首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Many monophagous animals have coevolutionary relationships with bacteria that provide unavailable nutrients to the host. Frequently, these microbial partners are vertically inherited and reside in specialized structures or tissues. Here we report three new lineages of bacterial symbionts of blood-feeding leeches, one from the giant Amazonian leech, Haementeria ghilianii, and two others from Placobdelloides species. These hosts each possess a different mycetome or esophageal organ morphology where the bacterial cells are located. DNA sequencing of the bacterial 16S rRNA genes and fluorescent in situ hybridization placed these symbionts in two separate clades in the class Gammaproteobacteria. We also conducted a broad phylogenetic analysis of the herein-reported DNA sequences as well as others from bacterial symbionts reported elsewhere in the literature, including alphaproteobacterial symbionts from the leech genus Placobdella as well as Aeromonas veronii from the medicinal leech, Hirudo medicinalis, and a Rickettsia sp. detected in Hemiclepsis marginata. Combined, these results indicate that blood-feeding leeches have forged bacterial partnerships at least five times during their evolutionary history.  相似文献   

3.
Several insect groups have obligate, vertically transmitted bacterial symbionts that provision hosts with nutrients that are limiting in the diet. Some of these bacteria have been shown to descend from ancient infections. Here we show that the large group of related insects including cicadas, leafhoppers, treehoppers, spittlebugs, and planthoppers host a distinct clade of bacterial symbionts. This newly described symbiont lineage belongs to the phylum Bacteroidetes. Analyses of 16S rRNA genes indicate that the symbiont phylogeny is completely congruent with the phylogeny of insect hosts as currently known. These results support the ancient acquisition of a symbiont by a shared ancestor of these insects, dating the original infection to at least 260 million years ago. As visualized in a species of spittlebug (Cercopoidea) and in a species of sharpshooter (Cicadellinae), the symbionts have extraordinarily large cells with an elongate shape, often more than 30 mum in length; in situ hybridizations verify that these correspond to the phylum Bacteroidetes. "Candidatus Sulcia muelleri" is proposed as the name of the new symbiont.  相似文献   

4.
The medicinal leech, Hirudo verbana, is one of the simplest naturally occurring models for digestive-tract symbioses, where only two bacterial species, Aeromonas veronii bv. sobria (gamma-Proteobacteria) and a Rikenella-like bacterium (Bacteroidetes), colonize the crop, the largest compartment of the leech digestive tract. In this study, we investigated spatial and temporal changes of the localization and microcolony structure of the native symbionts in the crop, after ingestion of a sterile blood meal, by fluorescence in situ hybridization. The population dynamics differed between the two symbiotic bacteria. A. veronii was detected mainly as individual cells inside the intraluminal fluid (ILF) during 14 days after feeding (daf) unless it was found in association with Rikenella microcolonies. The Rikenella-like bacteria were observed not only inside the ILF but also in association with the luminal surface of the crop epithelium. The sizes of Rikenella microcolonies changed dynamically through the 14-day period. From 3 daf onward, mixed microcolonies containing both species were frequently observed, with cells of both species tightly associating with each other. The sizes of the mixed microcolonies were consistently larger than the size of either single-species microcolony, suggesting a synergistic interaction of the symbionts. Lectin staining with succinylated wheat germ agglutinin revealed that the planktonic microcolonies present in the ILF were embedded in a polysaccharide matrix containing N-acetylglucosamine. The simplicity, symbiont-symbiont interaction, and mixed microcolonies of this naturally occurring, digestive-tract symbiosis lay the foundation for understanding the more complex communities residing in most animals.  相似文献   

