首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Systemic blood was collected from and surgery performed on sows of 3 strains of miniature swine bred for specific SLA (swine MHC) haplotypes (a, c and d) from Day 2 to Day 6 after mating (first day of mating = Day 0). Ovulation rate was determined by counting corpora lutea and embryos were flushed from the uterus. Progesterone, oestradiol-17 beta and oestrone were quantitated in blood plasma and uterine flushings by RIA. SLAd/d females had a higher ovulation rate than SLAa/a or SLAc/c females (11.50 +/- 0.87 vs 9.11 +/- 0.68 and 8.17 +/- 0.83, respectively; P less than 0.01). Oestrone was higher than oestradiol-17 beta in systemic plasma (56.5 +/- 6.4 vs 33.0 +/- 4.7 pg/ml, P less than 0.01) while oestradiol-17 beta was higher than oestrone in uterine flushings (19.8 +/- 1.4 vs 14.9 +/- 1.5 pg/horn, P less than 0.10). Systemic progesterone concentration was correlated with day after mating (r = 0.93, P less than 0.01). There was no effect of haplotype on any of the hormone concentrations measured. Litter size was analysed from 99 matings amongst SLAa/a, SLAa/c, SLAa/d, SLAd/c and SLAd/d sires and dams. Litter size from -/d and d/d sows or from d/d boars were larger (P less than 0.05) than for all other matings. Although ovulation rate was higher in SLAd/d sows, the significant effect of sire SLA genotype on litter size suggests an additional effect of the d haplotype on embryonic survival.  相似文献   

2.
The objective was to analyze and report field data focusing on the effect of type of progesterone-releasing vaginal insert and dose of pLH on embryo production, following a superstimulatory protocol involving fixed-time artificial insemination (FTAI) in Nelore cattle (Bos taurus indicus). Donor heifers and cows (n = 68; 136 superstimulations over 2 years) received an intravaginal, progesterone-releasing insert (CIDR or DIB, with 1.9 or 1.0 g progesterone, respectively) and 3-4 mg of estradiol benzoate (EB) i.m. at random stages of the estrous cycle. Five days later (designated Day 0), cattle were superstimulated with a total of 120-200 mg of pFSH (Folltropin-V), given twice daily in decreasing doses from Days 0 to 3. All cattle received two luteolytic doses of PGF2alpha at 08:00 and 20:00 h on Day 2 and progesterone inserts were removed at 20:00 h on Day 3 (36 h after the first PGF2alpha injection). Ovulation was induced with pLH (Lutropin-V, 12.5 or 25 mg, i.m.) at 08:00 h on Day 4 with FTAI 12, 24 and in several cases, 36 h later. Embryos were recovered on Days 11 or 12, graded and transferred to synchronous recipients. Overall, the mean (+/-S.E.M.) number of total ova/embryos (13.3 +/- 0.8) and viable embryos (9.4 +/- 0.6) and pregnancy rate (43.5%; 528/1213) did not differ among groups, but embryo viability rate (overall, 70.8%) was higher in donors with a DIB (72.3%) than a CIDR (68.3%, P = 0.007). In conclusion, the administration of pLH 12 h after progesterone removal in a progestin-based superstimulatory protocol facilitated fixed-time AI in Nelore donors, with embryo production, embryo viability and pregnancy rates after embryo transfer, comparable to published results where estrus detection and AI was done. Results suggested a possible alternative, which would eliminate the need for estrus detection in donors.  相似文献   

