首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rap1 and Rho small G proteins have been implicated in the neurite outgrowth, but the functional relationship between Rap1 and Rho in the neurite outgrowth remains to be established. Here we identified a potent Rho GTPase-activating protein (GAP), RA-RhoGAP, as a direct downstream target of Rap1 in the neurite outgrowth. RA-RhoGAP has the RA and GAP domains and showed GAP activity specific for Rho, which was enhanced by the binding of the GTP-bound active form of Rap1 to the RA domain. Overexpression of RA-RhoGAP induced inactivation of Rho for promoting the neurite outgrowth in a Rap1-dependent manner. Knockdown of RA-RhoGAP reduced the Rap1-induced neurite outgrowth. These results indicate that RA-RhoGAP transduces a signal from Rap1 to Rho and regulates the neurite outgrowth.  相似文献   

2.
During neurite outgrowth, Rho small G protein activity is spatiotemporally regulated to organize the neurite sprouting, extension, and branching. We have previously identified a potent Rho GTPase-activating protein (GAP), RA-RhoGAP, as a direct downstream target of Rap1 small G protein in the neurite outgrowth. In addition to the Ras-associating (RA) domain for Rap1 binding, RA-RhoGAP has the pleckstrin homology (PH) domain for lipid binding. Here, we showed that phosphatidic acid (PA) bound to the PH domain and enhanced GAP activity for Rho. RA-RhoGAP induced extension of neurite in a diacylglycerol kinase-mediated synthesis of the PA-dependent manner. Knockdown of RA-RhoGAP reduced the diacylglycerol kinase-induced neurite extension. In contrast to the effect of the RA domain, the PH domain was specifically involved in the neurite extension, not in the sprouting and branching. These results indicate that PA and Rap1 cooperatively regulate RA-RhoGAP activity for promoting neurite outgrowth.  相似文献   

3.
Fyn, a member of the Src family of tyrosine kinases, is implicated in both brain development and adult brain function. In the present study, we identified a Rho GTPase-activating protein (GAP), TCGAP (Tc10/Cdc42 GTPase-activating protein), as a novel Fyn substrate. TCGAP interacted with Fyn and was phosphorylated by Fyn, with Tyr-406 in the GAP domain as a major Fyn-mediated phosphorylation site. Fyn suppressed the GAP activity of wild-type TCGAP but not the Y406F mutant of TCGAP in a phosphorylation-dependent manner, suggesting that Fyn-mediated Tyr-406 phosphorylation negatively regulated the TCGAP activity. In situ hybridization analyses showed that TCGAP mRNA was expressed prominently in both immature and adult mouse brain, with high levels in cortex, corpus striatum, hippocampus, and olfactory bulb. Overexpression of wild-type TCGAP in PC12 cells suppressed nerve growth factor-induced neurite outgrowth, whereas a GAP-defective mutant of TCGAP enhanced the neurite outgrowth. Nerve growth factor enhanced tyrosine phosphorylation of TCGAP through activation of Src family kinases. These results suggest that TCGAP is involved in Fyn-mediated regulation of axon and dendrite outgrowth.  相似文献   

4.
Glial cell line-derived neurotrophic factor (GDNF) was originally recognized for its ability to promote survival of midbrain dopaminergic neurons, but it has since been demonstrated to be crucial for the survival and differentiation of many neuronal subpopulations, including motor neurons, sympathetic neurons, sensory neurons and enteric neurons. To identify possible effectors or regulators of GDNF signaling, we performed a yeast two-hybrid screen using the intracellular domain of RET, the common signaling receptor of the GDNF family, as bait. Using this approach, we identified Rap1GAP, a GTPase-activating protein (GAP) for Rap1, as a novel RET-binding protein. Endogenous Rap1GAP co-immunoprecipitated with RET in neural tissues, and RET and Rap1GAP were co-expressed in dopaminergic neurons of the mesencephalon. In addition, overexpression of Rap1GAP attenuated GDNF-induced neurite outgrowth, whereas suppressing the expression of endogenous Rap1GAP by RNAi enhanced neurite outgrowth. Furthermore, using co-immunoprecipitation analyses, we found that the interaction between RET and Rap1GAP was enhanced following GDNF treatment. Mutagenesis analysis revealed that Tyr981 in the intracellular domain of RET was crucial for the interaction with Rap1GAP. Moreover, we found that Rap1GAP negatively regulated GNDF-induced ERK activation and neurite outgrowth. Taken together, our results suggest the involvement of a novel interaction of RET with Rap1GAP in the regulation of GDNF-mediated neurite outgrowth.  相似文献   

