首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Ant-like appearance (myrmecomorphy) has evolved >70 times in insects and spiders, accounting for >2,000 species of myrmecomorphic arthropods. Most myrmecomorphic spiders are considered to be Batesian mimics; that is, a palatable spider avoids predation through resemblance to an unpalatable ant-although this presumption has been tested in relatively few cases. Here we explicitly examined the extent to which Peckhamia picata (Salticidae), a North American ant-mimicking jumping spider, is protected from four species of jumping spider predators, relative to nonmimetic salticids and model ants. In addition, we conducted focused behavioral observations on one salticid predator, Thiodina puerpera, to determine the point at which the predators' behaviors toward model, mimic, and nonmimic diverge. We also examined the behaviors of Peckhamia in the presence of Thiodina. We found that mimetic jumping spiders were consumed less than a third as often as nonmimetic jumping spiders, suggesting that Peckhamia does indeed gain protection as a result of its resemblance to ants, and so can be considered a Batesian mimic. Furthermore, our focal predator did not consume any ant-mimicking spiders, and seemed to categorize Peckhamia with its model ant early in the hunting sequence. Such early determination of prey versus nonprey may be the result of speed-accuracy trade-offs in predator decision-making.  相似文献   

2.
Innate vision-based aversions to model and mimic were investigatedusing a mimicry system in which the models were ants (Formicidae),and both the mimics and the predators were jumping spiders (Salticidae).Jumping spiders are a large group of predatory invertebratesthat usually prey opportunistically on prey of similar size.We used 12 representative species from this group, the "ordinarysalticids" as predators. The mimics considered belonged to anothergroup, salticids that resemble ants. A choice arena containingan empty chamber and a stimulus chamber was used for testingpredator responses to a variety of dead arthropods (ants, antmimics, and an array of non–ant-like species) mountedin a lifelike posture. When presented with visual cues fromarthropods other than ants or ant-like salticids, naive predatorschose the empty chamber no more often than the stimulus chamber.However, when visual cues were from ants or from ant-like salticids,ordinary salticids chose the empty chamber significantly moreoften than the stimulus chamber. These findings suggest learningby the predator is not necessary in order for ant-like salticidsto gain Batesian mimicry advantages.  相似文献   

3.
A mimicry system was investigated in which the models were ants (Formicidae) and both the mimics and the predators were jumping spiders (Salticidae). By using motionless lures in simultaneous‐presentation prey‐choice tests, how the predators respond specifically to the static appearance of ants and ant mimics was determined. These findings suggest a rarely considered adaptive trade‐off for Batesian mimics of ants. Mimicry may be advantageous when it deceives ant‐averse potential predators, but disadvantageous in encounters with ant‐eating specialists. Nine myrmecophagic (ant‐eating) species (from Africa, Asia, Australia and North America) and one araneophagic (spider‐eating) species (Portia fimbriata from Queensland) were tested with ants (five species), with myrmecomorphic (ant‐like) salticids (six species of Myrmarachne) and with non‐ant‐like prey (dipterans and ordinary salticids). The araneophagic salticid chose an ordinary salticid and chose flies significantly more often than ants. Portia fimbriata also chose the ordinary salticid and chose flies significantly more often than myrmecomorphic salticids. However, there was no significant difference in how P. fimbriata responded to ants and to myrmecomorphic salticids. The myrmecophagic salticids chose ants and chose myrmecomorphic salticids significantly more often than ordinary salticids and significantly more often than flies, but myrmecophagic salticids did not respond significantly differently to myrmecomorphic salticids and ants.  相似文献   

4.
Batesian and aggressive mimicry are united by deceit: Batesian mimics deceive predators and aggressive mimics deceive prey. This distinction is blurred by Myrmarachne melanotarsa, an ant-like jumping spider (Salticidae). Besides often preying on salticids, ants are well defended against most salticids that might target them as potential prey. Earlier studies have shown that salticids identify ants by their distinctive appearance and avoid them. They also avoid ant-like salticids from the genus Myrmarachne. Myrmarachne melanotarsa is an unusual species from this genus because it typically preys on the eggs and juveniles of ant-averse salticid species. The hypothesis considered here is that, for M. melanotarsa, the distinction between Batesian and aggressive mimicry is blurred. We tested this by placing female Menemerus sp. and their associated hatchling within visual range of M. melanotarsa, its model, and various non-ant-like arthropods. Menemerus is an ant-averse salticid species. When seeing ants or ant mimics, Menemerus females abandoned their broods more frequently than when seeing non-ant-like arthropods or in control tests (no arthropods visible), as predicted by our hypothesis that resembling ants functions as a predatory ploy.  相似文献   