3.
In Exp. I, 0.5 mg oestradiol or vehicle (0.5 ml absolute ethanol + 0.5 ml 0.9% NaCl) was injected i.v. at 08:00 h on Day 14 (onset of oestrus = Day 0). Blood samples were obtained via a jugular catheter at 30 and 1 min before oestradiol and every 30 min for 10 h afterwards. Plasma was obtained and assayed for 15-keto-13,14-dihydro-PGF-2 alpha (PGFM) by radioimmunoassay. Before oestradiol, PGFM basal values were higher (P less than 0.01) in pregnant (N = 10) than nonpregnant (N = 6) ewes (193 +/- 30 vs 67 +/- 8 pg/ml). However, at 4-10 h after oestradiol, pregnant ewes (N = 5) had less variable (P less than 0.01) PGFM values than did nonpregnant ewes (N = 5). In Exp II, conceptus secretory proteins (CSP) were obtained by pooling medium from cultures of Day-16 sheep conceptuses (N = 40). Ewes received 750 micrograms CSP + 750 micrograms plasma protein (N = 6) or 1500 micrograms plasma protein (N = 6) per uterine horn at 08:00 h and 18:00 h on Days 12-14. All ewes received 0.5 mg oestradiol at 08:00 h on Day 14 and blood samples were collected as in Exp. I and assayed for PGFM. On Day 15, 3 ewes in each group received 10 i.u. oxytocin and 3 received saline i.v. at 08:00 h and blood samples were taken continuously from 10 min before to 60 min after treatment. Mean PGFM response to oestradiol was suppressed (P = 0.05) in CSP- vs plasma protein-treated ewes (371 +/- 129 vs 1188 +/- 139 pg/ml).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The aim of this study was to evaluate the effect of delaying ovulation subsequent to superstimulation of follicular growth in beef cows (Bos indicus) on embryo recovery rates and the capacity of embryos to establish pregnancies. Ovulation was delayed by three treatments using either progesterone (CIDR-B) or a GnRH agonist (deslorelin). Multiparous Nelore cows (n = 24) received three of four superstimulation treatments in an incomplete block design (n = 18 per group). Cows in Groups CTRL, P48 and P60 were treated with a CIDR-B device plus estradiol benzoate (EB, 4 mg, i.m.) on Day-5, while cows in Group D60 were implanted with deslorelin on Day-7. Cows were superstimulated with FSH (Folltropin-V, 200 mg), from Day 0 to 3, using twice daily injections in decreasing amounts. All cows were treated with a luteolytic dose of prostaglandin on Day 2 (08:00 h). CIDR-B devices were removed as follows: Group CTRL, Day 2 (20:00 h); Group P48, Day 4 (08:00 h); Group P60, Day 4 (20:00 h). Cows in Group CTRL were inseminated at 10, 20 and 30 h after first detected estrus. Ovulation was induced for cows in Group P48 (Day 4, 08:00 h) and Groups P60 and D60 (Day 4, 20:00 h) by injection of LH (Lutropin, 25 mg, i.m.), and these cows were inseminated 10 and 20 h after treatment with LH. Embryos were recovered on Days 11 or 12, graded and transferred to synchronized recipients. Pregnancies were determined by ultrasonography around Day 100. Data were analyzed by mixed procedure, Kruskal-Wallis and Chi-square tests. The number of ova/embryos, transferable embryos (mean +/- SEM) and pregnancy rates (%) were as follows, respectively: Group CTRL (10.8+/-1.8, 6.1+/-1.3, 51.5), P48 (12.6+/-1.9, 7.1+/-1.0, 52.3), P60 (10.5+/-1.6, 5.7+/-1.3, 40.0) and D60 (10.3+/-1.7, 5.0+/-1.2, 50.0). There were no significant differences among the groups (P > 0.05). It was concluded that fixed time AI in association with induced ovulation did not influence embryo recovery. Furthermore, pregnancy rates in embryos recovered from cows with delayed ovulation were similar to those in embryos obtained from cows treated with a conventional superstimulation protocol.  相似文献   

5.
Results indicate that recovery of embryos on Days 11 and 13 of pregnancy was reduced for Day 5 embryos transferred to recipients on Day 6 of their oestrous cycle and was greatly reduced when embryos were transferred to recipients on Day 7 of the cycle (P less than 0.01). Administration of oestradiol-17 beta on Day 11 of the recipient's cycle did not appear to affect embryo development on Day 13. Day 6 embryos transferred to recipients on Day 8 of the oestrous cycle deteriorated rapidly within 24 h of transfer; there was no recovery of embryos from the uterus after 36 h. Treatment of pregnant gilts with 1 mg oestradiol-17 beta (i.v.) on Day 10.5 resulted in total embryonic loss by Day 23, but pregnancy rates of gilts treated with oestradiol-17 beta on Day 12 were similar to those of vehicle-treated gilts (60.6 vs. 71.4%).  相似文献   