5.
Lin-11, Isl-1 and Mec-3 (LIM) kinases are serine/threonine kinases that phosphorylate cofilin, an actin depolymerizing protein. LIM kinases have a highly modular structure composed of two N-terminal LIM domains (LIM 1/2), a PSD-95, Dlg and ZO-1 (PDZ) domain and a C-terminal protein kinase domain. Here, we overexpressed individual domains of mouse LIM kinase 1 (LIMK1) in PC12 cells and investigated their effects on neurite outgrowth. Although none of the LIMK1 domains had an effect on spontaneous neurite outgrowth, the N-terminal LIM 1/2 domains strongly inhibited differentiation of PC12 cells after stimulation with both nerve growth factor (NGF) and the Rho-kinase inhibitor Y-27632. In contrast, the overexpressed PDZ domain reduced neurite outgrowth only when differentiation had been induced by Y-27632, but not by NGF. Our data suggest that the different non-catalytic N-terminal domains of LIMK1 contribute to the regulation of neurite extension by using distinct signal transduction pathways.  相似文献   

6.
7.
Activation of the RhoA-Rho kinase (ROCK) pathway stimulates actomyosin-driven contractility in many cell systems, largely through ROCK-mediated inhibition of myosin II light chain phosphatase. In neuronal cells, the RhoA-ROCK-actomyosin pathway signals cell rounding, growth cone collapse, and neurite retraction; conversely, inhibition of RhoA/ROCK promotes cell spreading and neurite outgrowth. The actin-binding protein p116(Rip), whose N-terminal region bundles F-actin in vitro, has been implicated in Rho-dependent neurite remodeling; however, its function is largely unknown. Here, we show that p116(Rip), through its C-terminal coiled-coil domain, interacts directly with the C-terminal leucine zipper of the regulatory myosin-binding subunits of myosin II phosphatase, MBS85 and MBS130. RNA interference-induced knockdown of p116(Rip) inhibits cell spreading and neurite outgrowth in response to extracellular cues, without interfering with the regulation of myosin light chain phosphorylation. We conclude that p116(Rip) is essential for neurite outgrowth and may act as a scaffold to target the myosin phosphatase complex to the actin cytoskeleton.  相似文献   

8.
The Slit-Robo GTPase-activating proteins (srGAPs) are important multifunctional adaptor proteins involved in various aspects of neuronal development, including axon guidance, neuronal migration, neurite outgrowth, dendritic morphology and synaptic plasticity. Among them, srGAP3, also named MEGAP (Mental disorder-associated GTPase-activating protein), plays a putative role in severe mental retardation. SrGAP3 expression in ventricular zones of neurogenesis indicates its involvement in early stage of neuronal development and differentiation. Here, we show that overexpression of srGAP3 inhibits VPA (valproic acid)-induced neurite initiation and neuronal differentiation in Neuro2A neuroblastoma cells, whereas knockdown of srGAP3 facilitates the neuronal differentiation in this cell line. In contrast to the wild type, overexpression of srGAP3 harboring an artificially mutation R542A within the functionally important RhoGAP domain does not exert a visible inhibitory effect on neuronal differentiation. The endogenous srGAP3 selectively binds to activated form of Rac1 in a RhoGAP pull-down assay. We also show that constitutively active (CA) Rac1 can rescue the effect of srGAP3 on attenuating neuronal differentiation. Furthermore, change in expression and localization of endogenous srGAP3 is observed in neuronal differentiated Neuro2A cells. Together, our data suggest that srGAP3 could regulate neuronal differentiation in a Rac1-dependent manner.  相似文献   

