首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Poa alpina var. vivipara L. was grown in an atmosphere containingeither 340 or 680 µmol CO2 mol–1 within controlledenvironment chambers. The available nutrient regime was variedby altering the supply of nitrogen and phosphorus within a completenutrient solution. At a high, but not low, N and P supply regime,elevated CO2 markedly increased growth. Differences betweennutrient supply, but not atmospheric CO2 concentration, alteredthe allometric relations between root and shoot. Net photosynthesisof mature leaf blades and leaf N and P concentration were reducedin plants grown at the elevated CO2 concentration. The question was asked: is it possible to ascribe all of theseeffects to elevated CO2 or are some due to nutrient deficiencycaused by dilution with excess carbon? Several criteria, includingthe nutrient content of sink tissue, root:shoot allometry andthe use of divalent cations to estimate integrated water flowsare suggested in order to make this distinction. It is concludedthat only at a low supply of N and P1 and elevated CO2 concentration,was low leaf N concentration due to induced nutrient deficiency.The data are consistent with a model where the capacity of sinksto use photosynthetically assimilated carbon sets both the rateof import into those sinks (and thus rate of export from sourceleaves) and the rate of photosynthesis of source leaves themselves. Key words: Poa alpina L., growth, photosynthesis, carbohydrate, export, nitrogen, phosphorus  相似文献   

2.
Effects of CO2 Enrichment on Four Poplar Clones. I. Growth and Leaf Anatomy   总被引:2,自引:0,他引:2  
The poplar clones Columbia River, Beaupre, Robusta and Raspaljehave been investigated under the present (350 µmol mol–1)and double the present (700 µmol mol–1) atmosphericCO2 concentration. Cuttings were planted in pots and were grownin open-top chambers inside a glasshouse for 92 d. The number of leaves, total length of stem, total leaf area,overall growth rate, total leaf, stem and root d. wt respondedpositively to increased CO2 but the leaf size and biomass allocationshowed no change with CO2 enrichment. Beaupre and Robusta showeda larger growth response than either Columbia River or Raspalje. The effects of CO2 enrichment were restricted to the early phaseof growth at the beginning of the growth season. Leaf cell numbers in all the clones were not affected by CO2enrichment. Leaf thickness was affected; this was mainly theresult of larger mesophyll cells and more extensive intercellularspaces. Poplar clones, CO2 enrichment, growth, leaf anatomy, leaf cell number  相似文献   

3.
The construction and mode of operation of six daylit assimilationchambers and the methods used to measure canopy photosynthesisand radiation interception are described. The chambers havea cuboid plant space, with sides 1.2 m long, in which temperaturecan be controlled from ambient to 30 °C with a temporalvariation of ±0.5 °C. Conductimetric controllersmaintain CO2 concentration in the chambers within ±5per cent of the desired values. The amount of CO2 injected andother variables needed to relate mean CO2 assimilation ratesto mean radiation flux density over successive 10 min intervalsthroughout the day are recorded on punched tape for subsequentcomputer processing. The chambers have limitations in the number,range and variability of the environmental factors controlledbut they cost approximately one tenth as much as commercialdaylit cabinets and provide adequate, reproducible data formodelling many aspects of crop growth.  相似文献   

