首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
A new protocol is described for derivatization of hemoglobin with polyethyleneglycol (PEG) via reaction of the unmodified native hemoglobin with an activated amine-reacting polyethylene glycol derivative which, unlike protocols previously described, leads to formation of a peptide bond between hemoglobin and PEG. Dioxygen binding and peroxide reactivities of the derivatized hemoglobin are examined, and found to be within reasonable limits, with the particular observation that, unlike with a few other derivatization protocols, the dioxygen affinity is slightly lower than that of native Hb. In cell culture tests (human umbilical vein epithelial cells, HUVEC), the derivatization protocol induces no toxic effect. These results show promise towards applicability for production of hemoglobin-based blood substitutes.  相似文献   

2.
Potential dioxygen-binding sites in three Cu amine oxidases have been investigated by recording X-ray diffraction data at 1.7-2.2A resolution for crystals under a high pressure of xenon gas. Electron-density difference maps and crystallographic refinement provide unequivocal evidence for a number of Xe-binding sites in each enzyme. Only one of these sites is present in all three Cu amine oxidases studied. Structural changes elsewhere in the protein molecules are insignificant. The results illustrate the use of xenon as a probe for cavities, in which a protein may accommodate a dioxygen molecule. The finding of a potential dioxygen-binding cavity close to the active site of Cu amine oxidases may be relevant to the function of the enzymes, since the formation of a transient protein-dioxygen complex is a likely step in the catalytic mechanism. No evidence was found for xenon binding in a region of the molecule that was previously identified in two other Cu amine oxidases as a potential transient dioxygen-binding site.  相似文献   

3.
The influence of intramolecular cross-links on the molecular, structural and functional properties of PEGylated {PEG [poly(ethylene glycol)]-conjugated} haemoglobin has been investigated. The sites and the extent of PEGylation of haemoglobin by reductive alkylation are not influenced by the presence of an alphaalpha-fumaryl cross-link at Lys-99(alpha). The propylated hexaPEGylated cross-linked haemoglobin, (propyl-PEG5K)(6)-alphaalpha-Hb, exhibits a larger molecular radius and lower colloidal osmotic pressure than propylated hexaPEGylated non-cross-linked haemoglobin, (propyl-PEG5K)(6)-Hb. Perturbation of the haem microenvironment and the alpha1beta2 interface by PEGylation of haemoglobin is reduced by intramolecular cross-linking. Sedimentation velocity analysis established that PEGylation destabilizes the tetrameric structure of haemoglobin. (Propyl-PEG5K)(6)-Hb and (propyl-PEG5K)(6)-alphaalpha-Hb sediment as stable dimeric and tetrameric molecules, respectively. The betabeta-succinimidophenyl PEG-2000 cross-link at Cys-93(beta) outside the central cavity also influences the molecular properties of haemoglobin, comparable to that by the alphaalpha-fumaryl cross-link within the central cavity. However, the influence of the two cross-links on the oxygen affinity of PEGylated haemoglobin are very distinct, indicating that the high oxygen affinity of PEGylated haemoglobin is not a direct consequence of the dissociation of the haemoglobin tetramers into dimers. alphaalpha-Fumaryl cross-linking is preferred to modulate both oxygen affinity and molecular properties of PEGylated haemoglobin, and cross-linking outside the central cavity could only modulate molecular properties of PEGylated haemoglobin. It is suggested that PEGylation induces a hydrodynamic drag on haemoglobin and this plays a role in the microcirculatory properties of PEGylated haemoglobin.  相似文献   

4.
Different chemical treatments for mouse erythrocyte modification has been used. Oxidation treatments with Ascorbate/Fe(3+), a system able to react with intracellular proteins, produced a displacement of the O(2) binding equilibrium curve to a higher affinity behaviour with loss of the haemoglobin cooperativity for oxygen binding. Incubation of mouse erythrocytes with diamide showed that at low reagent concentration (0.8 mM) no modification on oxygen binding equilibrium curves was observed. At higher reagent concentration (2.0 mM), an increased affinity and a disappearance of the cooperative behaviour can be observed. Additionally, crosslinking reactions on mouse erythrocytes with band 3 crosslinkers seemed to affect oxygen binding properties when used at a crosslinker concentration of 5 mM. Oxyhaemoglobin levels in crosslinked and diamide-treated erythrocytes are similar to those found in control cells. In contrast, ascorbate/Fe(3+) treatments produced an increment in the proportion of methaemoglobin, decreasing the oxyhaemoglobin levels in these oxidized erythrocytes.  相似文献   