9.
Three-dimensional neurite outgrowth rates within fibrin matrices that contained variable amounts of RGD peptides were shown to depend on adhesion site density and affinity. Bi-domain peptides with a factor XIIIa substrate in one domain and a RGD sequence in the other domain were covalently incorporated into fibrin gels during coagulation through the action of the transglutaminase factor XIIIa, and the RGD-dependent effect on neurite outgrowth was quantified, employing chick dorsal root ganglia cultured two- and three-dimensionally within the modified fibrin. Two separate bi-domain peptides were synthesized, one with a lower binding affinity linear RGD domain and another with a higher binding affinity cyclic RGD domain. Both peptides were cross-linked into fibrin gels at concentrations up to 8.2 mol of peptide/mol of fibrinogen, and their effect on neurite outgrowth was measured. Both two- and three-dimensional neurite outgrowth demonstrated a bi-phasic dependence on RGD concentration for both the linear and cyclic peptide, with intermediate adhesion site densities yielding maximal neurite extension and higher densities inhibiting outgrowth. The adhesion site density that yielded maximal outgrowth depended strongly on adhesion site affinity in both two and three dimensions, with lower densities of the higher affinity ligand being required (0.8-1.7 mol/mol for the linear peptide versus 0.2 mol/mol for the cyclic peptide yielding maximum neurite outgrowth rates in three-dimensional cultures).  相似文献   

10.
The Src homology 2 (SH2) domain adaptor protein Shb has been shown to transmit NGF- and FGF-2-dependent differentiation signals in PC12 cells. To study if this involves signaling through the small GTPase Rap1, Rap1 activity was assessed in Shb-overexpressing PC12 cells. We demonstrate that NGF and EGF induce Rap1 activation in PC12-Shb cells, while FGF-2 fails to do so. However, PC12 cells expressing Shb with an inactivated SH2 domain do not respond to NGF stimulation with Rap1 activation. The CrkII SH2 domain interacts with Shb and a 130- to 135-kDa phosphotyrosine protein present mainly in PC12-Shb cells and these interactions may thus relate to the effect of Shb on Rap1 activation. Transient expression of RalGDS-RBD or Rap1GAP to block the Rap1 pathway reduces the NGF-dependent neurite outgrowth in PC12-Shb cells. These results suggest a role of Shb in NGF-dependent Rap1 signaling and this pathway may be of significance for neurite outgrowth under certain conditions.  相似文献   

11.
How vesicular transport participates in neurite outgrowth is still poorly understood. Neurite outgrowth is not sensitive to tetanus neurotoxin thus does not involve synaptobrevin-mediated vesicular transport to the plasma membrane of neurons. Tetanus neurotoxin-insensitive vesicle-associated membrane protein (TI-VAMP) is a vesicle-SNARE (soluble N-ethylmaleimide-sensitive fusion protein [NSF] attachment protein [SNAP] receptor), involved in transport to the apical plasma membrane in epithelial cells, a tetanus neurotoxin-resistant pathway. Here we show that TI-VAMP is essential for vesicular transport-mediating neurite outgrowth in staurosporine-differentiated PC12 cells. The NH(2)-terminal domain, which precedes the SNARE motif of TI-VAMP, inhibits the association of TI-VAMP with synaptosome-associated protein of 25 kD (SNAP25). Expression of this domain inhibits neurite outgrowth as potently as Botulinum neurotoxin E, which cleaves SNAP25. In contrast, expression of the NH(2)-terminal deletion mutant of TI-VAMP increases SNARE complex formation and strongly stimulates neurite outgrowth. These results provide the first functional evidence for the role of TI-VAMP in neurite outgrowth and point to its NH(2)-terminal domain as a key regulator in this process.  相似文献   

12.
N-methyl-d-aspartate (NMDA) receptors regulate structural plasticity by modulating actin organization within dendritic spines. Herein, we report identification and characterization of p250GAP, a novel GTPase-activating protein for Rho family proteins that interacts with the GluRepsilon2 (NR2B) subunit of NMDA receptors in vivo. The p250GAP mRNA was enriched in brain, with high expression in cortex, corpus striatum, hippocampus, and thalamus. Within neurons, p250GAP was highly concentrated in the postsynaptic density and colocalized with the GluRepsilon2 (NR2B) subunit of NMDA receptors and with postsynaptic density-95. p250GAP promoted GTP hydrolysis of Cdc42 and RhoA in vitro and in vivo. When overexpressed in neuroblastoma cells, p250GAP suppressed the activities of Rho family proteins, which resulted in alteration of neurite outgrowth. Finally, NMDA receptor stimulation led to dephosphorylation and redistribution of p250GAP in hippocampal slices. Together, p250GAP is likely to be involved in NMDA receptor activity-dependent actin reorganization in dendritic spines.  相似文献   

