共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Batesian and aggressive mimicry are united by deceit: Batesian mimics deceive predators and aggressive mimics deceive prey. This distinction is blurred by Myrmarachne melanotarsa, an ant-like jumping spider (Salticidae). Besides often preying on salticids, ants are well defended against most salticids that might target them as potential prey. Earlier studies have shown that salticids identify ants by their distinctive appearance and avoid them. They also avoid ant-like salticids from the genus Myrmarachne. Myrmarachne melanotarsa is an unusual species from this genus because it typically preys on the eggs and juveniles of ant-averse salticid species. The hypothesis considered here is that, for M. melanotarsa, the distinction between Batesian and aggressive mimicry is blurred. We tested this by placing female Menemerus sp. and their associated hatchling within visual range of M. melanotarsa, its model, and various non-ant-like arthropods. Menemerus is an ant-averse salticid species. When seeing ants or ant mimics, Menemerus females abandoned their broods more frequently than when seeing non-ant-like arthropods or in control tests (no arthropods visible), as predicted by our hypothesis that resembling ants functions as a predatory ploy. 相似文献
3.
Myrmarachne assimilis, an ant-like (myrmecomorphic) jumping spider (Araneae, Salticidae) from the Philippines, is a Batesian mimic of Oecophylla smaragdina, the Asian weaver ant. Salticids are well known for their acute eyesight and the elaborate vision-based display behaviour
they adopt during encounters with conspecific individuals, but most salticids are not myrmecomorphic. Despite its unusual
morphology, M. assimilis adopts display behaviour during intraspecific interactions that is similar to the display behaviour of more typical salticids.
The specificity with which M. assimilis deploys display behaviour is investigated and provides insights into this mimic’s ability to differentiate, by sight alone,
between models, conspecific individuals and prey. During each standardized test, an adult M. assimilis female was in a large cage along with a small transparent glass vial, a stimulus animal being enclosed in the vial such that
potential optical cues, but not potential chemical cues, were available to the tested M. assimilis individual. Depending on the test, the stimulus animal was another adult M. assimilis female, a house fly (prey) or an ant (Camponotus sp. or O. smaragdina). Only the conspecific female consistently elicited display from M. assimilis, implying that M. assimilis is a Batesian mimic that can, when relying on vision alone, discriminate between conspecific individuals, models and prey.
Received 12 June 2006; revised 22 September 2006; accepted 26 September 2006. 相似文献
4.
Batesian mimics that show similar coloration to unpalatable models gain a fitness advantage of reduced predation. Beyond physical similarity, mimics often exhibit behaviour similar to their models, further enhancing their protection against predation by mimicking not only the model''s physical appearance but also activity. In butterflies, there is a strong correlation between palatability and flight velocity, but there is only weak correlation between palatability and flight path. Little is known about how Batesian mimics fly. Here, we explored the flight behaviour of four butterfly species/morphs: unpalatable model Pachliopta aristolochiae, mimetic and non-mimetic females of female-limited mimic Papilio polytes, and palatable control Papilio xuthus. We demonstrated that the directional change (DC) generated by wingbeats and the standard deviation of directional change (SDDC) of mimetic females and their models were smaller than those of non-mimetic females and palatable controls. Furthermore, we found no significant difference in flight velocity among all species/morphs. By showing that DC and SDDC of mimetic females resemble those of models, we provide the first evidence for the existence of behavioural mimicry in flight path by a Batesian mimic butterfly. 相似文献
5.
XIMENA J. NELSON ROBERT R. JACKSON 《Biological journal of the Linnean Society. Linnean Society of London》2008,94(3):475-481
Myrmarachne assimilis , an ant-like jumping spider (Araneae, Salticidae) from the Philippines and a Batesian mimic of Oecophylla smaragdina , the Asian weaver ant, aggregates on leaves in the company of its model. All stages in this species' lifecycle are sometimes found in nest complexes (nests connected to each other by silk). Although aggregating and forming nest complexes is known for a few other salticid species, the aggregations of M. assimilis have some unusual characteristics. In particular, reproductive females appear to be most frequently found with other reproductive females in nest complexes, suggesting that nest complexes have a role in parental care and are often built by females joining other females. An egg-survival experiment showed that eggs in solitary nests were more often destroyed than were eggs in nest complexes, suggesting that, for females of M. assimilis , choosing aggregations as oviposition sites may be functionally akin to life insurance for their progeny. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 94 , 475–481. 相似文献
6.
