nucleic acid were utilized to monitor the temperature-dependent duplex-to-strand transition of the alternating purine–pyrimidine deoxyribopolynucleotide poly(dA-dT) in the absence and presence of ethidium bromide (EB) at phosphate/drug = 50, 28, and 15 and propidium diiodide (PI) at P/D = 50, 25, 15, 10, and 5 in 0.1 M salt between 50° and 100°C. The nmr and optical methods monitor a biphasic duplex-to strand transition for the drug–poly(dA-dT) complexes. We have monitored the dissociation of the drug from the complex at the ethidium bromide phenanthridine ring and side-chain proton nmr resonances and the propidium diiodide 494 and 535-nm uv-absorbance bands and demonstrate that dissociation of the drug corresponds to the higher temperature transition in the biphasic nucleic acid melting curves. The lower temperature cooperative transition is assigned to the opening of drug-free AT base-pair regions in the drug–poly(dA-dT) complex and exhibits an increase in transition midpoint and a decrease in cooperativity with increasing drug concentration. The higher temperature cooperative transition is assigned to the opening of AT base-pair regions centered about the bound drug in the complex and exhibits an increase in the transition midpoint on raising the drug concentration. The large upfield shifts of the phenanthridine ring (but not side chain) protons of ethidium bromide on complex formation demonstrate intercalation of the drug between base pairs of the poly(dA-dT) duplex. The nucleic acid base and sugar resonances of poly(dA-dT) in 0.1 M phosphate undergo chemical shift changes between 0° and 50°C indicative of premelting conformational transition(s).  相似文献   

5.
The exchangeable N1 imino protons of two pseudouridine (psi) bases located at adjacent internal positions within an undecamer RNA duplex (5'AUAC psi psi ACCUG/3'UAUGAAUGGUC) can report on the environment of the major groove of an A-form double-stranded nucleic acid. The psi N1 imino protons of these residues (which are not involved in interstrand Watson-Crick hydrogen bonding) are protected from chemical exchange with the solvent water and thus are observable in the proton NMR spectrum in H2O (1). These protons will exchange readily at increased pH values or upon thermal denaturation of the duplex. The longitudinal (T1) relaxation times of the psi N1 imino protons in 100 mM NaCl or in 10 mM MgCl2 and 100 mM NaCl are approximately two-fold faster than those of the psi N3 imino protons which are involved in Watson-Crick base pairing. With the addition of spermidine, the psi N1 imino protons become readily exchangeable at a temperature some 20 degrees C below the melting temperature of the duplex.  相似文献   

6.
Nuclear magnetic resonance (NMR) has been used to monitor the conformation and dynamics of the d(C1-G2-A3-T4-T5-A6-T6-A5-A4-T3-C2-G1) self-complementary dodecanucleotide duplex (henceforth called Pribnow 12-mer), which contains a TATAAT Pribnow box and a central core of eight dA X dT base pairs. The exchangeable imino and nonexchangeable base protons have been assigned from one-dimensional intra and inter base pair nuclear Overhauser effect (NOE) measurements. Premelting conformational changes are observed at all the dA X dT base pairs in the central octanucleotide core in the Pribnow 12-mer duplex with the duplex to strand transition occurring at 55 degrees C in 0.1 M phosphate solution. The magnitude of the NOE measurements between minor groove H-2 protons of adjacent adenosines demonstrates that the base pairs are propeller twisted with the same handedness as observed in the crystalline state. The thymidine imino proton hydrogen exchange at the dA X dT base pairs has been measured from saturation recovery measurements as a function of temperature. The exchange rates and activation barriers show small variations among the four different dA X dT base pairs in the Pribnow 12-mer duplex.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Structural and kinetic features of the TATA box located in the center of the alternating self-complementary d(C-G-C-G-T-A-T-A-C-G-C-G) duplex (TATA 12-mer) and d(C-G-C-G-C-G-T-A-T-A-C-G-C-G-C-G) duplex (TATA 16-mer) have been probed by high-resolution proton and phosphorus NMR spectroscopy in aqueous solution. The imino exchangeable Watson-Crick protons and the nonexchangeable base protons in the TATA box of the TATA 12-mer and TATA 16-mer duplexes have been assigned from intra and inter base pair nuclear Overhauser effect (NOE) measurements. Imino proton line-width and hydrogen exchange saturation recovery measurements demonstrate that the dA X dT base pairs in the TATA box located in the center of the TATA 12-mer and TATA 16-mer duplexes are kinetically more labile than flanking dG X dC base pairs. The proton and phosphorus NMR parameters of the TATA 12-mer monitor a cooperative premelting transition in the TATA box prior to the onset of the melting transition to unstacked strands. Phosphorus NMR studies have been unable to detect any indication of a right-handed B DNA to a left-handed Z DNA transition for the TATA 12-mer duplex in saturated NaCl solution. By contrast, we do detect the onset of the B to Z transition for the TATA 16-mer in saturated NaCl solution. Proton and phosphorus NMR studies demonstrate formation of a loop conformation with chain reversal at the TATA segment for the TATA 12-mer and TATA 16-mer duplexes on lowering the DNA and counterion concentration. The imino protons (10-11 ppm) and phosphorus resonances (3.5-4.0 ppm; 4.5-5.0 ppm) of the loop segment fall in spectral windows well resolved from the corresponding markers in fully paired segments so tha it should be possible to identify loops in longer DNA helixes. The equilibrium between the loop and fully paired duplex conformations of the TATA 12-mer and TATA 16-mer is shifted toward the latter on addition of moderate salt.  相似文献   