5.
Bacterial endosymbionts of free-living amoebae   总被引:1,自引:0,他引:1  
The occurrence of bacterial endosymbionts in free-living amoebae has been known for decades, but their obligate intracellular lifestyle hampered their identification. Application of the full cycle rRNA approach, including 16S rRNA gene sequencing and fluorescence in-situ hybridization with 16S rRNA-targeted oligonucleotide probes, assigned the symbionts of Acanthamoeba spp. and Hartmannella sp. to five different evolutionary lineages within the Proteobacteria, the Bacteroidetes, and the Chlamydiae, respectively. Some of these bacterial symbionts are most closely related to bacterial pathogens of humans, and it has been suggested that they should be considered potential emerging pathogens. Complete genome sequence analysis of a chlamydia-related symbiont of Acanthamoeba sp. showed that this endosymbiont uses similar mechanisms for interaction with its eukaryotic host cell as do the well-known bacterial pathogens of humans. Furthermore, phylogenetic analysis suggested that these mechanisms have been evolved by the ancestor of these amoeba symbionts in interplay with ancient unicellular eukaryotes.  相似文献   

6.
Xenorhabdus spp., are gram-negative bacterial symbionts of entomopathogenic nematodes in the genus Steinernema. A specialized and intimate relationship exists between nematode and bacteria, affecting many of their life history traits, such as nutrition, dispersal, host-finding, foraging and defense from biotic and abiotic factors. Xenorhabdus currently comprises more than 20 species isolated from Steinernema spp. with diverse host range, host foraging behavior, reproductive modes and environmental tolerance. Xenorhabdus phylogenies have historically been based on 16s rDNA sequence analyses, and only recently has data from housekeeping genes been employed. The prevalence of lateral gene transfer among bacteria calls for a wider perspective when considering their phylogeny. With the increasing number of Xenorhabdus species and strains, various perspectives need to be considered for investigating the evolutionary history of these nematode bacterial symbionts, In this study, we reconstruct the evolutionary histories of 30 species of Xenorhabdus considering the traditional 16s rDNA gene region as well as the housekeeping genes recA and serC. Datasets were analyzed individually and then combined, using a variety of phylogenetic criteria.  相似文献   

7.
Many plant-sap-feeding insects have maintained a single, obligate, nutritional symbiont over the long history of their lineage. This senior symbiont may be joined by one or more junior symbionts that compensate for gaps in function incurred through genome-degradative forces. Adelgids are sap-sucking insects that feed solely on conifer trees and follow complex life cycles in which the diet fluctuates in nutrient levels. Adelgids are unusual in that both senior and junior symbionts appear to have been replaced repeatedly over their evolutionary history. Genomes can provide clues to understanding symbiont replacements, but only the dual symbionts of hemlock adelgids have been examined thus far. Here, we sequence and compare genomes of four additional dual-symbiont pairs in adelgids. We show that these symbionts are nutritional partners originating from diverse bacterial lineages and exhibiting wide variation in general genome characteristics. Although dual symbionts cooperate to produce nutrients, the balance of contributions varies widely across pairs, and total genome contents reflect a range of ages and degrees of degradation. Most symbionts appear to be in transitional states of genome reduction. Our findings support a hypothesis of periodic symbiont turnover driven by fluctuating selection for nutritional provisioning related to gains and losses of complex life cycles in their hosts.Subject terms: Microbial ecology, Evolution, Genomics  相似文献   

8.
Facultative bacterial endosymbionts can transfer horizontally among lineages of their arthropod hosts, providing the recipient with a suite of traits that can lead to rapid evolutionary response, as has been recently demonstrated. But how common is symbiont‐driven evolution? Evidence suggests that successful symbiont transfers are most likely within a species or among closely related species, although more distant transfers have occurred over evolutionary history. Symbiont‐driven evolution need not be a function of a recent horizontal transfer, however. Many endosymbionts infect only a small proportion of a host population, but could quickly increase in frequency under favorable selection regimes. Some host species appear to accumulate a diversity of facultative endosymbionts, and it is among these species that symbiont‐driven evolution should be most prevalent. It remains to be determined how frequently symbionts enable rapid evolutionary response by their hosts, but substantial ecological effects are a likely consequence whenever it does occur.  相似文献   