All jumping spiders have unique, complex eyes with exceptional spatial acuity and some of the most elaborate vision-guided predatory strategies ever documented for any animal of their size. However, it is only recently that phylogenetic techniques have been used to reconstruct the relationships and key evolutionary events within the Salticidae. Here, we used data for 35 species and six genes (4.8 kb) for reconstructing the phylogenetic relationships between Spartaeinae, Lyssomaninae and Salticoida. We document a remarkable case of morphological convergence of eye ultrastructure in two clades with divergent predatory behaviour. We, furthermore, find evidence for a stepwise, gradual evolution of a complex predatory strategy. Divergent predatory behaviour ranges from cursorial hunting to building prey-catching webs and araneophagy with web invasion and aggressive mimicry. Web invasion and aggressive mimicry evolved once from an ancestral spartaeine that was already araneophagic and had no difficulty entering webs due to glue immunity. Web invasion and aggressive mimicry was lost once, in Paracyrba, which has replaced one highly specialized predation strategy with another (hunting mosquitoes). In contrast to the evolution of divergent behaviour, eyes with similarly high spatial acuity and ultrastructural design evolved convergently in the Salticoida and in Portia. 相似文献
7.
Fabien Aubret Alain Mangin 《Biological journal of the Linnean Society. Linnean Society of London》2014,113(4):1107-1114
Examples of acoustic Batesian mimicry are scarce, in contrast to visual mimicry. Here we describe a potential case of acoustic mimicry of a venomous viper model by harmless viperine snakes (colubrid). Viperine snakes resemble vipers in size, shape, colour, pattern, and anti‐predatory behaviours, including head flattening, false strikes, and hissing. We sought to investigate whether hissing evolved as part of, or separately to, the viper mimic syndrome. To do this, we recorded and analysed the hissing sounds of several individual asp vipers, viperine snakes, and grass snakes (a close relative of viperine snakes that hisses but does not mimic the asp viper). Frequencies consistently ranged from 40 to 12 000 Hz across species and individuals. All vipers (100%) and most viperine snakes (84%) produced inhalation hissing sounds, in comparison to only 25% of grass snakes. Inhalation hissing sounds lasted longer in vipers than in viperine snakes. The hissing‐sound composition of grass snakes differed significantly from that of both asp vipers and viperine snakes; however, the hissing‐sound composition between viperine snakes and asp vipers was not statistically distinguishable. Whilst grass snake hissing sounds were characterized by high frequencies (5000–10 000 Hz), both vipers and viperine snake hissing sounds were dominated by low frequencies (200–400 Hz). A principal component analysis revealed no overlap between grass snakes and vipers, but important overlaps between viperine snakes and vipers, and between viperine snakes and grass snakes. The likelihood that these overlaps respectively reflect natural selection for Batesian mimicry and phylogeny constraints is discussed. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 113 , 1107–1114. 相似文献
8.
T. Okuyama 《Population Ecology》2002,44(2):121-125
The role of direct and indirect interactions in intraguild predation (IGP) was investigated in a laboratory study. The study
system contained two spider species, Phidippus audax and Phidippus octopunctatus, and the fruit fly, Drosophila melanogaster. P. audax and P. octopunctatus eat D. melanogaster. P. audax (top predators) also eat P. octopunctatus (intermediate predators). Thus, P. audax and P. octopunctatus compete for the shared resource and also interact as predator and prey. Experiments consisted of two treatments: risk-IGP
and full-IGP. In the risk-IGP treatments, I examined the effects of trait-mediated indirect effects generated by antipredator
behavior of P. octopunctatus on the survival of fruit flies. P. audax chelicerae were waxed so that P. audax could not attack a prey. The result indicated a significant positive indirect effect of P. audax on the survival of D. melanogaster due to the antipredator behavior of P. octopunctatus (a trait-mediated indirect effect). In the full-IGP treatments, P. audax chelicerae were not restricted, so that it could attack prey; this resulted in decreased survival of D. melanogaster. Because of predation of P. audax on P. octopunctatus, even stronger positive interactions occurred between P. audax and D. melanogaster in full-IGP than in risk-IGP.
Received: May 7, 2002 / Accepted: June 27, 2002 相似文献
9.