4.
Two common tallgrass prairie species, Andropogon gerardii, thedominant C4 grass in this North American grassland, and Salviapitcheri, a C3 forb, were exposed to ambient and elevated (twiceambient) CO2 within open-top chambers throughout the 1993 growingseason. After full canopy development, stomatal density on abaxialand adaxial surfaces, guard cell length and specific leaf mass(SLM; mg cm-2) were determined for plants in the chambers aswell as in adjacent unchambered plots. Record high rainfallamounts during the 1993 growing season minimized water stressin these plants (leaf xylem pressure potential was usually >-1·5 MPa in A. gerardii) and also minimized differencesin water status among treatments. In A. gerardii, stomatal densitywas significantly higher (190 ± 7 mm-2; mean ±s.e.) in plants grown outside of the chambers compared to plantsthat developed inside the ambient CO2 chambers (161 ±5 mm-2). Thus, there was a significant 'chamber effect' on stomataldensity. At elevated levels of CO2, stomatal density was evenlower (P < 0·05; 121 ± 5 mm-2). Most stomatawere on abaxial leaf surfaces in this grass, but the ratio ofadaxial to abaxial stomatal density was greater at elevatedlevels of CO2. In S. pitcheri, stomatal density was also significantlylower when plants were grown in the open-top chambers (235 ±10 mm-2 outside vs. 140 ± 6 mm-2 in the ambient CO2 chamber).However, stomatal density was greater at elevated CO2 (218 ±12 mm-2) compared to plants from the ambient CO2 chamber. Theratio of stomata on adaxial vs. abaxial surfaces did not varysignificantly in this herb. Guard cell lengths were not significantlyaffected by growth in the chambers or by elevated CO2 for eitherspecies. Growth within the chambers resulted in lower SLM inS. pitcheri, but CO2 concentration had no effect. In A. gerardii,SLM was lower at elevated CO2. These results indicate that stomataland leaf responses to elevated CO2 are species specific, andreinforce the need to assess chamber effects along with treatmenteffects (CO2) when using open-top chambers.Copyright 1994, 1999Academic Press Andropogon gerardii, elevated CO2, Salvia pitcheri, stomatal density, tallgrass prairie  相似文献   

5.
Plants of Phaseolus vulgaris L were grown from seed in open-topgrowth chambers at present day (350 µmol mol–1)and double the present day (700 µmol mol–1) atmosphericCO2 concentration with either low (L, without additional nutrientsolution) or relatively high (H, with additional nutrient solution)nutrient supply Measurements of assimilation rate, stomatalconductance and water use efficiency were started 17 d aftersowing on each fully expanded, primary leaf of three plantsper treatment Measurements were made in external CO2 concentrations(C2) of 200, 350, 450, 550 and 700 µmol mol–1 andrelated to both Ca and to C1, the mean intercellular space CO2concentration Fully adjusted, steady state measurements weremade after approx 2 h equilibration at each CO2 concentration The rate of CO2 assimilation by leaves increased and stomatalconductance decreased similarly over the range of Ca or C1 inall four CO2 and nutrient supply treatments but both assimilationrate and stomatal conductance were higher in the high nutrientsupply treatment than in the low nutrient treatment The relationbetween assimilation rate or stomatal conductance and C1 wasnot significantly different amongst plants grown in present-dayor elevated CO2 concentration in either nutrient supply treatment,i e there was no evidence of down regulation of photosynthesisor stomatal response Increase in CO2 concentration from 350to 700 µmol mol–1 doubled water use efficiency ofindividual leaves in the high nutrient supply treatment andtripled water use efficiency in the low nutrient supply treatment The results support the hypothesis that acclimation phenomenaresult from unbalanced growth that occurs after the seed reservesare exhausted, when the supply of resources becomes growth limiting CO2 enrichment, Phaseolus vulgaris L., net CO2 assimilation rate, stomatal conductance, water use efficiency  相似文献   

6.
Plants of Phaseolus vulgaris were grown from seed in open-topgrowth chambers at the present (P, 350 µmol mol–1)atmospheric CO2 concentration and at an elevated (E, 700 µmolmol–1) CO2 concentration, and at low (L, without additionalnutrient solution) and high (H, with additional nutrient solution)nutrient supply for 28 d The effects of CO2 and nutrient availabilitywere examined on growth, morphological and biochemical characteristics Leaf area and dry mass were significantly increased by CO2 enrichmentand by high nutrient supply Stomatal density, stomatal indexand epidermal cell density were not affected by elevated CO2concentration or by nutrient supply Leaf thickness respondedpositively to CO2 increasing particularly in mesophyll areaas a result of cell enlargement Intercellular air spaces inthe mesophyll decreased slightly in plants grown in elevatedCO2 Leaf chlorophyll content per unit area or dry mass was significantlylower in elevated CO2 grown plants and increased significantlywith increasing nutrient availability The content of reducingcarbohydrates of leaves, stem, and roots was not affected byCO2 but was significantly increased by nutrient addition inall plant parts Starch content in leaves and stem was significantlyincreased by elevated CO2 concentration and by high nutrientsupply Phaseolus vulgaris, elevated atmospheric CO2, CO2-nutrient interaction, stomatal density, leaf anatomy, chlorophyll, carbohydrates, starch  相似文献   