9.
Although medicinal leeches have long been used as treatment for various ailments because of their potent anticoagulation factors, neither the full diversity of salivary components that inhibit coagulation, nor the evolutionary selection acting on them has been thoroughly investigated. Here, we constructed expressed sequence tag libraries from salivary glands of two species of medicinal hirudinoid leeches, Hirudo verbana and Aliolimnatis fenestrata, and identified anticoagulant‐orthologs through BLASTx searches. The data set then was augmented by the addition of a previously constructed EST library from the macrobdelloid leech Macrobdella decora. The identified orthologs then were compared and contrasted with well‐characterized anticoagulants from a variety of leeches with different feeding habits, including non‐sanguivorous species. Moreover, four different statistical methods for predicting signatures of positive and negative evolutionary pressures were used for 10 rounds each to assess the level and type of selection acting on the molecules as a whole and on specific sites. In total, sequences showing putative BLASTx‐orthology with five and three anticoagulant‐families were recovered in the A. fenestrata and H. verbana EST libraries respectively. Selection pressure analyses predicted high levels of purifying selection across the anticoagulant diversity, although a few isolated sites showed signatures of positive selection. This study represents a first attempt at mapping the anticoagulant repertoires in a comparative fashion across several leech families.  相似文献   

10.
Endosymbioses are a major form of biological complexity affecting the ecological and evolutionary diversification of many eukaryotic groups. These associations are exemplified by nutritional symbioses of insects for which phylogenetic studies have demonstrated numerous cases of long-term codiversification between a bacterial and a host lineage. Some insects, including most leafhoppers (Insecta: Hemiptera: Cicadellidae), have more than one bacterial symbiont within specialized host cells, raising questions regarding the patterns of codiversification of these multiple partners and the evolutionary persistence of complex symbiotic systems. Previous studies reported the presence of two dominant symbiont types in a member of the leafhopper subfamily Cicadellinae (sharpshooters). In this study, 16S rRNA sequences were obtained and used to examine the occurrence and evolutionary relationships of the two dominant symbiont types across 29 leafhopper species. Candidatus Sulcia muelleri (Bacteroidetes) was detected in all leafhopper species examined, a finding that is consistent with a previous report of its ancient association with the Auchenorrhyncha (a grouping that includes leafhoppers, treehoppers, cicadas, planthoppers, and spittlebugs). Baumannia cicadellinicola (Proteobacteria), previously known from only five sharpshooter species, was found only in the sharpshooter tribes Cicadellini and Proconiini, as well as in the subfamily Phereurhininae. Mitochondrial and nuclear gene sequences were obtained and used to reconstruct host phylogenies. Analyses of host and symbiont data sets support a congruent evolutionary history between sharpshooters, Sulcia and Baumannia and thus provide the first strong evidence for long-term co-inheritance of multiple symbionts during the diversification of a eukaryotic host. Sulcia shows a fivefold lower rate of 16S rDNA sequence divergence than does Baumannia for the same host pairs. The term 'coprimary' symbiont is proposed for such cases.  相似文献   

11.
Plasmid-mediated horizontal gene transfer influences bacterial community structure and evolution. However, an understanding of the forces which dictate the fate of plasmids in bacterial populations remains elusive. This is in part due to the enormous diversity of plasmids, in terms of size, structure, transmission, evolutionary history and accessory phenotypes, coupled with the lack of a standard theoretical framework within which to investigate them. This review discusses how ecological factors, such as spatial structure and temporal fluctuations, shape both the population dynamics and the physical features of plasmids. Novel data indicate that larger plasmids are more likely to be harboured by hosts in complex environments. Plasmid size may therefore be determined by environmentally mediated fitness trade-offs. As the correlation between replicon size and complexity of environment is similar for plasmids and chromosomes, plasmids could be used as tractable tools to investigate the influence of ecological factors on chromosomes. Parallels are drawn between plasmids and bacterial facultative symbionts, including the evolution of some members of both groups to a more obligate relationship with their host. The similarity between the influences of ecological factors on plasmids and bacterial symbionts suggests that it may be appropriate to study plasmids within a classical ecological framework.  相似文献   