8.
Proton and phosphorus NMR studies are reported for the complementary d(C-A-T-G-A-G-T-A-C).d(G-T-A-C-F-C-A-T-G) nonanucleotide duplex (designated APF 9-mer duplex) which contains a stable abasic site analogue, F, in the center of the helix. This oligodeoxynucleotide contains a modified tetrahydrofuran moiety, isosteric with 2-deoxyribofuranose, which serves as a structural analogue of a natural apurinic/apyrimidinic site [Takeshita, M., Chang, C.N., Johnson, F., Will, S., & Grollman, A.P. (1987) J. Biol. Chem. 262, 10171-10179]. Exchangeable and nonexchangeable base and sugar protons, including those located at the abasic site, have been assigned in the complementary APF 9-mer duplex by recording and analyzing two-dimensional phase-sensitive NOESY data sets in H2O and D2O solution at low temperature (0 degrees C). These studies indicate that A5 inserts into the helix opposite the abasic site F14 and stacks with flanking G4.C15 and G6.C13 Watson-Crick base pairs. Base-sugar proton NOE connectivities were measured through G4-A5-G6 on the unmodified strand and between the base protons of C15 and the sugar protons of the 5'-flanking residue F14 on the modified strand. These studies establish that all glycosidic torsion angles are anti and that the helix is right-handed at and adjacent to the abasic site in the APF 9-mer duplex. Two of the 16 phosphodiester groups exhibit phosphorus resonances outside the normal spectral dispersion indicative of altered torsion angles at two of the phosphate groups in the backbone of the APF 9-mer duplex.  相似文献   

9.
Nuclear magnetic resonance (NMR) has been used to monitor the conformation and dynamics of the d-(C1-G2-A3-G4-A5-A6-T6-T5-C4-G3-C2-G1) self-complementary dodecanucleotide (henceforth called 12-mer GA) that contains a dG X dA purine-purine mismatch at position 3 in the sequence. These results are compared with the corresponding d(C-G-C-G-A-A-T-T-C-G-C-G) dodecamer duplex (henceforth called 12-mer) containing standard Watson-Crick base pairs at position 3 [Patel, D.J., Kozlowski, S.A., Marky, L.A., Broka, C., Rice, J.A., Itakura, K., & Breslauer, K.J. (1982) Biochemistry 21, 428-436]. The dG X dA interaction at position 3 was monitored at the guanosine exchangeable H-1 and nonexchangeable H-8 protons and the nonexchangeable adenosine H-2 proton. We demonstrate base-pair formation between anti orientations of the guanosine and adenosine rings on the basis of nuclear Overhauser effects (NOE) observed between the H-2 proton of adenosine 3 and the imino protons of guanosine 3 (intra base pair) and guanosines 2 and 4 (inter base pair). The dG(anti) X dA(anti) pairing should result in hydrogen-bond formation between the guanosine imino H-1 and carbonyl O-6 groups and the adenosine N-1 and NH2-6 groups, respectively. The base pairing on either side of the dG X dA pair remains intact at low temperature, but these dG X dC pairs at positions 2 and 4 are kinetically destabilized in the 12-mer GA compared to the 12-mer duplex. We have estimated the hydrogen exchange kinetics at positions 4-6 from saturation-recovery measurements on the imino protons of the 12-mer GA duplex between 5 and 40 degrees C. The measured activation energies for imino proton exchange in the 12-mer GA are larger by a factor of approximately 2 compared to the corresponding values in the 12-mer duplex. This implies that hydrogen exchange in the 12-mer GA duplex results from a cooperative transition involving exchange of several base pairs as was previously reported for the 12-mer containing a G X T wobble pair at position 3 [Pardi, A., Morden, K.M., Patel, D.J., & Tinoco, I., Jr. (1982) Biochemistry 21, 6567-6574]. We have assigned the nonexchangeable base protons by intra and inter base pair NOE experiments and monitored these assigned markers through the 12-mer GA duplex to strand transition.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
J D Puglisi  J R Wyatt  I Tinoco 《Biochemistry》1990,29(17):4215-4226
The hairpin conformation adopted by the RNA sequence 5'GCGAUUUCUGACCGCC3' has been studied by one- and two-dimensional NMR spectroscopy. Exchangeable imino spectra in 60 mM Na+ indicate that the hairpin has a stem of six base pairs (indicated by boldface type) and a loop of three nucleotides. NOESY spectra of nonexchangeable protons confirm the formation of the stem region. The duplex has an A-conformation and contains an A.C apposition; a G.U base pair closes the loop region. The stem nucleotides have C3'-endo sugar conformations, as expected of an A-form duplex, whereas the three loop nucleotides adopt C2'-endo sugar puckers. Stacking within the loop, C8 upon the sugar of U7, stabilizes the structure. The pH dependence of both the exchangeable and nonexchangeable NMR spectra is consistent with the formation of an A+.C base pair, protonated at the N1 position of adenine. The stability of the hairpin was probed by using absorbance melting curves. The hairpin structure with the A+.C base pair is about +2 kcal/mol less stable in free energy at 37 degrees C than the hairpin formed with an A.U pair replacing the A+.C pair.  相似文献   