7.
Two Phaseolus vulgaris L. cultivars were grown at 20/15, 25/20,and 30/25 °C day/night temperatures in growth chambers witha 16 h thermoperiod corresponding to the photoperiod. When thefirst trifoliolate leaf was fully expanded rates of CO2 exchange(CER) were measured at 27 °C and saturating light usinginfrared gas analysis. Stomatal (rs) and mesophyll resistances,CO2 compensation points, activities of the enzymes ribulosebisphosphate carboxylase (RuBPCase), glycolate oxidase (GAO),malate dehydrogenase (MDH), and fructose-1, 6 diphosphate (FDP),chlorophyll content, Hill activities, and leaf anatomy at boththe light and electron microscope level were also investigatedin these leaves. Rates of CO2 exchange in the light, transpiration rate, andchlorophyll content increased with increasing growth temperaturewhile leaf thickness, specific leaf weight, RuBPCase activity,compensation point, and stomatal resistance decreased. Mesophyllresistance also decreased when calculated assuming zero chloroplastCO2 concentration (rm, o), but not when calculated assuminga chloroplast CO2 concentration equal to the CO2 compensationconcentration (rm, g). Average leaf size was maximal in 25/20°C plants while dark respiration, MDH activity, stomataldensity, and starch were minimal. The activities of GAO andFDP and Hill activity were not affected by temperature pretreatment.  相似文献   

8.
在高CO2浓度下生长的小麦对棉铃虫生长发育和繁殖的影响   总被引:7,自引:3,他引:4  
陈法军  吴刚  戈峰 《昆虫学报》2004,47(6):774-779
通过室内饲养实验研究了在高CO2浓度(738.8±25.7μL/L)中生长的小麦对棉铃虫 Helicoverpa armigera (Hübner)生长发育,繁殖以及营养效应的影响。结果表明: (1)取食高CO2浓度大气中生长的麦粒的棉铃虫对食料的取食量和粪便排泄量增加,与对照相比,取食量和粪便排泄量分别增加46.3%(P<0.05)和37.8%;(2)大气CO2浓度增加影响了麦粒中的营养成分的含量,其中,可溶性蛋白、游离氨基酸、葡萄糖和总糖的含量及碳氮比(C∶N)都显著增加,果糖和粗蛋白的含量都显著降低;(3)大气 CO2浓度升高所导致的麦粒营养成分的变化影响了棉铃虫幼虫的食物利用效率,与对照组相比,棉铃虫幼虫对食物的毛转化率和净转化率分别降低27.2%和25.4%,对食物的相对取食率则显著提高58.8%(P < 00.1)。据此推测,未来高CO2浓度的大气环境会降低春小麦的营养价值,从而影响棉铃虫的生长发育,加重其对小麦的危害。  相似文献   

9.
Young individuals of a single clone of black cottonwood, in Iceland, were exposed for 3 years to elevated atmospheric CO2 concentrations [CO2] in whole-tree chambers at natural and high nutrient availability. No treatment effects were found at bud break or the start of shoot extension in spring. Autumn phenology was, however, affected both by elevated [CO2] and changes in nutrient status. The time of annual growth cessation was linearly related to leaf nitrogen concentration, irrespective of CO2 treatment. At low (natural) nutrient availability, elevated [CO2] accelerated growth cessation and bud set, which reduced the period of active growth. An earlier and more pronounced leaf senescence and corresponding loss of photosynthetic capacity further decreased carbon acquisition in elevated [CO2]. The negative [CO2] effect on duration of shoot extension and leaf senescence existed, but was not as pronounced, when trees grew at higher nutrient availability. Improved nutrient availability extended the shoot extension period and delayed leaf senescence. It is suggested that trees grown in elevated [CO2] altered their autumn phenology as an effect of a signal similar to that in trees growing at low nutrient availability, i.e. an imbalance between carbon and nitrogen sources. These alterations in autumn phenology may be important when predicting how trees will grow in a future CO2 environment.  相似文献   