12.
The phylogenetic relationships of species of the New World bloodfeeding genus Haementeria were investigated for the first time. The analysis included five molecular markers. The mitochondrial COI, 12S and ND1 as well as the nuclear 28S and ITS. The evolutionary history of the group was investigated through Maximum Parsimony and Bayesian Inference. Both phylogenetic methods resulted in highly congruent hypotheses. The correlation between the phylogeny and morphological traits such as eyespot number, annulation, Lang's organs, salivary glands, bacteriomes and reproductive organs is discussed. Restricted to Haementeria are Lang's organs, spherical bacteriomes and ovaries forming an anterior ring around the ventral nerve cord. In addition, Oligobdella brasilensis was formally transferred to Haementeria, providing additional arguments for the disposal of the genus Oligobdella. Haementeria gracilis is shown to be just a junior synonym of Haementeria depressa as suggested by previous authors. Finally, the geographical distribution of species of Haementeria was compared with that of other non-leech and leech taxa. Multiple events of South-North American interchange were proposed to explain the current geographical distribution of the species of Haementeria.  相似文献   

13.
Culture-based studies of the microbial community within the gut of the medicinal leech have typically been focused on various Aeromonas species, which were believed to be the sole symbiont of the leech digestive tract. In this study, analysis of 16S rRNA gene clone libraries confirmed the presence of Aeromonas veronii and revealed a second symbiont, clone PW3, a novel member of the Rikenellaceae, within the crop, a large compartment where ingested blood is stored prior to digestion. The diversity of the bacterial community in the leech intestinum was determined, and additional symbionts were detected, including members of the alpha-, gamma-, and delta-Proteobacteria, Fusobacteria, Firmicutes, and Bacteroidetes. The relative abundances of the clones suggested that A. veronii and the novel clone, PW3, also dominate the intestinum community, while other clones, representing transient organisms, were typically present in low numbers. The identities of these transients varied greatly between individual leeches. Neither time after feeding nor feeding on defibrinated blood caused a change in identity of the dominant members of the microbial communities. Terminal restriction fragment length polymorphism analysis was used to verify that the results from the clone libraries were representative of a larger data set. The presence of a two-member bacterial community in the crop provides a unique opportunity to investigate both symbiont-symbiont and symbiont-host interactions in a natural model of digestive-tract associations.  相似文献   

14.
Abstract The establishment of symbiotic relationships with intestinal microorganisms enables termites to thrive on recalcitrant substrates such as cellulose and wood. A termite colony is composed of several different castes which have distinct feeding habits. The soldiers, for example, cannot feed by themselves and depend on workers, who feed them with digested or semi‐digested foods. To investigate the influence of feeding habits on the bacterial symbionts, a comparative study of gut bacteria between worker and soldier castes of the termite Coptotermes formosanus was conducted. The bacterial communities of both castes were investigated using denaturing gradient gel electrophoresis (DGGE) and clonal analysis of 16S ribosomal DNA (rDNA). Both methods indicated Bacteroidetes was the common predominant group; the common dominant phylotype was affiliated with a reported uncultured Bacteroidetes phylotype (BCf1–03). There were significant differences in Bacteroidetes and Spirochaetes between two castes. Compared to the gut bacteria of workers, those of soldiers were lower in abundance and diversity of Bacteroidetes and slightly higher in Spirochaetes. Two phylotypes (W8, W11) affiliated to Bacteroidetes and two (W26, W29) affiliated to Spirochaetes were exclusively found in the DGGE profile of the worker caste. Bacteroidetes are assumed to be involved in fermentation of sugars and nitrogenous compounds as well as degradation of uric acid. Spirochaetes are supposed to aid in the functions of acetogenesis and N2‐fixation. The different feeding habits between workers and soldiers of C. formosanus may explain the observed differences in the gut bacterial community.  相似文献   