11.
D J Patel 《Biopolymers》1976,15(3):533-558
The Watson–Crick imino and amino exchangeable protons, the nonexchangeable base and sugar protons, and the backbone phosphates for d-CpG(pCpG)n, n = 1 and 2, have been monitored by high-resolution nmr spectroscopy in aqueous solution over the temperature range 0°–90°C. The temperature dependence of the chemical shifts of the tetramer and hexamer resonances is consistent with the formation of stable duplexes at low temperature in solution. Comparison of the spectral characteristics of the tetranucleotide with those of the hexanucleotide with temperature permits the differentiation and assignment of the cytosine proton resonances on base pairs located at the end of the helix from those in an interior position. There is fraying at the terminal base pairs in the tetranucleotide and hexanucleotide duplexes. The Watson–Crick ring imino protons exchange at a faster rate than the Watson–Crick side-chain amino protons, with exchange occurring by transient opening of the double helix. The structure of the d-CpG(pCpG)n double helices has been probed by proton relaxation time measurements, sugar proton coupling constants, and the proton chemical shift changes associated with the helix–coil transition. The experimental data support a structural model in solution, which incorporates an anti conformation about the glycosyl bonds, C(3) exo sugar ring pucker, and base overlap geometries similar to the B-DNA helix. Rotational correlation times of 1.7 and 0.9 × 10?9 sec have been computed for the hexanucleotide and tetranucleotide duplexes in 0.1 M salt, D2O, pH 6.25 at 27°C. The well-resolved 31P resonances for the internucleotide phosphates of the tetramer and hexamer sequences at superconducting fields shift upfield by 0.2–0.5 ppm on helix formation. These shifts reflect a conformational change about the ω,ω′ phosphodiester bonds from gauche-gauche in the duplex structure to a distribution of gauche-trans states in the coil structure. Significant differences are observed in the transition width and midpoint of the chemical shift versus temperature profiles plotted in differentiated form for the various base and sugar proton and internucleotide phosphorous resonances monitoring the d-CpG(pCpG)n helix–coil transition. The twofold symmetry of the d-CpGpCpG duplex is removed on complex formation with the antibiotic actinomycin-D. Two phosphorous resonances are shifted downfield by ~2.6 ppm and ~1.6 ppm on formation of the 1:2 Act-D:d-CpGpCpG complex in solution. Model studies on binding of the antibiotic to dinucleotides of varying sequence indicate that intercalation of the actinomycin-D occurs at the GpC site in the d-CpGpCpG duplex and that the magnitude of the downfield shifts reflects strain at the O-P-O backbone angles and hydrogen bonding between the phenoxazone and the phosphate oxygens. Actinomycin-D is known to bind to nucleic acids that exhibit a B-DNA conformation; this suggests that the d-CpG(pCpG)n duplexes exhibit a B-DNA conformation in solution.  相似文献   

