首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
Pathogenicity Islands play a major role in the pathogenesis of infections by Salmonella enterica. The molecular function of Salmonella Pathogenicity Island 4 (SPI4) is largely unknown, but recent work indicated a role of SPI4 for Salmonella pathogenesis in certain animal models. We analysed the virulence functions of SPI4 and observed that SPI4 is contributing to intestinal inflammation in a mouse model. On a cellular level, SPI4 mediates adhesion to epithelial cells. We demonstrate the function of SPI4-encoded proteins as a type I secretion system (T1SS) and identify SiiE as the substrate protein of the T1SS. SiiE is secreted into the culture medium but mediates contact-dependent adhesion to epithelial cell surfaces. SiiE is a very large non-fimbrial adhesin of 600 kDa and consists of 53 repeats of Ig domains. Our study describes the first T1SS-secreted protein that functions as a non-fimbrial adhesin in binding to eukaryotic cells. The SPI4-encoded T1SS and SiiE might functionally resemble the type I fimbrial adhesins.  相似文献   

2.
The invasion of polarized epithelial cells by Salmonella enterica requires the cooperative activity of the Salmonella pathogenicity island (SPI) 1‐encoded type III secretion system (T3SS) and the SPI4‐encoded giant non‐fimbrial adhesin SiiE. SiiE is a highly repetitive protein composed of 53 bacterial Ig (BIg) domains and mediates binding to the apical side of polarized epithelial cells. We analysed the binding properties of SiiE and observed lectin‐like activity. SiiE‐dependent cell invasion can be ablated by chemical or enzymatic deglycosylation. Lectin blockade experiments revealed that SiiE binding is specific for glycostructures with terminal N‐acetyl‐glucosamine (GlcNAc) and/or α 2,3‐linked sialic acid. In line with these data, we found that SiiE‐expressing Salmonella bind to the GlcNAc polymer chitin. Various recombinant SiiE fragments were analysed for host cell binding. We observed that C‐terminal portions of SiiE bind to the apical side of polarized cells and the intensity of binding increases with the number of BIg domains present in the recombinant proteins. Based on these results, we propose that SiiE mediates multiple interactions per molecule with glycoproteins and/or glycosylated phospholipids present in the apical membrane of polarized epithelial cells. Thisintimate binding enables the subsequent function of the SPI1‐T3SS, resulting in host cell invasion.  相似文献   

3.
The giant non‐fimbrial adhesin SiiE is essential to establish intimate contact between Salmonella enterica and the apical surface of polarized epithelial cells. SiiE is secreted by a type I secretion system (T1SS) encoded by Salmonella Pathogenicity Island 4 (SPI4). We identified SiiA and SiiB as two regulatory proteins encoded by SPI4. Mutant strains in siiA or siiB still secrete SiiE, but are highly reduced in adhesion to, and invasion of polarized cells. SiiA and SiiB are inner membrane proteins with one and three transmembrane (TM) helices respectively. TM2 and TM3 of SiiB are similar to members of the ExbB/TolQ family, while the TM of SiiA is similar to MotB and a conserved aspartate residue in this TM is essential for SPI4‐encoded T1SS function. Co‐immunoprecipitation, bacterial two‐hybrid and FRET demonstrate homo‐ and heterotypic protein interactions for SiiA and SiiB. SiiB, but not SiiA also interacts with the SPI4‐T1SS ATPase SiiF. The integrity of the Walker A box in SiiF was required for SiiB–SiiF interactionand SiiF dimer formation. Based on these data, we describe SiiA and SiiB as new, exclusively virulence‐associated members of the Mot/Exb/Tol family of membrane proteins. Both proteins are involved in a novel mechanism of controlling SPI4‐T1SS‐dependent adhesion, most likely by formation of a proton‐conducting channel.  相似文献   