15.
Abstract Biologists have long debated whether ontogeny recapitulates phylogeny and, if so, why. Two plausible explanations are that (i) changes to early developmental stages are selected against because they tend to disrupt later development and (ii) simpler structures often precede more complex ones in both ontogeny and phylogeny if the former serve as building blocks for the latter. It is difficult to test these hypotheses experimentally in natural systems, so we used a computational system that exhibits evolutionary dynamics. We observed that ontogeny does indeed recapitulate phylogeny; traits that arose earlier in a lineage's history also tended to be expressed earlier in the development of individuals. The relative complexity of traits contributed substantially to this correlation, but a significant tendency toward recapitulation remained even after accounting for trait complexity. This additional effect provides evidence that selection against developmental disruption also contributed to the conservation of early stages in development.  相似文献   

16.
Wolbachia are maternally inherited, intracellular, alpha proteobacteria that infect a wide range of arthropods. They cause three kinds of reproductive alterations in their hosts: cytoplasmic incompatibility, parthenogenesis and feminization. There have been many studies of the distribution of Wolbachia in arthropods, but very few crustacean species are known to be infected. We investigated the prevalence of Wolbachia in 85 species from five crustacean orders. Twenty-two isopod species were found to carry these bacteria. The bacteria were found mainly in terrestrial species, suggesting that Wolbachia came from a continental environment. The evolutionary relationships between these Wolbachia strains were determined by sequencing bacterial genes and by interspecific transfers. All the bacteria associated with isopods belonged to the Wolbachia B group, based on 16S rDNA sequence data. All the terrestrial isopod symbionts in this group except one formed an independent clade. The results of interspecific transfers show evidence of specialization of Wolbachia symbionts to their isopod hosts. They also suggest that host species plays a more important role than bacterial phylogeny in determining the phenotype induced by Wolbachia infection.  相似文献   

17.
The molecular characterization of symbionts is pivotal for understanding the cross-talk between symbionts and hosts. In addition to valuable knowledge obtained from symbiont genomic studies, the biochemical characterization of symbionts is important to fully understand symbiotic interactions. The bean bug (Riptortus pedestris) has been recognized as a useful experimental insect gut symbiosis model system because of its cultivatable Burkholderia symbionts. This system is greatly advantageous because it allows the acquisition of a large quantity of homogeneous symbionts from the host midgut. Using these naïve gut symbionts, it is possible to directly compare in vivo symbiotic cells with in vitro cultured cells using biochemical approaches. With the goal of understanding molecular changes that occur in Burkholderia cells as they adapt to the Riptortus gut environment, we first elucidated that symbiotic Burkholderia cells are highly susceptible to purified Riptortus antimicrobial peptides. In search of the mechanisms of the increased immunosusceptibility of symbionts, we found striking differences in cell envelope structures between cultured and symbiotic Burkholderia cells. The bacterial lipopolysaccharide O antigen was absent from symbiotic cells examined by gel electrophoretic and mass spectrometric analyses, and their membranes were more sensitive to detergent lysis. These changes in the cell envelope were responsible for the increased susceptibility of the Burkholderia symbionts to host innate immunity. Our results suggest that the symbiotic interactions between the Riptortus host and Burkholderia gut symbionts induce bacterial cell envelope changes to achieve successful gut symbiosis.  相似文献   