12.
The nonexchangeable base and sugar protons of the octanucleotide d(G-G-A-A-T-T-C-C) have been assigned by two-dimensional correlated (COSY) and nuclear Overhauser effect (NOESY) methods in aqueous solution. The assignments are based on distance connectivities of less than 4.5 A established from NOE effects between base and sugar protons on the same strand and occasionally between strands, as well as, coupling connectivities within the protons on each sugar ring. We observe the NOEs to exhibit directionality and are consistent with the d(G-G-A-A-T-T-C-C) duplex adopting a right-handed helix in solution. The relative magnitude of the NOEs between base and sugar H2' protons of the same and 5'-adjacent sugars characterizes the AATT segment to the B-helix type in solution.  相似文献   

13.
A study of the exchangeable ring nitrogen protons in aqueous solutions of oligonucleotide complexes involving Watson-Crick base pairs as well as Hoogsteen pairs and other nonclassical hydrogen bonding schemes shows that resolvable resonances in the low-field (-10 to -16 ppm from sodium 4,4-dimethyl-4-silapentanesulfonate) region can be detected in a variety of structures other than double stranded helices. Ring nitrogen proton resonances arising from the following hydrogen-bonding situations are reported: (1) AT and GC Watson-Crick base pairs in a self-complementary octanucleotide, dApApApGpCpTpTpT; (2) U-A-U base triples in complexes between oligo-U15 and AMP; (3) C-G-C+ base triples in complexes between oligo-C17 and GMP at acid pH; (4) s4U-A-s4U base triples in complexes between oligo-s4U15 and AMP, all of which involve both Watson-Crick and Hoogsteen base pairing to form triplexes; (5) C-C+ base pairing between protonated and unprotonated C residues in oligo-C17 at acid pH; and (6) I4 base quadruples in the four strand association among oligo-I at high salt. The behavior of the dA3G-CT3 helix is consistent with both fraying of the terminal base pairs and presence of intermediate states as the helix opens. In the monomer-oligomer complexes, under the conditions used here, the exchange appears to be governed by the dissociation rate of monomer from the complex. These findings suggest that those tertiary structure hydrogen bonds in tRNA involving ring nitrogen protons should have representative resonances in the low-field (11-16 ppm) proton NMR region in H2O.  相似文献   

14.
Two 19-base-pair oligodeoxynucleotides, analogues of one of the operators which specifically bind the repressor protein in the regulatory part of the transposon Tn10 tetracycline-resistance (tet) determinant, have been studied by 1H-NMR spectroscopy. The analogues contain a mismatch in the central base pair of the double helix (T.T or A.A). The imino protons have been assigned to the base pairs by one-dimensional NOE measurements, and the thermally induced transition from the duplex to the single strand has been followed. The cytidine amino resonances have been assigned by means of two-dimensional NOE spectroscopy in H2O. Two-dimensional phase-sensitive NOE and magnitude-correlated spectra have been recorded in 2H2O; all nonexchangeable protons, with the exception of some of H5', H5" protons, have been assigned. The NMR data made it possible to carry out a qualitative analysis of the structures of both oligodeoxynucleotides. The general structures close to B-DNA, show irregularities in the mismatch areas.  相似文献   

15.
High-resolution homonuclear and heteronuclear two-dimensional NMR studies have been carried out on the self-complementary d(C-C-G-C-G-A-A-T-T-C-C-G-G) duplex (designated GCG 13-mer) in aqueous solution. This sequence contains an extra cytidine located between residues G3 and G4 on each strand of the duplex. The exchangeable and nonexchangeable proton resonances have been assigned from an analysis of two-dimensional nuclear Overhauser enhancement (NOESY) and correlated (COSY and relay COSY) spectra for the GCG 13-mer duplex in H2O and D2O solution. The extra cytidine at the bulge site (designated CX) results in more pronounced changes in the NOE distance connectivities for the G3-CX-G4 segment centered about the CX residue compared to the C9-C10 segment on the partner strand opposite the CX residue for the GCG 13-mer duplex at 25 degrees C. The cross-peak intensities in the short mixing time NOESY spectrum also establish that all glycosidic torsion angles including that of CX are anti in the GCG 13-mer duplex at 25 degrees C. The observed chemical shift changes for the CX base protons and the G3pCX phosphorus resonance with temperature between 0 and 40 degrees C demonstrate a temperature-dependent conformational equilibrium in the premelting transition region. The NOE and chemical shift parameters establish that the predominant conformation at low temperature (0 degree C) has the extra cytidine looped out of the helix with the flanking G3.C10 and G4.C9 base pairs stacked on each other. These results support conclusions based on earlier one-dimensional NMR studies of extra cytidine containing complementary duplexes in aqueous solution [Morden, K. M., Chu, Y. G., Martin, F. H., & Tinoco, I., Jr. (1983) Biochemistry 22, 5557-5563. Woodson, S. A., & Crothers, D. M. (1987) Biochemistry 26, 904-912]. By contrast, the chemical shift and NOE parameters demonstrate that the conformational equilibrium shifts toward a structure with a stacked extra cytidine on raising the temperature to 40 degrees C prior to the helix-coil melting transition. The most downfield shifted phosphorus resonance in the GCG 13-mer duplex has been assigned to the phosphate in the C2-G3 step, and this observation demonstrates that the perturbation in the phosphodiester backbone extends to regions removed from the (G3-CX-G4).(C9-C10) bulge site.  相似文献   