6.
To test the hypothesis that an abnormal uterine environment was a cause of early embryonic loss in subfertile mares, morphologically normal embryos were transferred to normal mares (n = 20) and subfertile mares (n = 20), and embryo survival rates were compared. Embryos were recovered nonsurgically at Days 7 to 8 postovulation and transferred surgically to normal and subfertile mares that had ovulated on the same day or within 2 d after a donor. Survival of transferred embryos was monitored by ultrasonography of the recipient mare's uterus from Day 9 through Day 28 postovulation. There were no significant differences (P > 0.5) in the embryo survival rates at Day 12 (11 20 vs 9 20 ) or Day 28 (10 20 vs 8 20 ) for normal or subfertile mares, respectively. The uterine environment of subfertile mares was apparently adequate to support the development of transferred embryos from Days 7 or 8 through Day 28 postovulation.  相似文献   

7.
The objective was to examine effects of elevated prostaglandin F2alpha (PGF) on embryo development in cows supplemented with exogenous progestogen. Cows were artificially inseminated at estrus (Day 0) and a synthetic progestogen supplemented in the feed from Days 3 to 8. Cows were allotted randomly to receive either 15 mg PGF (TRT) or saline (CON) at 06:00, 14:00 and 22:00 h from Days 5 to 8. Blood samples were collected at 06:00 and 22:00 h from Days 5 to 8 for determination of progesterone and 13,14-dihydro-15-keto-PGF2alpha (PGFM). Single embryos were recovered on Day 8, assigned a quality score, and stage of development recorded. Progesterone was lower from Days 5 to 8 in TRT versus CON cows (P = 0.0001). Concentrations of PGFM from Days 5 to 8 were elevated in TRT compared to CON cows (P = 0.0001). Embryo quality was reduced in TRT cows compared to CON cows (P = 0.059). Percentage of embryos considered transferable was decreased by administration of PGF (P = 0.003). Sixty-four percent of TRT embryos were retarded in development at Day 8, whereas 80% of CON embryos had developed to expanded blastocysts (P = 0.003). In conclusion, treatment of progestogen-supplemented cows with PGF reduced quality and retarded development of embryos. Decreased fertility in conditions causing elevated concentrations of PGF may result from altered embryo development and quality.  相似文献   

8.
Follicles were isolated from hamster ovaries at 09:00 h and 15:00 h on each of the 4 days of the oestrous cycle (Day 1 = oestrus; Day 4 = pro-oestrus) by microdissection and by a mixture of enzymes and classified into 10 stages with pre-calibrated pipettes (stage 1 = preantral follicles with 1 layer of granulosa cells; stage 10 = preovulatory antral follicles). The follicles at each stage were incubated for 4 h with [3H]thymidine with incorporation expressed per microgram follicular DNA or per follicle. A significant increase in thymidine per follicle occurred at 15:00 h on Days 1 and 3 of the cycle from stage 2 (bilaminar follicle) to stage 6 (7-8 layers granulosa cells plus theca). When expressed as thymidine per follicle or microgram DNA, there was a significant increase in incorporation for stages 1-4 (4 layers granulosa cells) on Day 4 at 15:00 h compared to 09:00 h, presumably as a consequence of the preovulatory increase in gonadotrophins. Follicles in stages 5 to 8 (preantral follicles with 5 or more layers of granulosa cells to small antral follicles), from which the next set of ovulatory follicles will be selected, did not show a significant peak in incorporation per microgram DNA until Day 1 at 09:00 and 15:00 h when the second increase in FSH is in progress. DNA synthesis was similarly sustained throughout Day 1 for stage 1-4 follicles. These results suggest that periovulatory changes in FSH and LH, directly or indirectly, are not only responsible for ovulation and the recruitment of the next set of follicles destined to ovulate but also stimulate DNA replication in smaller follicles which develop over the course of several cycles before they ovulate or become atretic.  相似文献   