5.
Des arginine 141 a haemoglobin (the haemoglobin in which the C-terminal arginine of the a chain has been removed) has a high affinity for oxygen and a reduced co-operativity in its oxygen equilibrium binding. The kinetic consequences of this modification are investigated in this paper. Deoxy des Arg haemoglobin binds carbon monoxide faster than does haemoglobin A, whilst oxy des Arg haemoglobin loses oxygen more slowly. These results are correlated with the oxygen equilibrium binding properties of des Arg haemoglobin. The carbon monoxide binding kinetics have been interpreted as implying a change in the parameter c (of the allosteric model), as well as L, when this arginine is removed from haemoglobin.  相似文献   

6.
Summary. We have studied the enzymatic derivatization of amino acids by use of the polyphenol oxidase laccase. Derivatization of L-tryptophan was achieved by enzymatic crosslinking with the laccase substrate 2,5-dihydroxy-N-(2-hydroxyethyl)-benzamide. The main product (yield up to 70%) was identified as the quinoid compound 2-[2-(2-hydroxy-ethylcarbamoyl)-3,6-dioxo-cyclohexa-1,4-dienylamino]-3-(1H-indol-3-yl)- propionic acid and demonstrates that laccase-catalyzed C–N-coupling occurred on the amino group of the aliphatic side chain. These enzyme based reactions provide a simple and fast method for the derivatization of unprotected amino acids.  相似文献   

7.
The 3D encapsulation of cells within hydrogels represents an increasingly important and popular technique for culturing cells and towards the development of constructs for tissue engineering. This environment better mimics what cells observe in vivo, compared to standard tissue culture, due to the tissue-like properties and 3D environment. Synthetic polymeric hydrogels are water-swollen networks that can be designed to be stable or to degrade through hydrolysis or proteolysis as new tissue is deposited by encapsulated cells. A wide variety of polymers have been explored for these applications, such as poly(ethylene glycol) and hyaluronic acid. Most commonly, the polymer is functionalized with reactive groups such as methacrylates or acrylates capable of undergoing crosslinking through various mechanisms. In the past decade, much progress has been made in engineering these microenvironments - e.g., via the physical or pendant covalent incorporation of biochemical cues - to improve viability and direct cellular phenotype, including the differentiation of encapsulated stem cells (Burdick et al.).The following methods for the 3D encapsulation of cells have been optimized in our and other laboratories to maximize cytocompatibility and minimize the number of hydrogel processing steps. In the following protocols (see Figure 1 for an illustration of the procedure), it is assumed that functionalized polymers capable of undergoing crosslinking are already in hand; excellent reviews of polymer chemistry as applied to the field of tissue engineering may be found elsewhere (Burdick et al.) and these methods are compatible with a range of polymer types. Further, the Michael-type addition (see Lutolf et al.) and light-initiated free radical (see Elisseeff et al.) mechanisms focused on here constitute only a small portion of the reported crosslinking techniques. Mixed mode crosslinking, in which a portion of reactive groups is first consumed by addition crosslinking and followed by a radical mechanism, is another commonly used and powerful paradigm for directing the phenotype of encapsulated cells (Khetan et al., Salinas et al.).  相似文献   