5.
Sexual dimorphism is pronounced in Myrmarachne, a large genus of ant-like jumping spiders (Salticidae) and one of the major animal groups in which Batesian mimicry of ants has evolved. Although adult females and juveniles of both sexes are distinctly ant-like in appearance, Myrmarachne males have elongated chelicerae that might appear to detract from their resemblance to ants. Experimental findings suggest that the Myrmarachne male's solution is to adopt compound mimicry (i.e. the male's model seems to be not simply an ant worker but a combination of an ant and something carried in the ant's mandibles: an "encumbered ant"). By becoming a mimic of a particular subset of worker ants, Myrmarachne males may have retained their Batesian-mimicry defence against ant-averse predators, but at the price of receiving the unwanted attention of predators for which encumbered ants are preferred prey. Two salticid species were used as predators in the experiments. Portia fimbriata is known to choose other salticids as preferred prey and to avoid unencumbered ants and their mimics (Myrmarachne females). In experiments reported here, P. fimbriata avoided encumbered ants and Myrmarachne males. Ants are the preferred prey of Chalcotropis gulosus. In our experiments, C. gulosus chose safer encumbered ants in preference to more dangerous unencumbered ants, chose Myrmarachne males more often than Myrmarachne females and showed no evidence of distinguishing between Myrmarachne males and encumbered ants. The cost of reconciling sexual dimorphism with Batesian mimicry appears to be that Myrmarachne males attract the unwanted attention of specialist predators of their compound model.  相似文献   

6.
Field data suggest that ants may be important predators of mantises which, in turn, may be important predators of jumping spiders (Salticidae). Using a tropical fauna from the Philippines as a case study, the reactions of mantises to ants, myrmecomorphic salticids (i.e. jumping spiders that resemble ants) and ordinary salticids (i.e. jumping spiders that do not resemble ants) were investigated in the laboratory. Three mantis species ( Loxomantis sp., Orthodera sp., and Statilia sp.) were tested with ten ant species, five species of Myrmarachne (i.e. myrmecomorphic salticids), and 23 ordinary salticid species. Two categories of the myrmecomorphic salticids were recognized: (1) 'typical Myrmarachne ' (four species with a strong resemblance to ants) and (2) Myrmarachne bakeri (a species with less strong resemblance to ants). Ants readily killed mantises in the laboratory, confirming that, for the mantises studied, ants are dangerous. In alternate-day testing, the mantises routinely preyed on the ordinary salticids, but avoided ants. The mantises reacted to myrmecomorphic salticids similarly to how they reacted to ants (i.e. myrmecomorphic salticids appear to be, for mantises, Batesian mimics of ants). Although myrmecomorphic salticids were rarely eaten, M . bakeri was eaten more often than typical Myrmarachne . Because the mantises had no prior experience with ants, ant mimics or ordinary salticids, our findings suggest that mantises have an innate aversion to attacking ants and that this aversion is generalized to myrmecomorphic salticids even in the absence of prior experience with ants. © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 88 , 23–32.  相似文献   

7.
Batesian mimics typically dupe visual predators by resembling noxious or deadly model species. Ants are unpalatable and dangerous to many arthropod taxa, and are popular invertebrate models in mimicry studies. Ant mimicry by spiders, especially jumping spiders, has been studied and researchers have examined whether visual predators can distinguish between the ant model, spider mimic and spider non‐mimics. Tropical habitats harbour a diverse community of ants, their mimics and predators. In one such tripartite mimicry system, we investigated the response of an invertebrate visual predator, the ant‐mimicking praying mantis (Euantissa pulchra), to two related ant‐mimicking spider prey of the genus Myrmarachne, each closely mimicking its model ant species. We found that weaver ants (Oecophylla smaragdina) were much more aggressive than carpenter ants (Camponotus sericeus) towards the mantis. Additionally, mantids exhibited the same aversive response towards ants and their mimics. More importantly, mantids approached carpenter ant‐mimicking spiders significantly more than often that they approached weaver ant‐mimicking spiders. Thus, in this study, we show that an invertebrate predator, the praying mantis, can indeed discriminate between two closely related mimetic prey. The exact mechanism of the discrimination remains to be tested, but it is likely to depend on the level of mimetic accuracy by the spiders and on the aggressiveness of the ant model organism.  相似文献   