9.
《Theriogenology》1996,45(8):1443-1448
Equine embryos spend 5 to 6 d in the oviduct before entering the uterus as expanded blastocysts, and cannot be consistently collected nonsurgically until Day 7. Technologies such as cryopreservation and embryo splitting, which are most successful with embryos at the morula or early blastocyst stage, have not been used in mares because equine morulae and early blastocysts are located in the oviduct and cannot be recovered nonsurgically. These experiments test the hypothesis that transport of equine embryos through the oviduct can be hastened by cervical dilation or by acute, sterile endometritis induced by intrauterine oyster glycogen treatment. Cervical dilation with or without intrauterine infusion of 0.5 ml PBS on Day 4 did not appear to hasten the transport of embryos into the uterus since Day 5 uterine embryo recovery rates were not higher (P > 0.1) for mares with cervical dilation or cervical dilation plus PBS infusion vs mares receiving no treatments (0 of 5 and 0 of 5 vs 0 of 10, respectively). Intrauterine infusions of 40 ml of 1% oyster glycogen or 40 ml of PBS on Day 3 did not appear to hasten the transport of embryos into the uterus since Day 5 uterine embryo recovery rates were not higher (P > 0.1) for oyster glycogen- or PBS-treated vs untreated mares (2 of 12 and 3 of 11 vs 0 of 10, respectively). Cervical and uterine treatments on Day 3 or Day 4 and uterine lavages on Day 5 decreased (P < 0.05) Days 11 to Day 15 pregnancy rates compared with that of untreated mares. Day 11 to Day 15 pregnancy rates were 1 of 5 for mares with Day 4 cervical dilation and Day 5 uterine lavage, 1 of 5 for mares with Day 4 PBS infusion and Day 5 uterine lavage, 2 of 12 for mares with Day 3 oyster glycogen infusion and Day 5 uterine lavage, and 3 of 11 for mares with Day 3 PBS infusion and Day 5 uterine lavage vs 7 of 10 for mares that received no treatment or lavage. Cervical and uterine manipulations on Day 3 or 4 and uterine lavage on Day 5 appeared to decrease pregnancy rates by Days 11 to 15. The results of these experiments do not support the hypothesis that cervical dilation or uterine infusion hasten oviductal transport, since neither cervical manipulation nor transcervical infusion of oyster glycogen or PBS into the uterus significantly hastened the rate of embryo transport into the uterus.  相似文献   

10.
Early embryonic development and in vitro culture of in vivo produced embryos in the farmed European polecat (Mustela putorius) was investigated as a part of an ex situ conservation program of the endangered European mink (Mustela lutreola), using the European polecat as a model species. The oestrus cycles of 34 yearling polecat females were monitored by visual examination of the vulval swelling and, to induce ovulation, the females were mated once daily on two consecutive days. Sixteen yearling males were used for mating. The females were humanely killed 3-14 days after the first mating and the uteri and oviducts were collected for embryo recovery. Uterine and oviductal flushings yielded a total number of 295 embryos, representing developmental stages from the 1-cell stage to large expanded and hatched blastocysts. On Day 3 after the first mating, only 1-16-cell stage embryos were recovered. Between Days 4 and 6 after the first mating, 1-16-cell stage embryos and morulae were found. The first blastocysts were recovered on Day 7 after the first mating. The first implanted blastocysts were detected on Day 11 after the first mating. A total number of 85 embryos were in vitro cultured after recovery. Blastocyst production rates for in vitro cultured 1-16-cell stage embryos and for morulae/compact morulae were 68 and 84%, respectively. For all cultured embryos, the hatching rate was 15%. The in vitro culture requirements for the preimplantation embryos of the farmed European polecat remain to be determined before further utilization of the technique.  相似文献   