10.
Scots pine (Pinus sylvestris L.) seedlings were grown for 3years in the ground in open top chambers and exposed to twoconcentrations of atmospheric CO2(ambient or ambient + 400 µmol mol-1) without addition of nutrients and water. Biomassproduction (above-ground and below-ground) and allocation, aswell as canopy structure and tissue nitrogen concentrationsand contents, were examined by destructive harvest after 3 years.Elevated CO2increased total biomass production by 55%, reducedneedle area and needle mass as indicated, respectively, by lowerleaf area ratio and leaf mass ratio. A relatively smaller totalneedle area was produced in relation to fine roots under elevatedCO2. The proportion of dry matter in roots was increased byelevated CO2, as indicated by increased root-to-shoot ratioand root mass ratio. Within the root system, there was a significantshift in the allocation towards fine roots. Root litter constituteda much higher fraction of fine roots in trees grown in the elevatedCO2than in those grown in ambient CO2. Growth at elevated CO2causeda significant decline in nitrogen concentration only in theneedles, while nitrogen content significantly increased in branchesand fine roots (with diameter less than 1 mm). There were nochanges in crown structure (branch number and needle area distribution).Based upon measurements of growth made throughout the 3 years,the greatest increase in biomass under elevated CO2took placemainly at the beginning of the experiment, when trees grownin elevated CO2had higher relative growth rates than those grownunder ambient CO2; these differences disappeared with time.Symptoms of acclimation of trees to growth in the elevated CO2treatmentwere observed and are discussed. Copyright 2000 Annals of BotanyCompany Elevated CO2, Pinus sylvestris, biomass production, allocation, fine roots, root litter, crown structure, nitrogen, C/N ratio  相似文献   

11.
Pascopyrum smithii (C3) andBouteloua gracilis (C4) are importantforage grasses native to the Colorado shortgrass steppe. Thisstudy investigated photosynthetic responses of these grassesto long-term CO2enrichment and temperature in relation to leafnonstructural carbohydrate (TNC) and [N]. Glasshouse-grown seedlingswere transferred to growth chambers and grown for 49 d at twoCO2concentrations (380 and 750 µmol mol-1) at 20 and 35°C, and two additional temperatures (25 and 30 °C) at750 µmol mol-1CO2. Leaf CO2exchange rate (CER) was measuredat a plant's respective growth temperature and at two CO2concentrationsof approx. 380 and 700 µmol mol-1. Long-term CO2enrichmentstimulated CER in both species, although the response was greaterin the C3,P. smithii . Doubling the [CO2] from 380 to 750 µmolmol-1stimulated CER ofP. smithii slightly more in plants grownand measured at 30 °C compared to plants grown at 20, 25or 35 °C. CO2-enriched plants sometimes exhibited lowerCER when compared to ambient-grown controls measured at thesame [CO2], indicating photosynthetic acclimation to CO2growthregime. InP. smithii , such reductions in CER were associatedwith increases in TNC and specific leaf mass, reductions inleaf [N] and, in one instance, a reduction in leaf conductancecompared to controls. InB. gracilis , photosynthetic acclimationwas observed more often, but significant changes in leaf metabolitelevels from growth at different [CO2] were generally less evident.Temperatures considered optimal for growth (C3: 20 °C; C4:35 °C) sometimes led to CO2-induced accumulations of TNCin both species, with starch accumulating in the leaves of bothspecies, and fructans accumulating only inP. smithii. Photosynthesisof both species is likely to be enhanced in future CO2-enrichedand warmer environments, although responses will sometimes beattenuated by acclimation. Acclimation; blue grama (Bouteloua gracilis (H.B.K.) Lag ex Steud.); leaf nitrogen concentration; nonstructural carbohydrates; photosynthesis; western wheatgrass (Pascopyrum smithii (Rydb.) Love)  相似文献   