8.
Gas chromatography/electron capture negative ion chemical ionization-mass spectrometry (GC/ECNICI-MS) combined with pentafluorobenzoyl derivatization (PFBoyl) is frequently used for the sensitive detection of fatty alcohols (FOH). However, this derivatization technique suffers from a lack of established reaction protocols, time-consuming reactions, and the presence of reagent artifacts or unwanted derivatization by-products which can hinder analyte detection. Here, strategies are presented to reduce the problems associated with PFBoyl-derivatization, including (1) the optimization of reaction conditions (derivatization time and temperature) for a variety of PFBoyl-derivatized FOH, (2) an investigation of microwave-accelerated derivatization (MAD) as a rapid alternative heating mechanism for the PFBoyl-derivatization of FOH, and (3) an analysis of an alternative strategy employing a solvent extraction procedure post-derivatization to reduce the detrimental effects commonly associated with PFBoyl derivatization reagents. The optimal reaction conditions for the PFBoyl-derivatization of FOH were determined to be 60°C for 45 min. The investigation in MAD demonstrated the potential of obtaining comparable PFBoyl-derivatizations to those obtained using traditional heating methods, albeit in a reaction time of 3 min. An examination of several solvents for post-derivatization extraction revealed improved relative response factors in comparison to those obtained without solvent extraction. The best solvents for the PFBoyl-FOH extraction, dichloromethane and tert-butyl methyl ether, were also compared to the no solvent extraction samples with standard response curves and PFBoyl-derivatized FOH in Bligh-Dyer extracted rat plasma.  相似文献   

9.
Diiron(II) complexes with a novel dinucleating polypyridine ligand, N,N,N',N'-tetrakis(6-pivalamido-2-pyridylmethyl)-1,3-diaminopropan-2-ol (HTPPDO), were synthesized as functional models of hemerythrin. Structural characterization of the complexes, [Fe2II(Htppdo)(PhCOO)](ClO4)3 (1), [Fe2II(Htppdo)((p-Cl)PhCOO)](ClO4)3 (2), [Fe2II(Htppdo)((p-Cl)PhCOO)](BF4)3 (2') and [Fe2II(tppdo)((p-Cl)PhCOO)](ClO4)2 (3), were accomplished by electronic absorption, and IR spectroscopic, electrochemical, and X-ray diffraction methods. The crystal structures of 1 and 2' revealed that the two iron atoms are asymmetrically coordinated with HTPPDO and bridging benzoate. One of the iron centers (Fe(1)) has a seven-coordinate capped octahedral geometry comprised of an N3O4 donor set which includes the propanol oxygen of HTPPDO. The other iron center (Fe(2)) forms an octahedron with an N3O3 donor set and one vacant site. The two iron atoms are bridged by benzoate (1) or p-chlorobenzoate (2). On the other hand, both Fe atoms of complex 3 are both symmetrically coordinated with N3O4 donors and two bridging ligands; benzoate and the propanolate of TPPDO. Reactions of these complexes with dioxygen were followed by electronic absorption, resonance Raman and ESR spectroscopies. Reversible dioxygen-binding was demonstrated by observation of an intense LMCT band for O2(2-) to Fe(III) at 610 (1) and 606 nm (2) upon exposure of dioxygen to acetone solutions of 1 and 2 prepared under an anaerobic conditions at -50 degrees C. The resonance Raman spectra of the dioxygen adduct of 1 exhibited two peaks assignable to the nu(O-O) stretching mode at 873 and 887 cm(-1), which shifted to 825 and 839 cm(-1) upon binding of (18)O2. ESR spectra of all dioxygen adducts were silent. These findings suggest that dioxygen coordinates to the diiron atoms as a peroxo anion in a mu-1,2 mode. Complex 3 exhibited irreversible dioxygen binding. These results indicate that the reversible binding of dioxygen is governed by the hydrophobicity of the dioxygen-binding environment rather than the iron redox potentials.  相似文献   

10.
Experimental protocols have been developed for the synthesis and resolution of numerous ring substituted phenylalanines and tryptophans in half mole quantities. Physical constants on these amino acids are given and their behavior on ion exchange supports (amino acid analyzer and post column ortho-phthalaldehyde derivatization) as well as that of some selected N-methylated amino acids is described. Those amino acids were then derivatized (N alpha-protection with the t-butyloxycarbonyl group) for solid phase peptide synthesis.  相似文献   

