首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 846 毫秒
1.
We measured oxygen consumption in juvenile Chinese striped-necked turtles (Ocadia sinensis) after they ingested food, either as a single meal or as double meals, to examine the influence of meal type and feeding frequency on specific dynamic action (SDA). Temporal variation in oxygen consumption after feeding was evident in the ingesting turtles but not in the unfed control turtles. In the single-meal experiment, the peak metabolic rate and the integrated SDA response (the whole energetic cost for the processes of digestion) both did not differ between turtles ingesting mealworms and shrimps when the influence of variation in ingested energy was removed, and the time to reach peak metabolic rate was not affected by meal type and the amount of food ingested. Turtles in the double-meal experiment ingested more energy and hence had a prolonged duration of SDA response than did those in the single-meal experiment, but the integrated SDA response did not differ between both experimental treatments when the influence of variation in ingested energy was removed. Our results show that meal type and feeding frequency have important consequences on the SDA response of juvenile O. sinensis. As the integrated SDA response remained remarkably constant either between turtles ingesting different food or between turtles ingesting the same food but at different frequencies when the influence of variation in ingested energy was removed, we therefore conclude that the energetic cost associated with ingestion is primarily determined by energy content of food ingested in juvenile O. sinensis.  相似文献   

2.
We measured oxygen consumption in juvenile Chinese striped-necked turtles (Ocadia sinensis) after they ingested food, either as a single meal or as double meals, to examine the influence of meal type and feeding frequency on specific dynamic action (SDA). Temporal variation in oxygen consumption after feeding was evident in the ingesting turtles but not in the unfed control turtles. In the single-meal experiment, the peak metabolic rate and the integrated SDA response (the whole energetic cost for the processes of digestion) both did not differ between turtles ingesting mealworms and shrimps when the influence of variation in ingested energy was removed, and the time to reach peak metabolic rate was not affected by meal type and the amount of food ingested. Turtles in the double-meal experiment ingested more energy and hence had a prolonged duration of SDA response than did those in the single-meal experiment, but the integrated SDA response did not differ between both experimental treatments when the influence of variation in ingested energy was removed. Our results show that meal type and feeding frequency have important consequences on the SDA response of juvenile O. sinensis. As the integrated SDA response remained remarkably constant either between turtles ingesting different food or between turtles ingesting the same food but at different frequencies when the influence of variation in ingested energy was removed, we therefore conclude that the energetic cost associated with ingestion is primarily determined by energy content of food ingested in juvenile O. sinensis.  相似文献   

3.
We quantified the specific dynamic action (SDA) resulting from the ingestion of various meal types in Burmese pythons (Python molurus) at 30 degrees C. Each snake was fed a series of experimental meals consisting of amino acid mixtures, simple proteins, simple or complex carbohydrates, or lipids as well as meals of whole animal tissue (chicken breast, beef suet, and mouse). Rates of oxygen consumption were measured for approximately 4 d after feeding, and the increment above standard metabolic rate was determined and compared to energy content of the meals. While food type (protein, carbohydrate, and lipid) had a general influence, SDA was highly dependent on meal composition (i.e., amino acid composition and carbohydrate structure). For chicken breast and simple carbohydrates, the SDA coefficient was approximately one-third the energetic content of the meal. Lard, suet, cellulose, and starch were not digested and did not produce measurable SDA. We conclude that the cost of de novo protein synthesis is an important component of SDA after ingestion of protein meals because (1) simple proteins, such as gelatin and collagen, did not stimulate levels of SDA attained after consumption of complete protein, (2) incomplete mixtures of amino acids failed to elicit the SDA of a complete mixture, and (3) the inhibition of de novo protein synthesis with the drug cycloheximide caused a more than 70% decrease in SDA. Stomach distension and mechanical digestion of intact prey did not cause measurable SDA.  相似文献   

4.
Specific dynamic action (SDA), the energy expended on all physiological processes that is associated with meal digestion and assimilation, is strongly affected by temperature. We assessed the effects of temperature on the postprandial metabolic response and calculated SDA of the southern catfish, Silurus meridionalis. The fish was fed with experimental diets at a meal size of 4% body mass, and by using an 8-chamber, continuous-flow respirometer the oxygen consumption rate was determined at a 2 h interval until the postprandial oxygen consumption rate returning to the preprandial level, at four different temperatures. The energy expended on SDA (SDA(E)) were 2.71, 3.07, 3.16, and 3.62 kJ, the SDA(coefficients) (energy expended on SDA quantified as a percentage of the digestible energy content of the meal) were 7.70, 9.44, 10.36, and 11.12%, and the peak metabolic rates (R(peak)) of SDA were 3.48, 4.31, 5.96, and 7.30 mg O2 h(-1), at 17.5, 22.5, 27.5, and 32.5 degrees C respectively. The relationships between those parameters and temperature were: SDA(E)=1.74+0.0559T (n=26, r(2)=0.676), SDA(coefficient)=4.10+0.223T (n=26, r(2)=0.726), and R(peak)=-1.34+0.264T (n=26, r(2)=0.896). The SDA durations showed a slow-fast-slow tendency of decrease with increasing temperature, and were 88.00, 85.71, 67.71, and 66.50 h at 17.5, 22.5, 27.5 and 32.5 degrees C respectively. Two separate peaks appeared during the SDA response at 17.5 degrees C, and it might be due to a rapid startup of the mechanical process with a lag of the biochemical process, which suggested that the peaks of "mechanical component" and "biochemical component" of SDA might be separated when temperature was low enough.  相似文献   

