首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Onion can be used in experimental observation of mitotic cell division in plant science because its chromosome is large and easy to observe. However, molecular genetic studies are difficult in onion because of its large genome size, and only limited information of onion genes has been available to date. Here we cloned and characterized an onion homologue of mitotic RAD21 gene, AcRAD21-1, to develop a molecular marker of mitosis. The N-terminal, middle, and C-terminal regions of deduced AcRAD21-1 protein sequence were conserved with Arabidopsis SYN4/AtRAD21.3 and rice OsRAD21-1, whereas three characteristic types of repetitive motifs (Repeat-1, Repeat-2/2′, and Repeat-3) were observed between the conserved regions. Such inserted repetitive amino acid sequences enlarge the AcRAD21-1 protein into almost 200 kDa, which belongs to the largest class of plant proteins. Genomic organization of the AcRAD21-1 locus was also determined, and the possibility of tandem exon duplication in Repeat-2 was revealed. Subsequently, the polyclonal antiserum was raised against the N-terminal region of AcRAD21-1, and purified by affinity chromatography. Immunohistochemical analysis with the purified antibody successfully showed localization of AcRAD21-1 in onion mitosis, suggesting that it can be used as a molecular marker visualizing dynamic movement of cohesin.  相似文献   

2.
Liu ZJ  Lu X  Zhang Y  Zhong S  Gu SZ  Zhang XB  Yang X  Xin HM 《FEBS letters》2005,579(7):1587-1590
The p53 protein is one of the best-known tumour suppressors. Recently discovered ASPP1 and ASPP2 are specific activators of p53. To understand, if apoptosis-stimulating protein of p53 (ASPP) inactivation offers a selective advantage to tumors that have wild-type p53, we measured the mRNA expression of ASPP1 and ASPP2 in tumor cell lines retaining wide-type p53. In addition, the CpG island methylation status of ASPP1 gene and ASPP2 gene in the 5'-untranslated region was also investigated in order to understand the possible cause of abnormal expression of ASPP1 and ASPP2 in the tumor cell lines retaining wide-type p53. The data showed that mRNA expression of ASPP1 and ASPP2 is downregulated and CpG island tested is hypermethylated. These results indicated that ASPP CpG island aberrant methylation could be one molecular and genetic alteration in wild-type p53 tumours.  相似文献   

3.
The general secretory (Sec) pathway is the main mechanism for protein secretion and insertion into endoplasmic reticulum and plasma membrane in prokaryotes and eukaryotes. However, the complete genome of the highly specialized microsporidian parasite Encephalitozoon cuniculi appears to lack a gene for Sec61beta, one of three universally conserved proteins that form the core of the Sec translocon. We have identified a putative, highly divergent homologue of Sec61beta in the genome of another microsporidian, Antonospora locustae, and used this to identify a previously unrecognized Sec61beta in E. cuniculi. The identity of these genes is supported by evidence from secondary structure prediction and gene order conservation. Their functional conservation is confirmed by expressing both microsporidian homologues in yeast, where they are localized to the endoplasmic reticulum and rescue a yeast Sec61beta deletion mutant.  相似文献   

4.
The eukaryotic releasing factor eRF3 is a multifunctional protein that plays pivotal roles in translation termination as well as the initiation of mRNA decay. eRF3 also functions in the regulation of apoptosis; eRF3 is cleaved at Ala73 by an as yet unidentified protease into processed isoform of eRF3 (p-eRF3), which interacts with the inhibitors of apoptosis proteins (IAPs). The binding of p-eRF3 with IAPs leads to the release of active caspases from IAPs, which promotes apoptosis. Although full-length eRF3 is localized exclusively in the cytoplasm, p-eRF3 localizes in the nucleus as well as the cytoplasm. We here focused on the role of p-eRF3 in the nucleus. We identified leptomycin-sensitive nuclear export signal (NES) at amino acid residues 61–71 immediately upstream of the cleavage site Ala73. Thus, the proteolytic cleavage of eRF3 into p-eRF3 leads to release an amino-terminal fragment containing NES to allow the relocalization of eRF3 into the nucleus. Consistent with this, p-eRF3 more strongly interacted with the nuclear ARF tumor suppressor than full-length eRF3. These results suggest that while p-eRF3 interacts with IAPs to promote apoptosis in the cytoplasm, p-eRF3 also has some roles in regulating cell death in the nucleus.  相似文献   