11.
Aniline hydroxylase activity of ascorbic acid and dihydroxyfumaric acid-haemoglobin systems has been studied. Hydroxylase activity of haemoglobin immobilized by crosslinking with glutaraldehyde as insoluble particles is reported. Activity yields after immobilization and kinetic constants were estimated. A peroxidative mechanism is postulated in which ascorbic acid and dihydroxyfumaric acid are electron donors as well as competitive substrates.  相似文献   

12.
Triethyltin binds to native cat and rat haemoglobin but not to their denatured forms or to other animal haemoglobins. Two molecules of the organotin bind to one molecule of R-state cat haemoglobin with affinity constants of about 1 X 10(5) M-1. Little or no triethyltin is bound to the deoxygenated (T-state) protein. Binding appears to be dependent upon the existence of a specific three-dimensional configuration of cysteine and histidine residues. The properties of the triethyltin-cat haemoglobin complex are consistent with those of a haemoglobin conformer whose allosteric equilibrium is displaced toward the R-state. Its oxygen affinity and rate of oxidation by nitrite is increased, and the rate of reduction of the methaemoglobin derivative by ascorbate is decreased. These effects of triethyltin are opposite and antagonistic to the effects of inositol hexaphosphate. They are exerted on the alpha- as well as beta-haem groups, even though triethyltin is bound at sites on alpha-globin far removed from the haem groups.  相似文献   

13.
Despite the fact that the horse is one of the more common domesticated animals, there are few reports dealing with the properties of its blood, and no comprehensive study has been performed on the reactivity of horse haemoglobin towards organic and inorganic ions. Here we report data on the effects of the organic phosphates D-glycerate-2,3-bisphosphate (2,3-DPG) and InsP6, and of chloride on the properties of horse haemoglobin. Thus the effect of saturating concentrations of 2,3-DPG on the oxygen affinity of horse haemoglobin is about 60% lower than with human adult haemoglobin under the same experimental conditions. The same applies also to InsP6, whose effect on oxygen binding to horse haemoglobin is decreased by about 55% compared with human adult haemoglobin. On the whole, horse haemoglobin appears to be much less sensitive to organic phosphates than previously believed. These results are discussed in the light of the primary structure of the molecule.  相似文献   

14.
Derivatization reactions aimed at creating the basis for the chromatographic resolution of biologically and pharmaceutically important enantiomers are reviewed, with emphasis on the literature published in the last 10 years. Three main aspects of chiral derivatization are discussed. (a) Enantiomers containing suitable functional groups (amino, carboxyl, hydroxyl, epoxy, etc.) are transformed into covalently bonded diastereomeric derivatives using homochiral derivatizing agents. The diastereomers formed (esters, amides, urethanes, urea and thiourea, etc., derivatives) can be separated on achiral stationary phases. The derivatization reactions often afford further advantages, such as the improvement of chromatographic properties and the detectability of the solutes using UV and fluorimetric detectors. (b) Covalent but achiral derivatization is often necessary even with the use of chiral stationary phases enabling in principle direct enantioseparations (Pirkle-type columns, cyclodextrin-bonded phases, glycoprotein column and functionalized cellulose columns). The main goals of these derivatization reactions (which are analogous to those discussed above), are to introduce functional groups into the molecule of the enantiomers that improve the possibilities for chiral interactions or block functional groups to avoid non-specific interactions. (c) In the broader sense, the dynamic formation of diastereomers using chiral mobile phase additives (cyclodextrins, various reagents to form diastereomeric ion pairs, adducts, mixed metal complexes) can also be considered to be chiral derivatization reactions and is therefore briefly discussed also.  相似文献   

15.
Optimized coupling protocols are presented for the efficient and automated generation of carboxyfluorescein-labeled peptides. Side products, generated when applying earlier protocols for the in situ activation of carboxyfluorescein, were eliminated by a simple procedure, yielding highly pure fluorescent peptides and minimizing postsynthesis workup. For the cost-efficient labeling of large compound collections, coupling protocols were developed reducing the amount of coupling reagent and fluorophore. To enable further chemical derivatization of carboxyfluorescein-labeled peptides in solid-phase synthesis, the on-resin introduction of the trityl group was devised as a protecting group strategy for carboxyfluorescein. This protecting group strategy was exploited for the synthesis of peptides labeled with two different fluorescent dyes, essential tools for bioanalytical applications based on fluorescence resonance energy transfer (FRET). Tritylation and optimized labeling conditions led to the development of a fluorescein-preloaded resin for the automated synthesis of fluorescein-labeled compound collections with uniform labeling yields.  相似文献   