4.
Salmonella invasion is mediated by a concerted action of the Salmonella pathogenicity island 4 (SPI4)‐encoded type one secretion system (T1SS) and the SPI1‐encoded type three secretion system (T3SS‐1). The SPI4‐encoded T1SS consists of five proteins (SiiABCDF) and secretes the giant adhesin SiiE. Here, we investigated structure–function relationships in SiiA, a non‐canonical T1SS subunit. We show that SiiA consists of a membrane domain, an intrinsically disordered periplasmic linker region and a folded globular periplasmic domain (SiiA‐PD). The crystal structure of SiiA‐PD displays homology to that of MotB and other peptidoglycan (PG)‐binding domains. SiiA‐PD binds PG in vitro, albeit at an acidic pH, only. Mutation of Arg162 impedes PG binding of SiiA and reduces Salmonella invasion efficacy. SiiA forms a complex with SiiB at the inner membrane (IM), and the observed SiiA‐MotB homology is paralleled by a predicted SiiB‐MotA homology. We show that, similar to MotAB, SiiAB translocates protons across the IM. Mutating Asp13 in SiiA impairs proton translocation. Overall, SiiA shares numerous properties with MotB. However, MotAB uses the proton motif force (PMF) to energize the bacterial flagellum, it remains to be shown how usage of the PMF by SiiAB assists T1SS function and Salmonella invasion.  相似文献   

5.
Invasion is an important microbial virulence strategy to overcome the barrier formed by polarized epithelial cells. Salmonella enterica is a food-borne pathogen that deploys a type III secretion system for the manipulation of the actin cytoskeleton and to trigger internalization into epithelial cells. Here we show that this function is not sufficient to enter polarized cells and report that penetration of epithelia from the luminal side requires both the type III secretion system and novel virulence functions conferred by Salmonella pathogenicity island 4. Salmonella pathogenicity island 4 encodes a type I secretion system for the giant non-fimbrial adhesin SiiE that mediates intimate contact of Salmonella to microvilli on the apical membrane. Mutant strains lacking SiiE fail to invade polarized cells, to destroy epithelial barrier functions and to efface the apical brush border. Deletion analyses of repetitive domains in SiiE indicate that the large size of the adhesin is of functional importance. Our observations demonstrate that efficient penetration of epithelial barriers requires the cooperative activity of two Salmonella pathogenicity islands encoding different secretion systems. These findings underline the role of the epithelial brush border and reveal a new mechanism used by bacterial pathogens to overcome this barrier.  相似文献   

6.
7.
Salmonella enterica employs two type III secretion systems (T3SS) for interactions with host cells during pathogenesis. The T3SS encoded by Salmonella pathogenicity island 2 (SPI2) is required for the intracellular replication of Salmonella and the survival inside phagocytes. During growth in vitro, acidic pH is a signal that promotes secretion of proteins by this T3SS. We analyzed protein levels and subcellular localization of various T3SS subunits under in vitro conditions at acidic or neutral pH, inducing or ablating secretion, respectively. Growth at acidic pH resulted in higher levels of SsaC, a protein forming the outer membrane secretin, without increasing expression of the operon containing ssaC. Acidic pH also induced oligomerization of SsaC subunits, a prerequisite for a functional secretin pore. It has previously been described that environmental stimuli resembling the intraphagosomal habitat of Salmonella control the expression of SPI2 genes. Here we propose that such stimuli also modulate the assembly of a functional T3SS that is capable of translocation of effector proteins into the host cell.  相似文献   

8.
The type III secretion system (T3SS) encoded by Salmonella Pathogenicity Island 2 (SPI2) is essential for virulence and intracellular proliferation of Salmonella enterica. We have previously identified SPI2-encoded proteins that are secreted and function as a translocon for the injection of effector proteins. Here, we describe the formation of a novel SPI2-dependent appendage structure in vitro as well as on the surface of bacteria that reside inside a vacuole of infected host cells. In contrast to the T3SS of other pathogens, the translocon encoded by SPI2 is only present singly or in few copies at one pole of the bacterial cell. Under in vitro conditions, appendages are composed of a filamentous needle-like structure with a diameter of 10 nm that was sheathed with secreted protein. The formation of the appendage in vitro is dependent on acidic media conditions. We analyzed SPI2-encoded appendages in infected cells and observed that acidic vacuolar pH was not required for induction of SPI2 gene expression, but was essential for the assembly of these structures and their function as translocon for delivery of effector proteins.  相似文献   