16.
This paper reports on a combined two-dimensional NMR and energy minimization computational characterization of the conformation of the N-(deoxyguanosyl-8-yl)aminofluorene adduct [(AF)G] positioned across adenosine in a DNA oligomer duplex as a function of pH in aqueous solution. This study was undertaken on the d[C1-C2-A3-T4-C5-(AF)G6-C7-T8-A9-C10-C11].[G12-G13-T14 -A15-G16-A17-G18- A19-T20-G21-G22] complementary undecamer [(AF)G 11-mer duplex]. The modification of the single G6 on the pyrimidine-rich strand was accomplished by reaction of the oligonucleotide with N-acetoxy-2-(acetylamino)fluorene and subsequent deacetylation under alkaline conditions. The HPLC-purified modified strand was annealed with the unmodified purine-rich strand to generate the (AF)G 11-mer duplex. The exchangeable and nonexchangeable protons are well resolved and narrow in the NMR spectra of the (AF)G 11-mer duplex so that the base and the majority of sugar nucleic acid protons, as well as several aminofluorene ring protons, have been assigned following analysis of two-dimensional NOESY and COSY data sets at pH 6.9, 30 degrees C in H2O and D2O solution. The NOE distance constraints establish that the glycosidic torsion angle is syn at (AF)G6 and anti at A17, which results in the aminofluorene ring being positioned in the minor groove. A very large downfield shift is detected at the H2' sugar proton of (AF)G6 associated with the (AF)G6[syn].A17[anti] alignment in the (AF)G 11-mer duplex. The NMR parameters demonstrate formation of Watson-Crick C5.G18 and C7.G16 base pairs on either side of the (AF)G6[syn].A17[anti] modification site with the imino proton of G18 more stable to exchange than the imino proton of G16. Several nonexchangeable aminofluorene protons undergo large downfield shifts as do the imino and H8 protons of G16 on lowering of the pH from neutrality to acidic values for the (AF)G 11-mer duplex. Both the neutral and acidic pH conformations have been defined by assigning the NOE constraints in the [C5-(AF)G6-C7].[G16-A17-G18] segment centered about the modification site and incorporating them in distance constrained minimized potential energy calculations in torsion angle space with the DUPLEX program. A series of NOEs between the aminofluorene protons and the DNA sugar protons in the neutral pH conformation establish that the aminofluorene ring spans the minor groove and is directed toward the G16-A17-G18 sugar-phosphate backbone on the partner strand.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
A 30 nt RNA with a sequence designed to form an intramolecular triple helix was analyzed by one-and two-dimensional NMR spectroscopy and UV absorption measurements. NMR data show that the RNA contains seven pyrimidine-purine-pyrimidine base triples stabilized by Watson-Crick and Hoogsteen interactions. The temperature dependence of the imino proton resonances, as well as UV absorption data, indicate that the triple helix is highly stable at acidic pH, melting in a single sharp transition centered at 62 degrees C at pH 4.3. The Watson-Crick and Hoogsteen pairings are disrupted simultaneously upon melting. The NMR data are consistent with a structural model where the Watson-Crick paired strands form an A-helix. Results of model building, guided by NMR data, suggest a possible hydrogen bond between the 2' hydroxyl proton of the Hoogsteen strand and a phosphate oxygen of the purine strand. The structural model is discussed in terms of its ability to account for some of the differences in stability reported for RNA and DNA triple helices and provides insight into features that are likely to be important in the design of RNA binding compounds.  相似文献   