11.
In the present study, 809 uterine flushes and 454 embryo transfers performed in mares over a 4-yr interval were examined to evaluate the effects of: (1) the day of embryo collection on recovery rates; (2) the degree of synchrony between donor and recipient mares on pregnancy rates; (3) the recipient day post ovulation on pregnancy rates; and (4) the age of the embryo at recovery on pregnancy rates at 60 days. Uterine flushes were performed on Days 6, 7, 8, 9, and 10 (Day 0 = ovulation) and embryos were transferred to recipients with degrees of synchrony varying between +1 to −6 (recipient ovulated 1 day before through 6 days after the donor). Recipient mares ranged from 2 to 8 days post ovulation. Embryo recovery rates were similar for flushes performed on Day 7 (61%), Day 8 (66%), Day 9 (59%), and Day 10 (56%), but the embryo recovery rate was lower (P < 0.03) for flushes performed on Day 6 (42%) compared with all other days. Pregnancy rates for various degrees of synchrony were as follows: +1 (71%), 0 (77%), −1 (68%), −2 (63%), −3 (66%), −4 (76%), −5 (61%), and −6 (27%). The −6 day of degree of synchrony had the lowest (P < 0.05) pregnancy rate compared with all other days, but there was no significant difference among +1 to −5 days. There was a lower (P < 0.05) pregnancy rate for embryos transferred to recipient mares on Day 2 (33%) compared with mares on Day 3 (66%), Day 4 (66%), Day 5 (62%), Day 6 (55%), Day 7 (58%), and Day 8 (56%). Pregnancy rate was higher (P < 0.05) for Day 7 (76%) embryos compared with Day 6 (50%), Day 8 (64%), and Day 9 (44%) embryos; Day 9 embryos resulted in lower (P < 0.05) pregnancy rates than Days 7 or 8 embryos. In conclusion, this study demonstrated that: (1) embryo recovery rates between Days 7 and 10 were similar and acceptable (e.g., 63% 488/771); (2) the degree of synchrony between donor and recipient mares does not need to be as restricted as previously reported in horses. Acceptable pregnancy rates (e.g., 70%, 99/142) were obtained even when recipient mares ovulated 4 to 5 days after the donors; (3) similar pregnancy rates were obtained when recipient mares received embryos within a large range of days post ovulation (Days 3 to 8); and (4) Day 7 embryos produced higher pregnancy rates when compared with Days 8 and 9 embryos. In clinical terms, the application of these new findings will be beneficial to large equine embryo transfer operations in producing more pregnancies per season.  相似文献   

12.
Bovine embryos recovered from superovulated donors on Days 8-18 postestrus were cultured in vitro in a tissue perifusion system to quantify hormone secretion. Embryos were cultured for 24 h at 37 degrees C in Ham's F-10 medium supplemented 5% v/v with heat-treated, charcoal-stripped calf serum; 100 IU/ml penicillin; and 100 micrograms/ml streptomycin. The medium was saturated with 5% CO2 in air and perifused at 50 microliters/min (3 ml/h). Estrone (E1) estradiol (E2), progesterone (P4), prostaglandin E2 (PGE2), and prostacyclin (PGI2) were quantified by RIA in 6-h pools of perifusate fractions. Estrone was measurable (pg/h/embryo; mean +/- SE) on Days 13 (10.80 +/- 4.56) and 15 (34.80 +/- 9.80); E2 on Days 11 (36.80), 12 (81.28 +/- 29.80), 13 (11.75 +/- 4.09), 15 (157.20 +/- 112.60), and 16 (30.26 +/- 8.76); and P4 (ng/h/embryo) on Days 13 (0.5-1.0) and 17 (approximately 1.5). PGE2 was secreted by Day 10 bovine embryos during the last 6 h of culture (19-24 h) and throughout culture for Day 11-18 embryos. The rate of PGE2 secretion increased (p less than 0.05) over the previous days(s) at Days 13 and 17. The mean (+/- SE) secretion rates (pg/h/embryo) for the 24-h culture by embryonic ages were as follows: Day 11 (63.39 +/- 14.61), 12 (172.10 +/- 30.90), 13 (3094.08 +/- 283.35), 14 (1633.89 +/- 49.98), 15 (3739.23 +/- 1082.79), 16 (4955.37 +/- 1381.83), 17 (11893.23 +/- 1188.48), and 18 (13827.99 +/- 3587.88).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Nicotine (5.0 mg/kg) was injected (s.c.) twice daily on Day 1 or Days 1-4 or 1-5 of pregnancy. Cumulative doses of nicotine retarded embryo cell cleavage and substantially reduced embryo cell number (saline vs nicotine: 42.5 +/- 1.7 vs 22.1 +/- 1.9 nuclei/embryo, at 12:00 h on Day 5; P less than 0.05). However, treatment for even 1 day (Day 1) significantly reduced cell number (saline vs nicotine: 42.5 +/- 1.7 vs 30.5 +/- 0.9, at 12:00 h day on Day 5; P less than 0.01). Nicotine injection also resulted in a marked and prolonged reduction in oviduct blood flow (pretreatment vs 90 min after nicotine: 0.61 +/- 0.06 vs 0.37 +/- 0.10 ml/min . g-1; P less than 0.005). The results indicate that, in the rat, even a brief exposure to nicotine, the chief alkaloid of tobacco, reduces oviducal blood flow and the rate of embryo cell proliferation. The embryo is therefore susceptible to the effects of nicotine before implantation.  相似文献   