12.
Agrostis capillaris L.5, Festuca vivipara L. and Poaalpina L.were grown in outdoor open-top chambers at either ambient (340 3µmol mol–1) or elevated (6804µmol mol–1)concentrations of atmospheric carbon dioxide (CO2) for periodsfrom 79–189 d. Photosynthetic capacity of source leaves of plants grown atboth ambient and elevated CO2 concentrations was measured atsaturating light and 5% CO2. Dark respiration of leaves wasmeasured using a liquid phase oxygen electrode with the buffersolution in equilibrium with air (21% O2, 0.034% CO2). Photo-syntheticcapacity of P. alpina was reduced by growth at 680 µmolmol–1 CO2 by 105 d, and that of F. vivipara was reducedat 65 d and 189 d after CO2 enrichment began, suggesting down-regulationor acclimation. Dark respiration of successive leaf blades ofall three species was unaltered by growth at 680 relative to340 µmol mol–1 CO2. In F. vivipara, leaf respirationrate was markedly lower at 189 d than at either 0 d or 65 d,irrespective of growth CO2 concentration. There was a significantlylower total non-structural carbohydrate (TNC) concentrationin the leaf blades and leaf sheaths of A. capillaris grown at680µmol mol–1 CO2. TNC of roots of A. capillariswas unaltered by CO2 treatment. TNC concentration was increasedin both leaves and sheaths of P. alpina and F. vivipara after105 d and 65 d growth, respectively. A 4-fold increase in thewater-soluble fraction (fructan) in P. alpina and in all carbohydratefractions in F. vivipara accounted for the increased TNC content. In F. vivipara the relationship between leaf photosyn-theticcapacity and leaf carbohydrate concentration was such that therewas a strong positive correlation between photosynthetic capacityand total leaf N concentration (expressed on a per unit structuraldry weight basis), and total nitrogen concentration of successivemature leaves reduced with time. Multiple regression of leafphotosynthetic capacity upon leaf nitrogen and carbohydrateconcentrations further confirmed that leaf photosynthetic capacitywas mainly determined by leaf N concentration. In P. alpina,leaf photosynthetic capacity was mainly determined by leaf CHOconcentration. Thus there is evidence for down-regulation ofphotosynthetic capacity in P. alpina resulting from increasedcarbohydrate accumulation in source leaves. Leaf dark respiration and total N concentration were positivelycorrelated in P. alpina and F. vivipara. Leaf dark respirationand soluble carbohydrate concentration of source leaves werepositively correlated in A. capillaris. Changes in source leafphotosynthetic capacity and carbohydrate concentration of plantsgrown at ambient or elevated CO2 are discussed in relation toplant growth, nutrient relations and availability of sinks forcarbon. Key words: Elevated CO2, Climate change, grasses, carbohydrate partitioning, photosynthesis, respiration  相似文献   

13.
 研究了CO2加富对丹尼斯凤梨(Guzmania`Denise’)和吉利凤梨(Guzmania `Cherry’)叶片光合速率、植株生长、开花和光合相关酶活性的 影响。结果表明,处理30 d期间,处理(600±40)、(900±40) μmol CO2&;#8226;mol-1的净光合速率分别比同期对照增加了6.24%~31.91%和11.92%~ 41.48%;CO2加富下促进了叶片中可溶性糖和淀粉的积累, 蒸腾速率和气孔导度下降,Rubisco活性增加,乙醇酸氧化酶活性则明显下降。(600 ±40)μmol CO2&;#8226;mol-1处理下的株高、叶面积分别比同期对照下增加了6.94%~14.63%和1.66%~7. 06%,而处理(900±40) μmol CO2&;#8226;mol-1下 分别增加了9.71%~20.85%和2.87%~11.62%;CO2加富下促进了干重和鲜重的积累。此外,CO2加富提前了吉利凤梨的花期。  相似文献   