18.
Dinshaw J. Patel 《Biopolymers》1977,16(12):2739-2754
The nmr chemical shifts and line widths of the nucleic acid base and sugar proton resonances and the proflavine ring protons can be monitored through the melting transition of the proflavine + poly(dA-dT) complex, phosphate/dye (P/D) ratio = 24 and 8 in 1M salt solution. The nucleic acid and mutagen protons in the complex are in fast exchange between duplex and strand states with the midpoint of the melting transition monitored at the nucleic acid resonances increasing from 72.6°C for poly(dA-dT) to 78.1°C for the P/D = 24 complex and 83.4°C for the P/D = 8 complex in 1M salt solution. The melting transition monitored by the proflavine resonances were 80.0°C for the P/D = 24 complex and 84.3°C for the P/D = 8 complex in 1M salt solution. Since the nucleic acid is in excess at high P/D ratios, the nucleic acid transitions are an average for the opening of mutagen-free and mutagen-bound base-pair regions, while the proflavine transitions monitor the melting of mutagen-bound base-pair regions. The observed 0.75 to 0.95 ppm unfield shift at all four proflavine protons on formation of the complex with poly(dA-dT) provides direct evidence for intercalation of the mutagen between base pairs of the nucleic acid duplex. We have deduced the approximate overlap geometry between the proflavine ring and nearest-neighbor base pairs at the intercalation site from a comparison between experimental proflavine complexation shifts and those calculated for various stacking orientations. The experimental chemical shift of the poly(dA-dT) adenine H-2 resonance in the duplex state in the absence and presence of proflavine suggests that intercalation occurs preferentially at dT-dA sites. The selective chemical shift changes at the sugar H-2′,2″ and H-3′ resonances of the poly(dA-dT) duplex on complex formation demonstrates changes in the sugar pucker and/or torsion angles of the sugar phosphate backbone at the intercalation site.  相似文献   

19.
The conformation of the d(ACCCGGGT) duplex in aqueous solution   总被引:2,自引:0,他引:2  
The nonexchangeable base and sugar protons of the octanucleotide d(ACCCGGGT)2 have been assigned using two dimensional homonuclear Hartmann-Hahn relayed spectroscopy (HOHAHA), double quantum filtered homonuclear correlation spectroscopy (DQFCOSY) and nuclear Overhauser spectroscopy (NOESY) in D2O at 12 degrees C. The observed NOE's between the base protons and their own H2' protons and between the base protons and the H2' protons of the 5' adjacent nucleotide and the observed coupling constants between the deoxyribose 1' and 2',2' protons indicate that this duplex assumes a right-handed B-type helix conformation in solution.  相似文献   

20.
Near-UV difference spectral analysis of the triplex formed from d(C-T)6 and d(A-G)6.d(C-T)6 in neutral and acidic solution shows that the third strand dC residues are protonated at pH 7.0, far above their intrinsic pKa. Additional support for ion-dipole interactions between the third strand dC residues and the G.C target base pairs comes from reduced positive dependence of triplet stability on ionic strength below 0.9 M Na+, inverse dependence above 0.9 M Na+ and strong positive dependence on hydrogen ion concentration. Molecular modeling (AMBER) of C:G.C and C+:G.C base triplets with the third strand base bound in the Hoogsteen geometry shows that only the C+:G.C triplet is energetically feasible. van't Hoff analysis of the melting of the triplex and target duplex shows that between pH 5.0 and 8.5 in 0.15 M NaCl/0.005 M MgCl2 the enthalpy of melting (delta H degree obs) varies from 5.7 to 6.6 kcal.mol-1 for the duplex in a duplex mixture and from 7.3 to 9.7 kcal.mol-1 for third strand dissociation in the triplex mixture. We have extended the condensation-screening theory of Manning to pH-dependent third strand binding. In this development we explicitly include the H+ contribution to the electrostatic free energy and obtain [formula: see text]. The number of protons released in the dissociation of the third strand from the target duplex at pH 7.0, delta n2, is thereby calculated to be 5.5, in good agreement with approximately six third strand dc residues per mole of triplex. This work shows that when third strand binding requires protonated residues that would otherwise be neutral, triplex formation and dissociation are mediated by proton uptake and release, i.e., a proton switch. As a by-product of this study, we have found that at low pH the Watson-Crick duplex d(A-G)6.d(C-T)6 undergoes a transition to a parallel Hoogsteen duplex d(A-G)6.d(C(+)-T)6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号