14.
Nonlactating Holstein and Jersey cows (n = 24) were superovulated and ovarian follicular development was monitored by transrectal ultrasound during the period after embryo recovery. Luteolysis was induced by two injections of prostaglandin F(2)alpha (PGF; 25 mg Lutalyse; 12-h interval) at specific times after superovulatory induced estrus (Treatment 1, Day 9; Treatment 2, Day 12; Treatment 3, Day 17; Treatment 4, Day 25; superovulatory estrus = Day 0 of Cycle 1). Follicular development was monitored during Cycle 1 before and after PGF injection and continued through the ensuing estrous cycle (Cycle 2). Superovulation led to more than one embryo collected in 14 cows (mean = 8.71 embryos: positive superovulatory response [PSR] cows), while 10 cows were not successfully superovulated (mean = 0.1 embryo; negative superovulatory response [NSR] cows). These cows differed in terms of number of unovulated follicles detected at embryo collection (4.21 vs 17.2, PSR vs NSR) and plasma progesterone during the superovulatory estrous cycle (32.3 ng/ml PSR vs 8.6 ng/ml NSR). Follicular development during Cycle 1 started sooner in NSR than in PSR cows (day by class by response P<0.03) and was initiated on Days 11 to 12 in NSR cows and on Days 19 to 20 in PSR cows. Interval to estrus after PGF averaged 6.3 d. Cows having short intervals to estrus had follicles at the time of PGF injection. Treatment influenced the length of Cycle 1, but it did not affect the interval to estrus after PGF, the length of Cycle 2, or follicular development during Cycle 2. The results indicate that 1) the timing of PGF injection after embryo collection does not influence subsequent follicular populations, 2) elongated estrous cycles and intervals to estrus after PGF in superovulated cattle are a function of decreased follicular activity, and 3) the presence of numerous corpora lutea and not the superovulatory treatment, per se, seem to attenuate follicular growth.  相似文献   

15.
Adenylate cyclase activity was measured in broken cell preparations of whole endometrial tissue from rabbits on Days 0, 1, 6.5, 9 and 15 of pseudopregnancy and in endometrial epithelial and stromal cells on Days 1 and 6.5 to assess the specific response of individual cell types. In dispersed cells, adenylate cyclase activity was higher (P less than 0.01) in stromal than in epithelial cells and reduced on Day 6.5 compared to Day 1 in both cell types. The response of adenylate cyclase to isoproterenol appeared more important relative to the PGE-2 response in epithelial than in stromal cells and strongly reduced in the former on Day 6.5. In endometrium, the overall adenylate cyclase activity was increased significantly on Day 1 of pseudopregnancy compared to Day 0 (oestrus), only 18 h after injection of hCG. On the following days, the activity decreased progressively on Days 6.5 and 9 and exhibited a recovery on Day 15. Adenylate cyclase response to isoproterenol (% over GTP) was comparable on Days 0, 1 and 6.5, abolished on Day 9 and recovered on Day 15. Maximal response to PGE-2 (% over GTP) was observed on Day 6.5, at the time of implantation, maintained on Day 9 and reduced on Day 15 towards the low levels measured in oestrus and Day 1 of pseudopregnancy. Our results demonstrate a dramatic alteration of adenylate cyclase activity in rabbit endometrium during pseudopregnancy. It suggests a possible involvement of catecholamines and prostaglandin E-2 in the regulation of endometrial receptivity through a cAMP-mediated process.  相似文献   