16.
The Rapana thomasiana hemocyanin structural subunit RHSS1 is composed of eight functional dioxygen-binding domains. To determine the multidomain structure, the polypeptide chain of RHSS1 was subjected to limited proteolysis with TPCK-trypsin, elastase and other proteinases. Individual functional units and fragments, containing two or three domains, were isolated and characterized. All domains and fragments were N-terminally sequenced and the order of the dioxygen-binding units in the polypeptide chain of RHSS1 was established.  相似文献   

17.
The usual aim in metabolomic studies is to quantify the entire metabolome of each of a series of biological samples. To do this for complex biological matrices, e.g., plant tissues, efficient and reproducible extraction protocols must be developed. However, derivatization protocols must also be developed if GC/MS (one of the mostly widely used analytical methods for metabolomics) is involved. The aim of this study was to investigate how different chemical and physical factors (extraction solvent, derivatization reagents, and temperature) affect the extraction and derivatization of the metabolome from leaves of the plant Arabidopsis thaliana. Using design of experiment procedures, variation was systematically introduced, and the effects of this variation were analyzed using regression models. The results show that this approach allows a reliable protocol for metabolomic analysis of Arabidopsis to be determined with a relatively limited number of experiments. Following two different investigations an extraction and derivatization protocol was chosen. Further, the reproducibility of the analysis of 66 endogenous compounds was investigated, and it was shown that both hydrophilic and lipophilic compounds were detected with high reproducibility.  相似文献   

18.
Genome-wide location analysis, also known as ChIP-Chip, combines chromatin immunoprecipitation and DNA microarray analysis to identify protein-DNA interactions that occur in living cells. Protein-DNA interactions are captured in vivo by chemical crosslinking. Cell lysis, DNA fragmentation and immunoaffinity purification of the desired protein will co-purify DNA fragments that are associated with that protein. The enriched DNA population is then labeled, combined with a differentially labeled reference sample and applied to DNA microarrays to detect enriched signals. Various computational and bioinformatic approaches are then applied to normalize the enriched and reference channels, to connect signals to the portions of the genome that are represented on the DNA microarrays, to provide confidence metrics and to generate maps of protein-genome occupancy. Here, we describe the experimental protocols that we use from crosslinking of cells to hybridization of labeled material, together with insights into the aspects of these protocols that influence the results. These protocols require approximately 1 week to complete once sufficient numbers of cells have been obtained, and have been used to produce robust, high-quality ChIP-chip results in many different cell and tissue types.  相似文献   

19.
Work of adhesion (ΔW) and surface rheology at solid/air and solution/air interface have been used as indicators to study the stabilization of collagen by different crosslinking agents like basic chromium sulfate (BCS), tannic acid, catechin and formaldehyde. The results show that an increase in rate of ΔW would promote adsorption while a decrease leads to hindered adsorption. Shear rheological studies on collagen demonstrate an increase in both shear viscosity and elasticity with time while for collagen with polyphenols like catechin and tannic acid there is an unusual breakdown of these values. A correlation between the rheological properties and the work of adhesion suggests that the time frame in which the viscoelastic behavior is initiated for collagen with different crosslinking agents determines the final macroscopic property of the protein. The study attempts to quantify the degree of crosslinking of collagen through the dynamics and strength of the water molecules in the assembly of hydrated protein and the crosslinking agents.  相似文献   

20.
Properties of regulators of reversible haemoglobin oxygenation, especially of a natural regulator, 2,3-diphosphoglyceric acid (DPG), are reviewed. DPG provides effective deoxygenation of haemoglobin, helps to maintain its functional properties preventing its transformation into inactive derivatives. Correlation between organism metabolic requirements and haemoglobin oxygen affinity is established by erythrocyte DPG. Several functional analogues of DPG, their structure--activity relationship and possible medical application are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号