9.
A prerequisite for Salmonella enterica to cause both intestinal and systemic disease is the direct injection of effector proteins into host intestinal epithelial cells via a type three secretion system (T3SS); the T3SS genes are carried on Salmonella pathogenicity island 1 (SPI1). These effector proteins induce inflammatory diarrhea and bacterial invasion. Expression of the SPI1 T3SS is tightly regulated in response to environmental signals through a variety of global regulatory systems. We have previously shown that three AraC-like regulators, HilD, HilC, and RtsA, act in a complex feed-forward regulatory loop to control the expression of the hilA gene, which encodes the direct regulator of the SPI1 structural genes. In this work, we characterize a major positive regulator of this system, the flagellar protein FliZ. Through genetic and biochemical analyses, we show that FliZ posttranslationally controls HilD to positively regulate hilA expression. This mechanism is independent of other flagellar components and is not mediated through the negative regulator HilE or through FliZ-mediated RpoS regulation. We demonstrate that FliZ controls HilD protein activity and not stability. FliZ regulates HilD in the absence of Lon protease, previously shown to degrade HilD. Indeed, it appears that FliZ, rather than HilD, is the most relevant target of Lon as it relates to SPI1 expression. Mutants lacking FliZ are significantly attenuated in their ability to colonize the intestine but are unaffected during systemic infection. The intestinal attenuation is partially dependent on SPI1, but FliZ has additional pleiotropic effects.  相似文献   

10.

Background  

Type III secretion systems (T3SS) are essential virulence factors of most Gram-negative bacterial pathogens. T3SS deliver effector proteins directly into the cytoplasm of eukaryotic target cells and for this function, the insertion of a subset of T3SS proteins into the target cell membrane is important. These proteins form hetero-oligomeric pores acting as translocon for the delivery of effector proteins. Salmonella enterica is a facultative intracellular pathogen that uses the Salmonella Pathogenicity Island 2 (SPI2)-encoded T3SS to manipulate host cells in order to survive and proliferate within the Salmonella-containing vacuole of host cells. Previous work showed that SPI2-encoded SseB, SseC and SseD act to form the translocon of the SPI2-T3SS.  相似文献   

11.
12.
Salmonella harbors two type III secretion systems, T3SS1 and T3SS2, encoded on the pathogenicity islands SPI1 and SPI2, respectively. Several effector proteins are secreted through these systems into the eukaryotic host cells. PipB2 is a T3SS2 effector that contributes to the modulation of kinesin-1 motor complex activity. Here, we show that PipB2 is also a substrate of T3SS1. This result was obtained infecting human epithelial HeLa cells for 2 h and was confirmed in murine RAW264.7 macrophages, and rat NRK fibroblasts. Analysis at different time points after infection revealed that translocation of PipB2 is T3SS1-dependent in epithelial cells throughout the infection. In contrast, translocation into macrophages is T3SS1-dependent during invasion but T3SS2-dependent at later time points. The N-terminal 10 amino acid residues contain the signal necessary for translocation through both systems. These results confirm the functional overlap between these virulence-related secretion systems and suggest a new role for the effector PipB2.  相似文献   

13.
14.
Intracellular survival and replication within eukaryotic host cells is of central importance for the pathogenesis of infections caused by Salmonella enterica. Intracellular Salmonella translocates a set of effector proteins by means of a type III secretion system (T3SS) encoded by Salmonella pathogenicity island 2 (SPI2) that manipulates normal host-cell functions. Intracellular survival and replication is linked to the function of the SPI2-T3SS, but recent observations show that many additional cellular functions are targeted by this virulence system. In this review, we focus on the recent observations on the interference of intracellular Salmonella with functions of the innate and adaptive immune system and the modification of endocytic and exocytic cellular transport. The common molecular basis of the different SPI2-dependent phenotypes could be the interference with cellular transport along microtubules.  相似文献   