5.
We have discovered and reported potent p53–MDM2 interaction inhibitors possessing dihydroimidazothiazole scaffold. Our lead showed strong activity in vitro, but did not exhibit antitumor efficacy in vivo for the low metabolic stability. In order to obtain orally active compounds, we executed further optimization of our lead by the improvement of physicochemical properties. Thus we furnished optimal compounds by introducing an alkyl group onto the pyrrolidine at the C-2 substituent to prevent the metabolism; and modifying the terminal substituent of the proline motif improved solubility. These optimal compounds exhibited good PK profiles and significant antitumor efficacy with oral administration on a xenograft model using MV4-11 cells having wild type p53.  相似文献   

6.
In the UapA uric acid-xanthine permease of Aspergillusnidulans, subtle interactions between key residues of the putative substrate binding pocket, located in the TMS8-TMS9 loop (where TMS is transmembrane segment), and a specificity filter, implicating residues in TMS12 and the TMS1-TMS2 loop, are critical for function and specificity. By using a strain lacking all transporters involved in adenine uptake (ΔazgA ΔfcyB ΔuapC) and carrying a mutation that partially inactivates the UapA specificity filter (F528S), we obtained 28 mutants capable of UapA-mediated growth on adenine. Seventy-two percent of mutants concern replacements of a single residue, R481, in the putative cytoplasmic loop TMS10-TMS11. Five missense mutations are located in TMS9, in TMS10 or in loops TMS1-TMS2 and TMS8-TMS9. Mutations in the latter loops concern residues previously shown to enlarge UapA specificity (Q113L) or to be part of a motif involved in substrate binding (F406Y). In all mutants, the ability of UapA to transport its physiological substrates remains intact, whereas the increased capacity for transport of adenine and other purines seems to be due to the elimination of elements that hinder the translocation of non-physiological substrates through UapA, rather than to an increase in relevant binding affinities. The additive effects of most novel mutations with F528S and allele-specific interactions of mutation R481G (TMS10-TMS11 loop) with Q113L (TMS1-TMS2 loop) or T526M (TMS12) establish specific interdomain synergy as a critical determinant for substrate selection. Our results strongly suggest that distinct domains at both sides of UapA act as selective dynamic gates controlling substrate access to their translocation pathway.  相似文献   

7.
为研究ASPP2对奥沙利铂诱导的结肠癌细胞系HCT116 p53+/+(野生型)凋亡及周期的影响.利用ASPP2(rAd-ASPP2)及p53腺病毒(rAd-p53)感染HCT116 p53+/+细胞,经奥沙利铂50 μmol/L诱导细胞凋亡及周期改变.Western印迹检测ASPP2及p53的表达水平;MTT法检测ASPP2腺病毒对奥沙利铂诱导的HCT116细胞活性的影响;Calcein/PI吸收试验检测细胞凋亡情况;流式细胞术分析细胞周期分布. 结果显示,ASPP2、p53共同过表达,或者ASPP2单独过表达均能增强奥沙利铂诱导的HCT116 p53+/+细胞增殖抑制,以及S期抑制并伴有细胞凋亡水平的升高;而无奥沙利铂诱导时,ASPP2对HCT116 p53+/+细胞的活性、细胞周期及细胞凋亡水平的影响无统计学意义. 上述结果表明,ASPP2能够增强奥沙利铂诱导HCT116 p53+/+细胞的增殖抑制、细胞周期抑制和细胞凋亡.  相似文献   

8.
Cell adhesion is required for many cellular processes. In fungi, cell-cell contact during mating, flocculation or virulence is mediated by adhesins, which typically are glycosyl phosphatidyl inositol (GPI)-modified cell wall glycoproteins. Proteins with internal repeats (PIR) are surface proteins involved in the response to stress. In Schizosaccharomyces pombe no adhesins or PIR proteins have been described. Here we study the S. pombe Map4p, which defines a new class of surface protein that is not GPI-modified and has a serine/threonine rich domain and internal repeats that differ from those present in PIR proteins. Map4p is a mating type-specific adhesin required for mating in h(+) cells and enhances cell adhesion when overexpressed.  相似文献   

9.
In Saccharomyces cerevisiae, the bud site selection of diploid cells is regulated by at least four persistent landmarks, Bud8p, Bud9p, Rax1p, and Rax2p. Bud8p and Bud9p are essential for the establishment of bipolar budding and localize mainly to the distal and the proximal poles, respectively. Their subcellular localizations are regulated through interaction with Rax1p/Rax2p. We investigated when and where Bud8p and Bud9p physically interact with Rax2p in vivo using a split-GFP method. GFP fluorescence showed that Bud8p physically interacted with Rax2p at the proximal or distal pole in unbudded cells; a physical interaction was also observed at the opposite pole to the growing bud in mother cells with a large-size bud. Bud9p physically interacted with Rax2p at the birth scar in budded mother cells. These observations suggest that the interaction of Rax2p with Bud8p and Bud9p may contribute to the translocation of bipolar landmarks to the correct sites.  相似文献   