14.
The increase in carbonic anhydrase (CA) activity and the decreasein apparent Km(CO2) for photosynthesis induced by reducing CO2concentration during the growth of Chlorella vulgaris 11h cellswere followed under different temperatures. Both changes wereaccelerated by raising the temperature and reached an optimumat 32–37?C. When the CO2 concentration was lowered from3 to 0.04%, the rate of photosynthetic O2 evolution at limitingCO2 concentrations increased and reached a stationary levelafter 3 h. Under such conditions, the concentration of CO2 dissolvedin the algal suspension decreased logarithmically (t1/2=10 min)and reached a concentration in equilibrium with 0.04% CO2 inair after ca. 2 h. When high-CO2 cells grown with 3% CO2 in air were transferredto various lower CO2 concentrations, CA activity and apparentKm(CO2) for photosynthesis changed depending on the CO2 concentration.The CO2 concentration which gives one-half the maximum valuefor Km(CO2) and one-half minimum value foi CA activities wasabout 0.5%. The inverse relationship observed for the changesin CA activity and the affinity for CO2 in photosynthesis supportsthe theory that CA loweres the apparent Km(CO2) for photosynthesisin Chlorella vulgaris 11h. (Received August 27, 1984; Accepted February 8, 1985)  相似文献   

15.
The maximum rate of photosynthetic 14CO2 fixation (Vmax) aswell as the concentration of CO2 at which the rate of photosynthetic14CO2 fixation attains one-half its maximum velocity (Km) inChlorella vulgaris 11h cells was strongly dependent on the concentrationof CO2 continuously provided during the algal growth. The Vmax (µmoles 14CO2 fixed/ml pcv?min) and Km (% CO2)of the algal cells which had been grown in air containing 4%CO2 (by volume) were ca. 10 and 0.15–0.17, while thosein the cells which had been grown in ordinary air (containing0.04% CO2) were 7 and 0.05–0.06, respectively. When the concentration of CO2 in the bubbling gas was loweredfrom 4 to 0.04% during the algal growth, their photosynthetickinetics attained the respective lower steady levels after 5–10hr. On the other hand, when the photosynthetic kinetics weredetermined 24 hr after raising the concentration of CO2 from0.04 to 4%, the Vmax and Km-values were found to have alreadyattained the respective higher levels. (Received October 15, 1976; )  相似文献   

16.
REY  ANA; JARVIS  PAUL G. 《Annals of botany》1997,80(6):809-816
A field experiment consisting of 18 birch trees grown in opentop chambers in ambient and elevated CO2concentrations was setup with the aim of testing whether the positive growth responseobserved in many short-term studies is maintained after severalgrowing seasons. We present the results of growth and biomassafter 4.5 years of CO2exposure, one of the longest studies sofar on deciduous tree species. We found that elevated CO2ledto a 58% increase in biomass at the end of the experiment. However,estimation of stem mass during the growing season showed thatelevated CO2did not affect relative growth rate during the fourthgrowing season, and therefore, that the large accumulation ofbiomass was the result of an early effect on relative growthrate in previous years. Trees grown in elevated CO2investedmore carbon into fine roots and had relatively less leaf areathan trees grown in ambient CO2. In contrast with previous studies,acceleration of growth did not involve a significant declinein nutrient concentrations of any plant tissue. It is likelythat increased fine root density assisted the trees in meetingtheir nutrient demands. Changes in the species composition ofthe ectomycorrhizal fungi associated with the trees grown inelevated CO2in favour of late successional species supportsthe hypothesis of an acceleration of the ontogeny of the treesin elevated CO2.Copyright 1997 Annals of Botany Company Betula pendula; silver birch; elevated CO2; growth; biomass allocation; ectomycorrhizas; tissue composition; nutrients; leaf morphology; specific leaf area; stomatal density; shoot structure  相似文献   

17.
Bunce  James A. 《Annals of botany》1995,75(4):365-368
Previous work has shown that elevated carbon dioxide (CO2) concentrationsin the dark reversibly reduce the rate of CO2 efflux from soybeans.Experiments were performed exposing soybean plants continuallyto concentrations of 350 or 700 cm3 m-3 for 24 h d-1, or to350 during the day and 700 cm3 m-3 at night, in order to determinethe importance of the reduced rate of dark CO2 efflux for plantgrowth. High CO2 applied only at night conserved carbon andincreased dry mass during initial growth compared with the constant350 cm3 m-3 treatment. Long-term net assimilation rate was increasedby high CO2 in the dark, without any increase in daytime leafphotosynthesis. However, leaf area ratio was reduced by thedark CO2 treatment to values equal to those of plants continuallyexposed to the higher concentration. From days 14-21, leaf areawas less for the elevated night-time CO2 treatment than foreither the constant 350 or 700 cm3 m-3 treatments. For the days7-21-period, relative growth rate was significantly reducedby the high night CO2 treatment compared with the 350 cm3 m-3continuous treatment. The results indicate that some functionallysignificant component of respiration was reduced by the elevatedCO2 concentration in the dark.Copyright 1995, 1999 AcademicPress Glycine max L. (Merr.), carbon dioxide, plant growth, respiration  相似文献   