8.
Batesian mimicry is seen as an example of evolution by natural selection, with predation as the main driving force. The mimic is under selective pressure to resemble its model, whereas it is disadvantageous for the model to be associated with the palatable mimic. In consequence one might expect there to be an evolutionary arms race, similar to the one involving host-parasite coevolution. In this study, the evolutionary dynamics of a Batesian mimicry system of model ants and ant-mimicking salticids is investigated by comparing the phylogenies of the two groups. Although Batesian mimics are expected to coevolve with their models, we found the phylogenetic patterns of the models and the mimics to be indicative of adaptive radiation by the mimic rather than co-speciation between the mimic and the model. This shows that there is strong selection pressure on Myrmarachne, leading to a high degree of polymorphism. There is also evidence of sympatric speciation in Myrmarachne, the reproductive isolation possibly driven by female mate choice in polymorphic species.  相似文献   

9.
 Spiders and ants are potential competitors and mutual predators. Indirect evidence from previous research has suggested that ant foraging may significantly lower the abundance of arboreal spiders in young Douglas-fir plantations in western Oregon. This study tested the effect of foraging by ants, dominated by Camponotus spp., on spider assemblages in Douglas-fir canopies in a 5-month ant-exclusion experiment. The biomass of potential prey organisms on foliage, dominated by Psocoptera, increased significantly by 1.9- to 2.4-fold following ant exclusion. The removal of ants did not affect the abundance of flying arthropods in the vicinity of tree canopies as indicated by sticky trap catches. The abundance of hunting spiders, the majority being Salticidae, increased significantly by 1.5- to 1.8-fold in trees without ants in the late summer; neither the abundance of web-building spiders nor the average body size of hunting and web-building spiders were significantly affected by ant removal. Spider diversity and community structure did not differ significantly between control and ant-removal trees. The majority of prey captured by ants were Aphidoidea (48.1%) and Psocoptera (12.5%); spiders represented only 1.4% of the ants’ diet. About 40% of observed ants were tending Cinara spp. aphids. Our observations suggest that the lower abundance of hunting spiders in control canopies with ants may be due to interference competition with ants resulting from ant foraging and aphid-tending activities. Direct predation of spiders by ants appeared to be of minor importance in this study system. This study did not provide sufficient evidence for exploitative competition for prey between ants and spiders. Received: 21 February 1996 / Accepted: 14 August 1996  相似文献   

10.
What to attack is one of the most basic decisions predators must make, and these decisions are reliant upon the predator's sensory and cognitive capacity. Active choice of spiders as preferred prey, or araneophagy, has evolved in several distantly related spider families, including jumping spiders (Salticidae), but has never been demonstrated in ant-like jumping spiders. We used prey-choice tests with motionless lures to investigate prey-choice behaviour in Myrmarachne melanotarsa , an East African ant-like salticid that normally lives in aggregations and often associates with other spider species. We show that M . melanotarsa chooses spiders as prey in preference to insects and, furthermore, discriminates between different types of spiders. Myrmarachne melanotarsa 's preferred prey were juvenile hersiliids and its second most preferred were other salticids. To date, all documented examples of araneophagic salticids have been from the basal subfamily Spartaeinae. Myrmarachne melanotarsa is the first non-spartaeine and also the first ant-like salticid for which araneophagy has been demonstrated.  相似文献   