13.
Cytokinesis in animal cells is mediated by a cortical actomyosin-based contractile ring. The GTPase RhoA is a critical regulator of this process as it activates both nonmuscle myosin and a nucleator of actin filaments [1]. The site at which active RhoA and its effectors accumulate is controlled by the microtubule-based spindle during anaphase [2]. ECT-2, the guanine nucleotide exchange factor (GEF) that activates RhoA during cytokinesis, is regulated by phosphorylation and subcellular localization [3-5]. ECT2 localization depends on interactions with CYK-4/MgcRacGAP, a Rho GTPase-activating protein (GAP) domain containing protein [5, 6]. Here we show that, contrary to expectations, the Rho GTPase-activating protein (GAP) domain of CYK-4 promotes activation of RhoA during cytokinesis. Furthermore, we show that the primary phenotype caused by mutations in the GAP domain of CYK-4 is not caused by ectopic activation of CED-10/Rac1 and ARX-2/Arp2. However, inhibition of CED-10/Rac1 and ARX-2/Arp2 facilitates ingression of weak cleavage furrows. These results demonstrate that?a GAP domain can contribute to activation of a small GTPase. Furthermore, cleavage furrow ingression is sensitive to the balance of contractile forces and cortical tension.  相似文献   

14.
Dihydropyrimidinase-like 3 (DPYSL3) and GAP43 are both involved in neurite outgrowth, a crucial process for the differentiation of neurons. The present study shows for the first time that DPYSL3 co-localizes with GAP43 in primary cortical neurons. Further co-immunoprecipitation and overlay assay showed the ability of both recombinant and endogenous DPYSL3 to bind GAP43, indicating a specific interaction between DPYSL3 and GAP43 in primary cortical neurons.  相似文献   

15.
The small GTP-binding protein Rho has been implicated in the control of neuronal morphology. In N1E-115 neuronal cells, the Rho-inactivating C3 toxin stimulates neurite outgrowth and prevents actomyosin-based neurite retraction and cell rounding induced by lysophosphatidic acid (LPA), sphingosine-1-phosphate, or thrombin acting on their cognate G protein–coupled receptors. We have identified a novel putative GDP/GTP exchange factor, RhoGEF (190 kD), that interacts with both wild-type and activated RhoA, but not with Rac or Cdc42. RhoGEF, like activated RhoA, mimics receptor stimulation in inducing cell rounding and in preventing neurite outgrowth. Furthermore, we have identified a 116-kD protein, p116Rip, that interacts with both the GDP- and GTP-bound forms of RhoA in N1E-115 cells. Overexpression of p116Rip stimulates cell flattening and neurite outgrowth in a similar way to dominant-negative RhoA and C3 toxin. Cells overexpressing p116Rip fail to change their shape in response to LPA, as is observed after Rho inactivation. Our results indicate that (a) RhoGEF may link G protein–coupled receptors to RhoA activation and ensuing neurite retraction and cell rounding; and (b) p116Rip inhibits RhoA-stimulated contractility and promotes neurite outgrowth.  相似文献   

16.
17.
G F Xu  B Lin  K Tanaka  D Dunn  D Wood  R Gesteland  R White  R Weiss  F Tamanoi 《Cell》1990,63(4):835-841
Sequencing of the neurofibromatosis gene (NF1) revealed a striking similarity among NF1, yeast IRA proteins, and mammalian GAP (GTPase-activating protein). Using both genetic and biochemical assays, we demonstrate that this homology domain of the NF1 protein interacts with ras proteins. First, expression of this NF1 domain suppressed the heat shock-sensitive phenotype of yeast ira1 and ira2 mutants. Second, this NF1 domain, after purification as a glutathione S-transferase (GST) fusion protein, strongly stimulated the GTPase activity of yeast RAS2 and human H-ras proteins. The GST-NF1 protein, however, did not stimulate the GTPase activity of oncogenic mutant ras proteins, H-rasVal-12 and yeast RAS2Val-19 mutants, or a yeast RAS2 effector mutant. These results establish that this NF1 domain has ras GAP activity similar to that found with IRA2 protein and mammalian GAP, and therefore may also regulate ras function in vivo.  相似文献   