16.
Employing a total of 3465 bovine oocytes this study was aimed at improving the efficiency of bovine embryo production under defined and undefined conditions. Following in vitro maturation (IVM) and in vitro fertilization (IVF), oocytes were allocated to various culture treatments using synthetic oviduct fluid (SOF). In our 3 experiments we showed that: 1) the addition of fetal calf serum (FCS 10% v/v) to SOF droplets after 20 to 24 h significantly improved blastocyst yields on Day 6 (21 vs 12%; P < 0.01), but not at later stages and resulted in significantly higher Day-8 blastocyst cell numbers (148 +/- 61 vs 92 +/- 35; P < 0.05); 2) the removal of bovine serum albumin (BSA) from the standard SOF medium resulted in significantly reduced blastocyst yields on Days 6, 7 and 8, respectively (17 vs 8%; 28 vs 18%; 31 vs 21%; P < 0.05); 3) the presence or absence of cumulus cells surrounding the presumptive zygote in culture in SOF had no effect on cleavage rate, percentage of 5-8 cell embryos or blastocyst yields (Day 6,7 or 8); 4) the culture of presumptive zygotes in SOF in an atmosphere of 5% CO2 in air (20% O2) resulted in significantly reduced development compared with culture in 5% CO2, 5% O2, 90% N2 in terms of blastocyst yield on Days 6, 7 and 8 and on Day 8 hatching rate, respectively (5 vs 22%; 9 vs 33%; 13 vs 48%; 50 vs 8%; P < 0.001) and 5) embryo density (1 embryo per 1 or 3 microl SOF) or replacing the culture medium every 48 h had no effect when SOF was supplemented with serum; however, under serum-free conditions, changing of the media resulted in a slightly improved Day-6 blastocyst yield such that renewal of serum-free medium mimicked the effect of serum addition.  相似文献   

17.
Pregnancy rates at Days 2 and 14 postovulation were determined for 15 normal mares and 15 subfertile mares. Embryonic loss rates were estimated by the difference in the Day 2 and Day 14 pregnancy rates. Mares were artificially inseminated with the pooled ejaculates from three stallions, and the embryonic vesicle was detected with ultrasonography at Days 9, 10, 12 and 14. Mares were short-cycled with prostaglandin F(2) alpha (PGF(2alpha)) and rebred to the same stallions, and the Day 2 pregnancy rates were determined by recovery of cleaved ova (embryos) from the surgically excised oviducts. Significantly more (P < 0.01) normal versus subfertile mares were pregnant at Day 14 (12 15 vs 3 15 ). There was no significant difference in the Day 2 pregnancy rate for normal versus subfertile mares (10 14 vs 11 14 ). There were no significant differences (P > 0.5) in the mean number of blastomeres per embryo or in the mean diameter of embryos recovered at Day 2 from normal or subfertile mares. The estimated embryonic loss rate was significantly lower (P < 0.01) for normal verusus subfertile mares (0 10 vs 8 11 ). Fertilization rates were similar for normal and subfertile mares; however, subfertile mares had a higher embryonic loss rate prior to Day 14 postovulation.  相似文献   