11.
The predatory behaviour of 31 species of Myrmarachne , ant-like salticids, was studied in the laboratory and the field. The ant-like morphology and locomotion of these spiders appears to function primarily in Batesian mimicry. No evidence was found of Myrmarachne feeding on ants. However, predatory sequences were found to differ considerably from those typical of salticids. Instead of stalking and leaping on prey, Myrmarachne lunged at prey from close range. Myrmarachne used its legs I to tap prey before lunging, another unusual behaviour for a salticid. Myrmarachne fed on a wide range of arthropod prey in nature and the laboratory, but appears to be especially efficient at catching moths. Also, Myrmarachne tends to open up, or enter into, other spiders' nests and eat other spiders' eggs. Myrmarachne males were less efficient than females, in laboratory tests, at catching various types of arthropod prey, but they appear to be as efficient as females at oophagy. Myrmarachne tend to use webs of other spiders as nest sites, but no evidence was found of Myrmarachne preying on spiders in webs. It appears that the unusual features of Myrmarachne's predatory and nesting behaviour are important in enabling these spiders to preserve their ant-like appearance.  相似文献   

12.
Myrtnarachne is a genus of ant-like salticids. Eight species were observed feeding, in nature, in Australia, Kenya, Malaysia and Sri Lanka, on varied types of insects but not ants. The behaviour of M. lupata , from Australia, was studied in the laboratory. Predatory sequences were found to differ considerably from those of typical salticids. Attacking by lunging instead of leaping and the pronounced use of pre-attack tapping are especially noteworthy. The unusual behaviour of M. lupata when preying on insects is consistent with maintenance of ant mimicry. Myrmarachne lupata also preys on the eggs of other spiders which it extracts from their nests. The males of many species have very large chelicerae, and the large chelicerae of M. lupata males influence the course of predatory sequences, with insects and with eggs.  相似文献   

13.
Portia is a genus of specialized web-invading salticids that use aggressive mimicry. Some other salticids leap into webs to catch spiders but do not use aggressive mimicry. Pholcus phalangioides is a web-building spider with a special defensive behaviour—called whirling—in which it swings its body around in a circle while keeping its long legs on the silk. Pholcus phalangioides is preyed on by Portia and probably other salticid spiders in nature. Interactions between P. phalangioides and 13 species of salticids were studied in the laboratory to compare how effective salticids with different styles of predation were at catching the pholcids. Four species of Portia were studied and each was more efficient at catching P. phalangioides than were the other nine salticids tested. For one species—Portia fimbriata—individuals from three different populations were studied. The Queensland P. fimbriata used aggressive mimicry more consistently and were more efficient at catching P. phalangioides than were the other species of Portia and the other populations of P. fimbriata . The salticids that were the most efficient at catching pholcids were also better able to avoid setting off whirling by the pholcids. An experiment in which pholcids were artificially induced to whirl whenever the predator was near provided additional evidence that whirling is an effective defence of pholcids against predation by salticids.  相似文献   

14.
Biological mimicry is often multimodal, in that a mimic reinforces its resemblance to another organism via different kinds of signals that can be perceived by a specific target audience. In this paper we describe a novel scenario, in which a mimic deceives at least two distinct audiences, each of which relies primarily on a different sensory modality for decision-making. We have previously shown that Peckhamia picata, a myrmecomorphic spider that morphologically and behaviorally resembles the ant Camponotus nearcticus, experiences reduced predation by visually-oriented jumping spiders. Here we report that Peckhamia also faces reduced aggression from spider-hunting sphecid wasps as well as from its model ant, both of which use chemical cues to identify prey. We also report that Peckhamia does not chemically resemble its model ants, and that its total cuticular hydrocarbons are significantly lower than those of the ants and non-mimic spiders. Although further studies are needed to clarify the basis of Peckhamia''s chemically-mediated protection, to our knowledge, such ‘double deception,’ in which a single organism sends misleading visual cues to one set of predators while chemically misleading another set, has not been reported; however, it is likely to be common among what have until now been considered purely visual mimics.  相似文献   