Batesian mimicry is seen as an example of evolution by natural selection, with predation as the main driving force. The mimic is under selective pressure to resemble its model, whereas it is disadvantageous for the model to be associated with the palatable mimic. In consequence one might expect there to be an evolutionary arms race, similar to the one involving host-parasite coevolution. In this study, the evolutionary dynamics of a Batesian mimicry system of model ants and ant-mimicking salticids is investigated by comparing the phylogenies of the two groups. Although Batesian mimics are expected to coevolve with their models, we found the phylogenetic patterns of the models and the mimics to be indicative of adaptive radiation by the mimic rather than co-speciation between the mimic and the model. This shows that there is strong selection pressure on Myrmarachne, leading to a high degree of polymorphism. There is also evidence of sympatric speciation in Myrmarachne, the reproductive isolation possibly driven by female mate choice in polymorphic species. 相似文献
10.
11.
The comimetic Heliconius butterfly species pair, H. erato and H. melpomene, appear to use a conserved Mendelian switch locus to generate their matching red wing patterns. Here we investigate whether H. cydno and H. pachinus, species closely related to H. melpomene, use this same switch locus to generate their highly divergent red and brown color pattern elements. Using an F2 intercross between H. cydno and H. pachinus, we first map the genomic positions of two novel red/brown wing pattern elements; the G locus, which controls the presence of red vs brown at the base of the ventral wings, and the Br locus, which controls the presence vs absence of a brown oval pattern on the ventral hind wing. The results reveal that the G locus is tightly linked to markers in the genomic interval that controls red wing pattern elements of H. erato and H. melpomene. Br is on the same linkage group but approximately 26 cM away. Next, we analyze fine-scale patterns of genetic differentiation and linkage disequilibrium throughout the G locus candidate interval in H. cydno, H. pachinus and H. melpomene, and find evidence for elevated differentiation between H. cydno and H. pachinus, but no localized signature of association. Overall, these results indicate that the G locus maps to the same interval as the locus controlling red patterning in H. melpomene and H. erato. This, in turn, suggests that the genes controlling red pattern elements may be homologous across Heliconius, supporting the hypothesis that Heliconius butterflies use a limited suite of conserved genetic switch loci to generate both convergent and divergent wing patterns. 相似文献
12.
Assassin bugs (Stenolemus bituberus) hunt web-building spiders by invading the web and plucking the silk to generate vibrations that lure the resident spider into striking range. To test whether vibrations generated by bugs aggressively mimic the vibrations generated by insect prey, we compared the responses of spiders to bugs with how they responded to prey, courting male spiders and leaves falling into the web. We also analysed the associated vibrations. Similar spider orientation and approach behaviours were observed in response to vibrations from bugs and prey, whereas different behaviours were observed in response to vibrations from male spiders and leaves. Peak frequency and duration of vibrations generated by bugs were similar to those generated by prey and courting males. Further, vibrations from bugs had a temporal structure and amplitude that were similar to vibrations generated by leg and body movements of prey and distinctly different to vibrations from courting males or leaves, or prey beating their wings. To be an effective predator, bugs do not need to mimic the full range of prey vibrations. Instead bugs are general mimics of a subset of prey vibrations that fall within the range of vibrations classified by spiders as 'prey'. 相似文献
13.
Nicolas J. Vereecken Achik Dorchin Amots Dafni Susann H?tling Stefan Schulz Stella Watts 《Annals of botany》2013,111(6):1155-1165
Background and Aims
‘Human-red’ flowers are traditionally considered to be rather unpopular with bees, yet some allogamous species in the section Oncocyclus (genus Iris, Iridaceae) have evolved specialized interactions with their pollinators, a narrow taxonomic range of male solitary bees. The dark-red, tubular flowers of these irises are nectarless but provide protective shelters (i.e. a non-nutritive form of reward) primarily to male solitary bees (Apidae, Eucerini) that pollinate the flowers while looking for a shelter. An earlier study on orchids suggested that species pollinated predominantly by male solitary bees produce significantly larger amounts and larger numbers of different n-alkenes (unsaturated cuticular hydrocarbons). Whether or not this also applies to the Oncocyclus irises and whether pollinators are attracted by specific colours or scents of these flowers is unknown.Methods
Using Iris atropurpurea, recording of pollinator preferences for shelters with different spatial parameters was combined with analyses of floral colours (by spectrophotometry) and scents (by gas chromatography–mass spectrometry) to test the hypotheses that (a) pollinators significantly prefer floral tunnels facing the rising sun (floral heat-reward hypothesis), and that (b) flowers pollinated predominantly by male solitary bees produce significantly larger amounts and larger numbers of unsaturated cuticular hydrocarbons (n-alkenes) in their floral scent (preadaptation to sexual-deception hypothesis).Key Results
Male bees do not significantly prefer shelters facing the rising sun or with the presence of high absolute/relative amounts and numbers of n-alkenes in the floral scent.Conclusions
The results suggest that the flowers of I. atropurpurea probably evolved by pollinator-mediated selection acting primarily on floral colours to mimic large achromatic (‘bee-black’) protective shelters used preferentially by male solitary bees, and that pollinator visits are presumably not the result of an odour-based sexual stimulation or motivated by an increased morning floral heat reward in tunnels facing the rising sun. 相似文献14.