18.
To assess the roles of FSH and LH on follicular growth, after various experimental manipulations, hamster follicles were sorted into 10 stages and incubated for 4 h with [3H]thymidine. Stages 1-4 correspond to follicles with 1-4 layers of granulosa cells, respectively; Stage 5 = 5 or 6 layers of granulosa cells plus theca; Stage 6 = 7-8 layers of granulosa cells plus theca; Stage 7 = early formation of the antrum; Stages 8-10 = small, intermediate and large antral follicles, respectively. Phenobarbitone sodium injected at 13:00 h on pro-oestrus blocked the normal rise of blood FSH and LH concentrations at 15:00 h and prevented the increase of [3H]thymidine incorporation into follicles of Stages 1-9. The optimal treatment to reverse the effects of phenobarbitone was 1 microgram FSH and 2 micrograms LH injected i.p. at 13:00 h which restored DNA replication to follicles of Stages 2-10: FSH acted primarily on Stages 2-5 and LH on Stages 5-10. Injection of phenobarbitone at 13:00 h on prooestrus followed by 2.5 micrograms FSH at 22:00 h restored DNA synthesis by the next morning to follicles at Stages 1-8. In hamsters hypophysectomized at 09:00 h on the day of oestrus (Day 1), injection on Day 4 of 2.5 micrograms FSH restored DNA synthesis 6 h later to Stage 2-6 follicles. Unilateral ovariectomy on Day 3 resulted 6 h later in an acute rise in FSH and LH and change of follicles from Stage 4 to Stage 5 but, paradoxically, there was decreased synthesis of DNA in follicles of Stages 5-10.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Interspecies embryo transfer could be a valuable tool in preservation programs of endangered species. In this work the results of both interspecific-monospecific (ibex-in-goat) and interspecific-bispecific (mixed-species; ibex+goat-in-goat) embryo transfers in the capra genus are reported. The aim of this work was to compare the PAG plasmatic profiles occurring in these interspecific gestations to those encountered in normal (i.e. intraspecies) pregnancies of Spanish ibex and domestic goat. Spanish Ibex females were superovulated with 9 mg NIADDK-oFSH-17 and embryos were surgically collected 5.5 d after estrus. Two embryos were transferred per recipient. Domestic goat recipients were previously mated either to vasectomized domestic bucks (n=17 females; interspecific-monospecific gestations) or to fertile ones (n=9 females; interspecific-bispecific gestations). Intraspecific pregnancies were obtained by natural mating between males and females of the same species (Spanish ibex: n=6; domestic goat: n=1). Pregnancy rate diagnosed by progesterone was low in both interspecific-monospecific (7/17) and interspecific-bispecific (3/9) transfers. None of the monospecific (0/7) and 2 (2/3) of the bispecific established pregnancies developed to term. Ibex-in-ibex PAG profile showed 2 similar peaks of 60 to 70 ng/mL on Days 34 and 153 of pregnancy, while goat-in-goat had the maximum value (60 to 70 ng/mL) at Day 50, decreasing slightly afterwards until parturition. Mixed-species gestations (ibex+goat in goat) showed a first peak of 500 to 1000 ng/mL on Day 70 and a second one (200 to 500 ng/mL) on Day 140 of pregnancy. Four ibex-in-goat gestations that terminated with the expulsion of dead fetuses at Days 110 to 170 had their maximum PAG values (100 to 700 ng/mL) on Days 60 to 90. We conclude that it is possible to achieve pregnancies after transfer of ibex embryos into domestic goats, but this requires a great change of the PAG profiles, which increase significantly. Live ibex kids can be produced when embryos from both species share the uterus. This is the first report of successful interspecific pregnancies in the capra genus.  相似文献   

20.
Mitochondrial DNA in the mouse preimplantation embryo   总被引:2,自引:0,他引:2  
Total DNA was extracted from mouse embryos that were collected from CD-1 random-bred females on Day 1 of pregnancy and cultured for up to 4 days in vitro, or from the reproductive tracts of pregnant females on Days 1, 3, 4 and 5 of pregnancy. Southern blot analyses with a cloned mouse mitochondrial DNA probe were performed to determine the relative levels of mitochondrial DNA in the zygote, morula, blastocyst and early egg cylinder stage embryos. The results indicated that the total amount of mitochondrial DNA does not change during development of the mouse embryo up to the egg cylinder stage and is not altered during in-vitro culture of the fertilized one-cell embryo to the blastocyst stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号