10.
11.
12.
NIRF(Np95/ICBP90-like RING finger protein)是2002年发现的一种核蛋白,其功能涉及细胞增殖调节、蛋白多聚泛素化降解、细胞癌变进程控制等领域.已有研究报道,NIRF能与p53相互作用, NIRF本身也是一个高度调节蛋白,在细胞正常的生理状态下发挥泛素化E3连接酶的作用,结合p53并将其降解,但NIRF与p53结合的蛋白结合域目前尚不清楚.本文研究证明,NIRF能与p53结合成复合体参与泛素化蛋白降解途径,并测定出NIRF与p53结合的区域.为了检测NIRF的蛋白结合域,将空载体和NIRF缺失突变体质粒分别转染于HEK293细胞,蛋白表达水平通过Western印迹用两种抗体分别检测. 结果显示,所有的突变体都能在细胞中表达,并且两种抗体检测结果完全一致. 同时,免疫共沉淀技术用于进一步分析实验结果. 由于泛素化蛋白通常伴随蛋白酶体通路介导的降解,免疫共沉淀的蛋白纯化过程中用蛋白酶体抑制剂MG-132以抑制蛋白降解. 本研究结果显示,NIRF 通过PHD区域与p53形成复合体. 该复合体可能参与蛋白分选、蛋白降解、DNA修复以及细胞凋亡等一系列重要的细胞活动,从而形成与细胞增殖相关的新的信号通路,在肿瘤的发生发展中可能发挥某种程度的作用.  相似文献   

13.
Galani K  Hurt E  Simos G 《FEBS letters》2005,579(5):969-975
Arc1p, a yeast tRNA-binding protein, forms a complex with the aminoacyl-tRNA synthetases, methionyl tRNA synthetase (MetRS) and glutamyl tRNA synthetase (GluRS). Although this complex localizes normally in the cytoplasm, in the absence of Arc1p the two free synthetases are also found inside the nucleus. In this work, in order to localize free Arc1 we abolished complex assembly by deleting the appended domains from both MetRS and GluRS. Surprisingly, free Arc1p remained cytoplasmic even when fitted with a strong nuclear localization signal (NLS). However, NLS-Arc1p accumulated in the nucleus when Xpo1/Crm1, the export receptor for NES-containing cargo proteins, was mutated. Thus, the cytoplasmic location of Arc1p is maintained by Xpo1p-dependent nuclear export and Arc1p could act as an adapter in the nucleocytoplasmic trafficking of tRNA and/or the tRNA-aminoacylation machinery.  相似文献   

14.
TOR is an atypical multidrug resistance protein present in the human protozoan parasite, Leishmania. Resistance to the toxic adenosine analog tubercidin was brought about by redirecting the adenosine permease from the plasma membrane to the multivesicular tubule lysosome. The cells became resistant to tubercidin because they were unable to take up and accumulate this toxic purine. The domain, which was recognized by TOR in this internalization pathway, was identified by expressing portions of this transporter in Leishmania and assessing whether they were capable of hindering the multidrug resistance capability of TOR. This approach identified the adenosine permease region spanning Met289 to Trp305. This region was also the epitope recognized by the internalization mechanism. An internal deletion mutant lacking Met289-Trp305 was functionally active but could no longer be internalized in cells with high TOR levels. The internalization and altered trafficking of the adenosine permease by TOR was observed in yeast and human embryonic kidney cells co-expressing these two Leishmania proteins indicating that the internalization process was conserved in evolutionary diverse organisms. The inability of Saccharomyces with a temperature-sensitive ubiquitin ligase to internalize adenosine permease suggested that ubiquitination was involved in this altered trafficking.  相似文献   

15.
The p53 tumor suppressor is recognized as a promising target for anti-cancer therapies. We previously reported that protoporphyrin IX (PpIX) disrupts the p53/murine double minute 2 (MDM2) complex and leads to p53 accumulation and activation of apoptosis in HCT 116 cells. Here we show the direct binding of PpIX to the N-terminal domain of p53. Furthermore, we addressed the induction of apoptosis in HCT 116 p53-null cells by PpIX and revealed interactions between PpIX and p73. We propose that PpIX disrupts the p53/MDM2 or MDMX and p73/MDM2 complexes and thereby activates the p53- or p73-dependent cancer cell death.  相似文献   