R. R. Jackson 《New Zealand journal of zoology.》2013,40(3-4):99-111
Abstract Conditional strategies and interpopulation variation in the mating and predatory behaviour of salticid spiders are reviewed. A functional approach is adopted, and defended, in which specified behavioural phenotypes are accounted for, in large part, by specified selection factors. Courtship versatility, in which a male's behaviour depends on the female's maturity and location, is common in the Salticidae. If a male encounters an adult female in the open, where there is ample ambient light, he performs vision-dependent displays (Type 1 courtship) in front of her. If he encounters an adult female inside her nest, he uses different displays (Type 2 courtship) which are not vision–dependent and consist of various tugging, probing and jerking movements on the silk of the nest. These displays apparently send vibratory stimuli to the female. When a male encounters a subadult female inside her nest, he initially performs Type 2 courtship, then spins a second chamber on the nest and cohabits until the female moults and matures. A modification of optimal foraging theory has been used to examine factors that influence interpopulation variation in male courtship persistence. A study of five populations corroborated predictions from the model. Persistence appears to be related to female availability. Female availability is related to local phenology, which is, in turn, related to local climate. Complex examples of predatory versatility also have evolved in the Salticidae, especially in the genus Portia. All species of Portia studied are araneophagic spiders that invade other spiders' webs and practise aggressive mimicry. Portia fimbriata, uniquely among Portia species studied, uses specialised behaviour to prey on other salticids. Portia fimbriata and one of the salticids on which it preys, Euryattus sp., appear to be co-adapted to each other. 相似文献
15.
D.P. Croft S.K. Darden G.D. Ruxton 《Proceedings. Biological sciences / The Royal Society》2009,276(1663):1899-1904
Frequency-dependent predation has been proposed as a general mechanism driving the phenotypic assortment of social groups via the ‘oddity effect’, which occurs when the presence of odd individuals in a group allows a predator to fixate on a single prey item, increasing the predator''s attack-to-kill ratio. However, the generality of the oddity effect has been debated and, previously, there has not been an ecological assessment of the role of predation risk in driving the phenotypic assortment of social groups. Here, we compare the levels of body length assortment of social groups between populations of the Trinidadian guppy (Poecilia reticulata) that experience differences in predation risk. As predicted by the oddity effect hypothesis, we observe phenotypic assortment by body length to be greater under high predation risk. However, we found that a number of low-predation populations were also significantly assorted by body length, suggesting that other mechanisms may have a role to play. 相似文献
16.
Nicolas Boileau Fabio Cortesi Bernd Egger Moritz Muschick Adrian Indermaur Anya Theis Heinz H. Büscher Walter Salzburger 《Biology letters》2015,11(9)
Aggressive mimicry is an adaptive tactic of parasitic or predatory species that closely resemble inoffensive models in order to increase fitness via predatory gains. Although similarity of distantly related species is often intuitively implicated with mimicry, the exact mechanisms and evolutionary causes remain elusive in many cases. Here, we report a complex aggressive mimicry strategy in Plecodus straeleni, a scale-eating cichlid fish from Lake Tanganyika, which imitates two other cichlid species. Employing targeted sequencing on ingested scales, we show that P. straeleni does not preferentially parasitize its models but—contrary to prevailing assumptions—targets a variety of co-occurring dissimilar looking fish species. Combined with tests for visual resemblance and visual modelling from a prey perspective, our results suggest that complex interactions among different cichlid species are involved in this mimicry system. 相似文献
17.