18.
SCO-spondin is a newly identified protein that is strongly expressed in the subcommissural organ (SCO), an ependymal differentiation of the brain. When released into the cerebrospinal fluid at the entrance to the Sylvian aqueduct, the glycoproteins condense and form a thread-like structure, Reissner's fiber (RF). To analyze the role of SCO-spondin on neuronal development, we studied the effects induced by an oligopeptide derived from a thrombospondin type 1 repeat (TSR) of SCO-spondin on neuroblastoma B104 cells and compared them with the effects of soluble RF material containing complete SCO-spondin proteins. In low density cell culture, the TSR peptide first induced a notable flattening of cells accompanied by increased neurite outgrowth. Grouping of these differentiated B104 cells, which later formed dense aggregates, was then observed with increasing time in culture. Soluble RF material induced similar morphological changes and neurite-promoting effects on B104 cells, although the cells remained evenly distributed throughout the culture time and no aggregates were visible. In high-density cell culture, both TSR peptide and RF material induced prominent neurite outgrowth and subsequent rapid cell aggregation. Whereas soluble RF material inhibited cell proliferation, no respective effect was observed in the presence of the TSR peptide. A direct interaction of TSR peptide and soluble RF material with a B104 cell binding site was revealed by increased B104 cell metabolic activity by flow cytometry.  相似文献   

19.
It has been proposed that the cortical actin filament networks act as a cortical barrier that must be reorganized to enable docking and fusion of the synaptic vesicles with the plasma membranes. We identified a novel neuron-associated developmentally regulated protein, designated as Nadrin. Expression of Nadrin is restricted to neurons and correlates well with the differentiation of neurons. Nadrin has a unique structure; it contains a GTPase-activating protein (GAP) domain for Rho family GTPases, a potential coiled-coil domain, and a succession of 29 glutamines. In vitro the GAP domain activates RhoA, Rac1, and Cdc42 GTPases. Expression of Nadrin in NIH3T3 cells markedly reduced the number of the actin stress fibers and the formation of the ruffled membranes, suggesting that Nadrin regulates actin filament reorganization. In PC12 cells, Nadrin colocalized with synaptotagmin in the neurite termini and also with cortical actin filaments in the subplasmalemmal regions. Expression of Nadrin or its mutant composed of the coiled-coil and GAP domain enhanced Ca(2+)-dependent exocytosis of PC12 cells, but a mutant lacking the GAP domain inhibited exocytosis. These results suggest that Nadrin plays a role in regulating Ca(2+)-dependent exocytosis, most likely by catalyzing GTPase activity of Rho family proteins and by inducing the reorganization of the cortical actin filaments.  相似文献   

20.
Inactivation of Rho GTPases inhibited the neurite outgrowth of PC12 cells. The role of Cdc42 in neurite outgrowth was then studied by selective inhibition of Cdc42 signals. Overexpression of ACK42, Cdc42 binding domain of ACK-1, inhibited NGF-induced neurite outgrowth in PC12 cells. ACK42 also inhibited the neurite outgrowth of PC12 cells induced by constitutively activated mutant of Cdc42, but not Rac. These results suggest that Cdc42 plays an important role in mediating NGF-induced neurite outgrowth of PC12 cells. Inhibition of neurite outgrowth was also demonstrated using a cell permeable chimeric protein, penetratin-ACK42. A dominant negative mutant of Rac, RacN17 inhibited Cdc42-induced neurite outgrowth of PC12 cells suggesting that Rac acts downstream of Cdc42. Further studies, using primary-cultures of rat cerebellar granule neurons, showed that Cdc42 is also involved in the neurite outgrowth of cerebellar granule neurons. Both penetratin-ACK42 and Clostridium difficile toxin B, which inactivates all members of Rho GTPases strongly inhibited the neurite outgrowth of cerebellar granule neurons. These results show that Cdc42 plays a similar and essential role in the development of neurite outgrowth of PC12 cells and cerebellar granule neurons. These results provide evidence that Cdc42 produces signals that are essential for the neurite outgrowth of PC12 cells and cerebellar granule neurons. These authors contributed equally  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号