16.
The interaction of p53 and MDM2 is modulated by the phosphorylation of p53. This mechanism is key to activating p53, yet its molecular determinants are not fully understood. To study the spatiotemporal characteristics of this molecular process we carried out Brownian dynamics simulations of the interactions of the MDM2 protein with a p53 peptide in its wild type state and when phosphorylated at Thr18 (pThr18) and Ser20 (pSer20). We found that p53 phosphorylation results in concerted changes in the topology of the interaction landscape in the diffusively bound encounter complex domain. These changes hinder phosphorylated p53 peptides from binding to MDM2 well before reaching the binding site. The underlying mechanism appears to involve shift of the peptide away from the vicinity of the MDM2 protein, peptide reorientation, and reduction in peptide residence time relative to wild-type p53 peptide. pThr18 and pSr20 p53 peptides experience reduction in residence times by factors of 13.6 and 37.5 respectively relative to the wild-type p53 peptide, indicating a greater role for Ser20 phosphorylation in abrogating p53 MDM2 interactions. These detailed insights into the effect of phosphorylation on molecular interactions are not available from conventional experimental and theoretical approaches and open up new avenues that incorporate molecular interaction dynamics, for stabilizing p53 against MDM2, which is a major focus of anticancer drug lead development.  相似文献   

17.
The interaction of p53 and MDM2 is modulated by the phosphorylation of p53. This mechanism is key to activating p53, yet its molecular determinants are not fully understood. To study the spatiotemporal characteristics of this molecular process we carried out Brownian dynamics simulations of the interactions of the MDM2 protein with a p53 peptide in its wild type state and when phosphorylated at Thr18 (pThr18) and Ser20 (pSer20). We found that p53 phosphorylation results in concerted changes in the topology of the interaction landscape in the diffusively bound encounter complex domain. These changes hinder phosphorylated p53 peptides from binding to MDM2 well before reaching the binding site. The underlying mechanism appears to involve shift of the peptide away from the vicinity of the MDM2 protein, peptide reorientation, and reduction in peptide residence time relative to wild-type p53 peptide. pThr18 and pSr20 p53 peptides experience reduction in residence times by factors of 13.6 and 37.5 respectively relative to the wild-type p53 peptide, indicating a greater role for Ser20 phosphorylation in abrogating p53 MDM2 interactions. These detailed insights into the effect of phosphorylation on molecular interactions are not available from conventional experimental and theoretical approaches and open up new avenues that incorporate molecular interaction dynamics, for stabilizing p53 against MDM2, which is a major focus of anticancer drug lead development.  相似文献   

18.
Mcl-1 is a major anti-apoptotic Bcl-2 family protein. It is well known that Mcl-1 can interact with certain pro-apoptotic Bcl-2 family proteins in normal cells to neutralize their pro-apoptotic functions, thus prevent apoptosis. In addition, it was recently found that Mcl-1 can also inhibit mitochondrial calcium uptake. The detailed mechanism, however, is still not clear. Based on Yeast Two-Hybrid screening and co-immunoprecipitation, we identified a mitochondrial protein p32 (C1qbp) as a novel binding partner of Mcl-1. We found that p32 had a number of interesting properties: (1) p32 can positively regulate UV-induced apoptosis in HeLa cells. (2) Over-expressing p32 could significantly promote mitochondrial calcium uptake, while silencing p32 by siRNA suppressed it. (3) In p32 knockdown cells, Ruthenium Red treatment (an inhibitor of mitochondrial calcium uniporter) showed no further suppressive effect on mitochondrial calcium uptake. In addition, in Ruthenium Red treated cells, Mcl-1 also failed to suppress mitochondrial calcium uptake. Taken together, our findings suggest that p32 is part of the putative mitochondrial uniporter that facilitates mitochondrial calcium uptake. By binding to p32, Mcl-1 can interfere with the uniporter function, thus inhibit the mitochondrial Ca2+ uploading. This may provide a novel mechanism to explain the anti-apoptotic function of Mcl-1.  相似文献   

19.
A series of 3,4,5-trisubstituted aminothiophenes were designed, synthesized, and evaluated for their p53–MDM2 binding inhibitory potency and anti-proliferation activities against A549 and PC3 tumor cell lines. Fourteen compounds had appreciably improved MDM2 binding affinities than lead compound MCL0527 (3) and a few compounds showed comparable activities to that of Nutlin-3. Meanwhile, most of the 3,4,5-trisubstituted aminothiophenes displayed better or equivalent anti-proliferation activities against wild-type p53 cell line A549 compared to that of Nutlin-3. Over ten compounds exhibited desirable selective profiles of p53 status. Particularly, compounds 9, 16 and 18 displayed 22-, 6- and 22-fold selectivity of p53 status, respectively, much better than that of Nutlin-3 (fourfold).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号