15.
A key feature of the virulence of many bacterial pathogens is the ability to deliver effector proteins into eukaryotic cells via a dedicated type three secretion system (T3SS). Many bacterial pathogens, including species of Chlamydia, Xanthomonas, Pseudomonas, Ralstonia, Shigella, Salmonella, Escherichia and Yersinia, depend on the T3SS to cause disease. T3SS effectors constitute a large and diverse group of virulence proteins that mimic eukaryotic proteins in structure and function. A salient feature of bacterial effectors is their modular architecture, comprising domains or motifs that confer an array of subversive functions within the eukaryotic cell. These domains/motifs therefore represent a fascinating repertoire of molecular determinants with important roles during infection. This review provides a snapshot of our current understanding of bacterial effector domains and motifs where a defined role in infection has been demonstrated.  相似文献   

16.
17.
18.
The type III secretion system encoded by Salmonella pathogenicity island 2 (SPI2) is required for systemic infections and intracellular accumulation of Salmonella enterica. This system is induced by intracellular Salmonella and subsequently transfers effector proteins into the host cell. Growth conditions either inducing expression of the type III secretion system or the secretion of substrate proteins were defined. Here we report the identification of a set of substrate proteins consisting of SseB, SseC, and SseD that are secreted by the SPI2 system in vitro. Secretion was observed if bacterial cells were exposed to acidic pH after growth in minimal medium with limitation of Mg(2+) or phosphate. SseB, -C, and -D were isolated in a fraction detached from the bacterial cell surface by mechanical shearing, indicating that these proteins are predominantly assembled into complexes on the bacterial cell surface. The three proteins were required for the translocation of SPI2 effector proteins SspH1 and SspH2 into infected host cells. Thus, SseB, SseC, and SseD function as the translocon for effector proteins by intracellular Salmonella.  相似文献   

19.
Intracellular replication of Salmonella enterica requires the formation of a unique organelle termed Salmonella-containing vacuole (SCV). The type III secretion system (T3SS) encoded by Salmonella Pathogenicity Island 2 (SPI2-T3SS) has a crucial role in the formation and maintenance of the SCV. The SPI2-T3SS translocates a large number of effector proteins that interfere with host cell functions such as microtubule-dependent transport. We investigated the function of the effector SseF and observed that this protein is required to maintain the SCV in a juxtanuclear position in infected epithelial cells. The formation of juxtanuclear clusters of replicating Salmonella required the recruitment of dynein to the SCV but SseF-deficient strains were highly reduced in dynein recruitment to the SCV. We performed a functional dissection of SseF and defined domains that were important for translocation and the specific effector functions of this protein. Of particular importance was a hydrophobic domain in the C-terminal half that contains three putative transmembrane (TM) helices. Deletion of one of these TM helices ablated the effector functions of SseF. We observed that this domain was essential for the proper intracellular positioning of the SCV to a juxtanuclear, Golgi-associated localization. These data show that SseF, in concert with the effector proteins SifA and SseG mediate the precise positioning of the SCV by differentially modulating the recruitment of microtubule motor proteins to the SCV.  相似文献   

20.
Salmonella enterica serovar Typhimurium (S. Typhimurium) is a Gram-negative facultative food-borne pathogen that causes gastroenteritis in humans. This bacterium has evolved a sophisticated machinery to alter host cell function critical to its virulence capabilities. Central to S. Typhimurium pathogenesis are two Type III secretion systems (T3SS) encoded within pathogenicity islands SPI-1 and SPI-2 that are responsible for the secretion and translocation of a set of bacterial proteins termed effectors into host cells with the intention of altering host cell physiology for bacterial entry and survival. Thus, once delivered by the T3SS, the secreted effectors play critical roles in manipulating the host cell to allow for bacteria invasion, induction of inflammatory responses, and the assembly of an intracellular protective niche created for bacterial survival and replication. Emerging evidence indicates that these effectors are modular proteins consisting of distinct functional domains/motifs that are utilized by the bacteria to activate intracellular signalling pathways modifying host cell function. Also, recently reported are the dual functionality of secreted effectors and the concept of 'terminal reassortment'. Herein, we highlight some of the nascent concepts regarding Salmonella effectors in the context of infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号