15.
This paper describes the morphological and behavioural adaptations responsible for ant-like appearance in eight species (genera Zuniga, Synemosyna, Sphecotypus, and Myrmecium) of salticid and clubionid spiders studied in Amazonian and SE Brazil. All ant-mimicking spiders have body and legs thin, and the shiny integument typical of their models. Light horizontal hair bands and constrictions of the cephalothorax and abdomen simulate, respectively, the head-thorax joint and segmented gaster of ants. The petiole and postpetiole of the ants are usually mimicked by a lengthened pedicel, together with a narrowing of the posterior cephalothorax and/or anterior abdomen. The prominent pedipalps of the spiders often simulate ant mandibles, but they may also be strikingly similar to an ant's head. All ant-mimicking spiders walked in a zig-zag ant-like pattern, and frequently raised and moved about the first pair of legs as ‘antennae’. The mimics were found in the same microhabitats (foliage or ground) as their models, and displayed strong avoidance reactions toward the latter both in the field and in captivity. The inoffensive characteristics of the mimics and the noxious traits of their models (strong mandibles, potent sting, hard integument, venomous secretions) strongly suggest that the spiders are Batesian ant-mimics. The detailed structural and behavioural adaptations enhancing ant-mimicry provide strong circumstantial evidence that the selective agents involved must have good visual acuity, and are probably small insectivorous vertebrates (e.g. birds, lizards and toads) or arthropods (e.g. wasps and spiders) which avoid ants.  相似文献   

16.
Ant-eating spiders, Zodarion germanicum and Z. rubidum , were found to resemble ants structurally (size, colour, setosity) and behaviourally (ant-like movement, antennal illusion). Zodarion germanicum mimics large dark ants, such as Formica cinerea , whereas Z. rubidum resembles red ants, e.g. Myrmica sabuleti . Thus, these spiders are generalized Batesian mimics. The two spiders use aggressive mimicry during prey capture. When a spider carries a captured ant it will try to pass by approaching ants using special deceiving behaviour, which is based on imitation of ants' nestmate recognition. The spider first taps the antennae of the curious ant with its front legs (transmitting a tactile cue), then exposes its prey (the ant corpse) which the ant antennates (thus the corpse transmits an olfactory cue). The distal part of the front legs of Zodarion are almost without macrosetae similar to the antennae of ants. Additionally, all the other legs are covered with flattened incised setae, which imitate the dense setosity of ants' limbs. These remarkable microstructural imitations are believed to improve imitation of tactile signals by spiders. Moreover, by tapping, zodariids can presumably recognize the approaching intruder and decide whether to undertake the risk of deception or to run away. © 2002 The Linnean Society of London, Biological Journal of the Linnean Society , 2002, 75 , 517–532.  相似文献   

17.
Jumping spiders (Salticidae) usually avoid ants, but some specieswithin this family single out ants as preferred prey, whileothers (especially the species in the genus Myrmarachne) areBatesian mimics of ants. Field records show that ant-eatingsalticids sometimes prey on Myrmarachne, suggesting that theunwanted attention of predators that specialize on the modelmay be an important, but poorly understood, cost of Batesianmimicry. By staging encounters in the laboratory between livingant-eating salticids and Myrmarachne, we determined that ant-eatingsalticids attack Myrmarachne. However, when Myrmarachne detectsa stalking ant-eating salticid early enough, it adopts a distinctivedisplay posture (legs almost fully extended, elevated 45°,and held out to the side 45°), and this usually deters thepredator. When Myrmarachne detects an ant-eating salticid beforestalking begins, Myrmarachne makes preemptive displays thatappear to inhibit the initiation of stalking. Using immobilelures made from dead Myrmarachne that were either in a displayposture or a nondisplay posture, we ascertained that specificallythe display posture of Myrmarachne deters the initiation ofstalking (ant-eating salticids stalked nondisplaying more oftenthan displaying lures). In another experiment, we ascertainedthat it is specifically the interjection of display posturethat deters stalking. When ant-eating salticids that had alreadybegun stalking experienced lures that switched from a nondisplayto a display posture, they stopped stalking. Although the unwantedattentions of its models' predators may be, for Myrmarachne,a hidden cost of Batesian mimicry, Myrmarachne appears to havean effective defense against these predators.  相似文献   