18.
Growth and photosynthetic responses of dwarf apple saplings (Malus domestica Borkh. cv. Fuji) acclimated to 3 years of exposure to contrasting atmospheric CO2 concentrations (360 and 650 µmol mol-1) in combination with current ambient or elevated (ambient +5°C) temperature patterns were determined. Four 1-year-old apple saplings grafted onto M.9 rootstocks were each enclosed in late fall 1997 in a controlled environment unit in nutrient-optimal soil. Soil moisture regimes were automatically controlled by drip irrigation scheduled at 50 kPa of soil moisture tension. For the elevated CO2 concentration alone, overall tree growth was suppressed. However, tree growth was slightly enhanced when warmer temperatures were combined with the elevated CO2 concentration. Neither temperature nor CO2 concentration affected leaf chlorophyll content and stomatal density. The elevated CO2 concentration decreased mean leaf area, but increased starch accumulation, thus resulting in a higher specific dry mass of leaves. An elevated temperature reduced starch accumulation. Light-saturated rates of leaf photosynthesis were suppressed due to the elevated CO2 concentration, but this effect was removed or enhanced with warmer temperatures. The elevated CO2 concentration increased the optimum temperature for photosynthesis by ca. 4°C, while the warmer temperature did not. The results of this study suggested that the long-term adaptation of apple saplings to growth at an elevated CO2 concentration may be associated with a potential for increased growth and productivity, if a doubling of the CO2 concentration also leads to elevated temperatures.  相似文献   

19.
The effects of three ranges of CO2 concentration on growth,carbon distribution and loss of carbon from the roots of maizegrown for 14 d and 28 d with shoots in constant specific activity14CO2 are described. Increasing concentrations of CO2 led toenhancement of plant growth with the relative growth rate (RGR)of the roots affected more than the RGR of the shoots. Between16% and 21% of total net fixed carbon (defined as 14C retainedin the plant plus 14C lost from the root) was lost from theroots at all CO2 concentrations at all times but the amountsof carbon lost per unit weight of plant decreased with time.Possible mechanisms to account for these observations are discussed. Key words: Growth, Roots, Carbon loss, [CO2]  相似文献   

20.
We used a modified functional balance (FB) model to predictgrowth response of Helianthus annuus L. to elevated CO2. Modelpredictions were evaluated against measurements obtained twiceduring the experiment. There was a good agreement between modelpredictions of relative growth rate (RGR) responses to elevatedCO2and observations, particularly at the second harvest. Themodel was then used to compare the relative effects of biomassallocation to roots, nitrogen (N) uptake and photosyntheticN-use efficiency (PNUE) in determining plant growth responseto elevated CO2. The model predicted that a rather substantialincrease in biomass allocation to root growth had little effecton whole plant growth response to elevated CO2, suggesting thatplasticity in root allocation is relatively unimportant in determininggrowth response. Average N uptake rate at elevated comparedto ambient CO2was decreased by 21–29%. In contrast, elevatedCO2increased PNUE by approx. 50% due to a corresponding risein the CO2-saturation factor for carboxylation at elevated CO2.The model predicted that the decreased N uptake rate at elevatedCO2lowered RGR modestly, but this effect was counterbalancedby an increase in PNUE resulting in a positive CO2effect ongrowth. Increased PNUE may also explain why in many experimentselevated CO2enhances biomass accumulation despite a significantdrop in tissue nitrogen concentration. The formulation of theFB model as presented here successfully predicted plant growthresponses to elevated CO2. It also proved effective in resolvingwhich plant properties had the greatest leverage on such responses.Copyright 2000 Annals of Botany Company Elevated CO2, functional balance model, Helianthus annuus L., N uptake, photosynthetic nitrogen use efficiency, root:shoot ratio  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号