18.
Tight interactions between unrelated organisms such as is seen in plant-insect, host-parasite, or host-symbiont associations may lead to speciation of the smaller partners when their hosts speciate. Totally congruent phylogenies of interacting taxa have not been observed often but a number of studies have provided evidence that various hemipteran insect taxa and their primary bacterial endosymbionts share phylogenetic histories. Like other hemipterans, mealybugs (Pseudococcidae) harbour multiple intracellular bacterial symbionts, which are thought to be strictly vertically inherited, implying codivergence of hosts and symbionts. Here, robust estimates of phylogeny were generated from four fragments of three nuclear genes for mealybugs of the subfamily Pseudococcinae, and a substantial fragment of the 16S-23S rDNA of their P-endosymbionts. Phylogenetic congruence was highly significant, with 75% of nodes on the two trees identical, and significant correlation of branch lengths indicated coincident timing of cladogenesis. It is suggested that the low level of observed incongruence was influenced by uncertainty in phylogenetic estimation, but evolutionary outcomes other than congruence, including host shifts, could not be rejected.  相似文献   

19.
Acromyrmex leaf-cutting ants maintain two highly specialized, vertically transmitted mutualistic ectosymbionts: basidiomycete fungi that are cultivated for food in underground gardens and actinomycete Pseudonocardia bacteria that are reared on the cuticle to produce antibiotics that suppress the growth of Escovopsis parasites of the fungus garden. Mutualism stability has been hypothesized to benefit from genetic uniformity of symbionts, as multiple coexisting strains are expected to compete and, thus, reduce the benefit of the symbiosis. However, the Pseudonocardia symbionts are likely to be involved in Red-Queen-like antagonistic co-evolution with Escovopsis so that multiple strains per host might be favoured by selection provided the cost of competition between bacterial strains is low. We examined the genetic uniformity of the Pseudonocardia symbionts of two sympatric species of Acromyrmex ants by comparing partial sequences of the nuclear Elongation Factor-Tu gene. We find no genetic variation in Pseudonocardia symbionts among nest mate workers, neither in Acromyrmex octospinosus, where colonies are founded by a single queen, nor in Acromyrmex echinatior, where mixing of bacterial lineages might happen when unrelated queens cofound a colony. We further show that the two ant species maintain the same pool of Pseudonocardia symbionts, indicating that horizontal transmission occasionally occurs, and that this pool consists of two distinct clades of closely related Pseudonocardia strains. Our finding that individual colonies cultivate a single actinomycete strain is in agreement with predictions from evolutionary theory on host-symbiont conflict over symbiont mixing, but indicates that there may be constraints on the effectiveness of the bacterial symbionts on an evolutionary timescale.  相似文献   

20.
Evolutionary dynamics of insertion sequences in Helicobacter pylori   总被引:2,自引:0,他引:2       下载免费PDF全文
Prokaryotic insertion sequence (IS) elements behave like parasites in terms of their ability to invade and proliferate in microbial gene pools and like symbionts when they coevolve with their bacterial hosts. Here we investigated the evolutionary history of IS605 and IS607 of Helicobacter pylori, a genetically diverse gastric pathogen. These elements contain unrelated transposase genes (orfA) and also a homolog of the Salmonella virulence gene gipA (orfB). A total of 488 East Asian, Indian, Peruvian, and Spanish isolates were screened, and 18 and 14% of them harbored IS605 and IS607, respectively. IS605 nucleotide sequence analysis (n = 42) revealed geographic subdivisions similar to those of H. pylori; the geographic subdivision was blurred, however, due in part to homologous recombination, as indicated by split decomposition and homoplasy tests (homoplasy ratio, 0.56). In contrast, the IS607 populations (n = 44) showed strong geographic subdivisions with less homologous recombination (homoplasy ratio, 0.2). Diversifying selection (ratio of nonsynonymous change to synonymous change, >1) was evident in approximately 15% of the IS605 orfA codons analyzed but not in the IS607 orfA codons. Diversifying selection was also evident in approximately 2% of the IS605 orfB and approximately 10% of the IS607 orfB codons analyzed. We suggest that the evolution of these elements reflects selection for optimal transposition activity in the case of IS605 orfA and for interactions between the OrfB proteins and other cellular constituents that potentially contribute to bacterial fitness. Taken together, similarities in IS elements and H. pylori population genetic structures and evidence of adaptive evolution in IS elements suggest that there is coevolution between these elements and their bacterial hosts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号