18.
Aphantochilus rogersi is an ant-mimicking spider that preys exclusively on cephalotine ants. The spiders oviposit in close proximity to nests of the model ant Zacryptocerus pusillus , and emergent spiderlings tend to remain in the vicinity of natal egg sacs. Females of A. rogersi actively defend their egg sacs against approaching workers of Z. pusillus , but the latter may sometimes destroy the eggs. Feeding specialization on these ants is confirmed by more than 300 observation of young and adult A. rogersi carrying ant corpses in the field. Although A. rogersi possesses several behavioural traits which may reduce the risk of being injured by ants during subjugation, field and laboratory observations showed that social defence by Z. pusillus may cause mutilation to the spiders. Tests in captivity revealed an ontogenetic change in the prey-capture techniques employed by A. rogersi. Early-instar spiderlings can apparently only seize the ant's petiole tightly if they are able to approach the ant from the front. As the ant is paralysed, the spiderling positions itself vertically in relation to the substratum. Larger spiders, on the other hand, attack ants most frequently from behind, and seem better equipped to seize the ant's petiole firmly with their larger chelicerae. Owing to their greater strength, late-instar spiders are able to lift the struggling ant aloft. The selection of a suitable oviposition site, the mother's ability to defend herself and the eggs from nearby ants, and the capacity to capture and subdue ants safely from emergence to maturity, are regarded as crucial traits inherent in the mimetic and feeding specialization by A. rogersi.  相似文献   

19.
Daiqin  Li  R. R. Jackson    Bruce  Cutler 《Journal of Zoology》1996,240(3):551-562
The prey-catching techniques and prey preferences of Habrocestum pulex (Hentz), ant-eating jumping spider (Araneae: Salticidae) from North America, were studied in the laboratory. H. pulex uses prey-specific, prey-catching behaviour against ants. Ants, but not other insects, were consistently attacked head-on. After attacking an ant, but not after attacking other insects, H. pulex kept its forelegs extended laterally and forwards without touching the ground. H. pulex feeds on ants in preference to other insects. Preference for ants and prey-specific predatory behaviour do not depend on prior experience with ants. As in earlier studies of other ant-eating salticids, three different types of tests for prey preference were carried out, using active, living prey: Type 1 (one type of prey presented to salticid at a time on alternate days); Type 2 (two types of prey presented to salticid simultaneously); and Type 3 (salticid feeding on one type of prey presented with alternative prey of another type). However, newly-designed apparatus made testing more efficient. Preference for ants over other insects is shown not to depend on level of activity or any other cues from prey movement pattern: Type 1 and Type 2 tests were carried out using motionless (dead) lures, and again ants were taken in preference to other insects. Findings from this study are discussed in relation to recent findings on other ant-eating salticids.  相似文献   

20.
Abstract: As top predators, birds may have significant effects on arthropod abundances and affect the trophic structure of arthropod communities through predation of lower order predators (e.g. spiders) and by competition for prey. We investigated the effects of bird predation on canopy arthropods in south‐western Australia by using plastic bird mesh to exclude insectivorous birds from the foliage of wandoo Eucalyptus wandoo saplings. Exclosure resulted in an increase in the number of herbivorous and predatory arthropods. Total arthropods (with and without ants), spiders, adult Coleoptera, and larval Lepidoptera were significantly more abundant on meshed than unmeshed saplings. All size‐classes of arthropods, taxa grouped, were more abundant on meshed than unmeshed saplings, but with no evidence of a disproportionate increase of the largest arthropods on meshed saplings. All size‐classes of spiders increased in abundance on saplings from which birds were excluded. There were significant differences in the total abundance of arthropods (with and without ants), spiders (Araneae), sucking bugs (Homoptera), adult beetles (Coleoptera), larval moths (Lepidoptera), and wasps and ants (Hymenoptera) for both unmeshed and meshed saplings between sample periods. These seasonal patterns of abundance and differences between sample periods appeared to be determined by seasonal weather patterns, with the lowest numbers associated with drier and hotter conditions in summer and autumn than in winter and spring. The conclusion reached is that eucalypt forest birds have limited effects on temporal variation in canopy arthropod abundances, but depress abundances, and affect the size and trophic composition of the fauna. Given the cascading effects of birds as predators on arthropods, successful conservation management of eucalypt ecosystems, including plantations and revegetation, should be planned to maximize bird numbers and diversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号