Background and Aims
Sexually deceptive orchids achieve cross-pollination by mimicking the mating signals of female insects, generally hymenopterans. This pollination mechanism is often highly specific as it is based primarily on the mimicry of mating signals, especially the female sex pheromones of the targeted pollinator. Like many deceptive orchids, the Mediterranean species Ophrys arachnitiformis shows high levels of floral trait variation, especially in the colour of the perianth, which is either green or white/pinkinsh within populations. The adaptive significance of perianth colour polymorphism and its influence on pollinator visitation rates in sexually deceptive orchids remain obscure.Methods
The relative importance of floral scent versus perianth colour in pollinator attraction in this orchid pollinator mimicry system was evaluated by performing floral scent analyses by gas chromatography-mass spectrometry (GC-MS) and behavioural bioassays with the pollinators under natural conditions were performed.Key Results
The relative and absolute amounts of behaviourally active compounds are identical in the two colour morphs of O. arachnitiformis. Neither presence/absence nor the colour of the perianth (green versus white) influence attractiveness of the flowers to Colletes cunicularius males, the main pollinator of O. arachnitiformis.Conclusion
Chemical signals alone can mediate the interactions in highly specialized mimicry systems. Floral colour polymorphism in O. arachnitiformis is not subjected to selection imposed by C. cunicularius males, and an interplay between different non-adaptive processes may be responsible for the maintenance of floral colour polymorphism both within and among populations. 相似文献18.
The proximate mechanisms underlying the evolution and maintenance of within-sex variation in mating behaviour are still poorly understood. Species characterized by alternative reproductive tactics provide ideal opportunities to investigate such mechanisms. Bluegill (Lepomis macrochirus) are noteworthy in this regard because they exhibit two distinct cuckolder (parasitic) morphs (called sneaker and satellite) in addition to the parental males that court females. Here we confirm previous findings that spawning cuckolder and parental males have significantly different levels of testosterone and 11-ketotestosterone. We also report, for the first time, that oestradiol and cortisol levels are higher in cuckolders than in parental males. The two cuckolder morphs did not differ in average levels of any of the four hormones. However, among satellite males which mimic females in appearance and behaviour, there was a strong negative relationship between oestradiol levels and body length, a surrogate for age. This finding suggests that for satellite males, oestradiol dependency of mating behaviour decreases with increasing mating experience. Although such decreased hormone dependence of mating behaviour has been reported in other taxa, our data represent the first suggestion of the relationship in fishes. 相似文献
19.
Daniela H. Palmer Yue Qian Tan Susan D. Finkbeiner Adriana D. Briscoe Antónia Monteiro Marcus R. Kronforst 《Ecology and evolution》2018,8(15):7657-7666
The swallowtail butterfly Papilio polytes is known for its striking resemblance in wing pattern to the toxic butterfly Pachliopta aristolochiae and is a focal system for the study of mimicry evolution. Papilio polytes females are polymorphic in wing pattern, with mimetic and nonmimetic forms, while males are monomorphic and nonmimetic. Past work invokes selection for mimicry as the driving force behind wing pattern evolution in P. polytes. However, the mimetic relationship between P. polytes and P. aristolochiae is not well understood. In order to test the mimicry hypothesis, we constructed paper replicas of mimetic and nonmimetic P. polytes and P. aristolochiae, placed them in their natural habitat, and measured bird predation on replicas. In initial trials with stationary replicas and plasticine bodies, overall predation was low and we found no differences in predation between replica types. In later trials with replicas mounted on springs and with live mealworms standing in for the butterfly's body, we found less predation on mimetic P. polytes replicas compared to nonmimetic P. polytes replicas, consistent with the predator avoidance benefits of mimicry. While our results are mixed, they generally lend support to the mimicry hypothesis as well as the idea that behavioral differences between the sexes contributed to the evolution of sexually dimorphic mimicry. 相似文献
20.
Batesian mimics-benign species that predators avoid because they resemble a dangerous species-often vary geographically in resemblance to their model. Such geographical variation in mimic-model resemblance may reflect geographical variation in model abundance. Natural selection should favour even poor mimics where their model is common, but only good mimics where their model is rare. We tested these predictions in a snake-mimicry complex where the geographical range of the mimic extends beyond that of its model. Mimics on the edge of their model's range (where the model was rare) resembled the model more closely than did mimics in the centre of their model's range (where the model was common). When free-ranging natural predators on the edge of the model's range were given a choice of attacking replicas of good or poor mimics, they avoided only good mimics. By contrast, those in the centre of the model's range attacked good and poor mimics equally frequently. Generally, although poor mimics may persist in areas where their model is common, only the best mimics should occur in areas where their model is rare. Thus, counter-intuitively, the best mimics may occur on the edge of their model's range. 相似文献