5.
Specific dynamic action (SDA), the energy expended on all physiological processes that is associated with meal digestion and assimilation, is strongly affected by temperature. We assessed the effects of temperature on the postprandial metabolic response and calculated SDA of the southern catfish, Silurus meridionalis. The fish was fed with experimental diets at a meal size of 4% body mass, and by using an 8-chamber, continuous-flow respirometer the oxygen consumption rate was determined at a 2 h interval until the postprandial oxygen consumption rate returning to the preprandial level, at four different temperatures. The energy expended on SDA (SDA(E)) were 2.71, 3.07, 3.16, and 3.62 kJ, the SDA(coefficients) (energy expended on SDA quantified as a percentage of the digestible energy content of the meal) were 7.70, 9.44, 10.36, and 11.12%, and the peak metabolic rates (R(peak)) of SDA were 3.48, 4.31, 5.96, and 7.30 mg O2 h(-1), at 17.5, 22.5, 27.5, and 32.5 degrees C respectively. The relationships between those parameters and temperature were: SDA(E)=1.74+0.0559T (n=26, r(2)=0.676), SDA(coefficient)=4.10+0.223T (n=26, r(2)=0.726), and R(peak)=-1.34+0.264T (n=26, r(2)=0.896). The SDA durations showed a slow-fast-slow tendency of decrease with increasing temperature, and were 88.00, 85.71, 67.71, and 66.50 h at 17.5, 22.5, 27.5 and 32.5 degrees C respectively. Two separate peaks appeared during the SDA response at 17.5 degrees C, and it might be due to a rapid startup of the mechanical process with a lag of the biochemical process, which suggested that the peaks of "mechanical component" and "biochemical component" of SDA might be separated when temperature was low enough.  相似文献   

6.
To be most energetically profitable, predators should ingest prey with the maximal nutritional benefit while minimizing the cost of processing. Therefore, when determining the quality of prey items, both the cost of processing and nutritional content must be considered. Specific dynamic action (SDA), the increase in metabolic rate associated with feeding in animals, is a significant processing cost that represents the total cost of digestion and assimilation of nutrients from prey. We examined the effects of an invertebrate diet (earthworms) and a vertebrate diet (newborn mice) on mass conversion efficiencies, growth, and SDA in the Chacoan horned frog, Ceratophrys cranwelli. We found the earthworm diet to be significantly lower in lipid, protein, and energy content when compared to the diet of newborn mice. Growth and mass conversion efficiencies were significantly higher in frogs fed newborn mice. However, mean SDA did not differ between frogs fed the two diets, a finding that contradicts many studies that indicate SDA increases with the protein content of the meal. Together, our results indicate that future studies evaluating the effect of meal type on bioenergetics of herpetofauna are warranted and may provide significant insight into the underlying factors driving SDA.  相似文献   

7.
Effect of relative meal size (0.6-24%) on specific dynamic action (SDA) was assessed in southern catfish juveniles (48.2+/-3.2 g) at 27.5 degrees C. Cutlets of freshly killed loach species were used as test diet. Energy expended during SDA was linearly correlated with relative meal size (r=0.949, p<0.001, N=47). There was no significant difference in SDA coefficient (energy expended on SDA quantified as a percentage of the energy content of the meal) among different relative meal size groups. Factorial metabolic scope increased from 1.47 to 4.08 when the relative meal size increased from 0.6% to 24%. The peak V O2 increased with meal size, but levelled when relative meal size gradually increased to the maximum. SDA duration showed a S-type (slow-fast-slow) increase course with increased meal size. The results of this study suggest that the high postprandial factorial metabolic scope and a trapezoid SDA curve might be the adaptation strategy of warm water sit-and-wait fish under the natural selection of evolution related to long-term food resources.  相似文献   

8.
We measured oxygen consumption (Vo(2)) to estimate standard metabolic rates (SMR) in cottonmouth snakes (Agkistrodon piscivorus conanti) from Seahorse Key and the adjacent peninsula of northern Florida. The island population is unusual because adult snakes feed on fish that are dropped by colonial nesting birds, and food resources are temporally limited relative to that of mainland populations. We found no differences in SMR between island and mainland snakes at any of four experimental temperatures (15 degrees -30 degrees C), suggesting that any adjustments to energy limitations involve other aspects of physiology or behavior. As with other viperid species, the SMR of cottonmouths is about one-half of that expected from interspecific allometric regressions previously reported for snakes generally. Allometric mass exponents of SMR averaged 0.76 and were not affected by temperature. We found that Vo(2) increased with temperature (Q(10) = 2.4-2.8) and was elevated 29% during scotophase compared with photophase. Neonates exhibited elevated Vo(2)compared with older juveniles of similar size, apparently due to assimilation of yolk that is present in the neonatal gut. In adult snakes, specific dynamic action (SDA) following feeding resulted in four- to eightfold increases in Vo(2), with magnitude and duration related positively to relative meal size. The total energy devoted to SDA increased with meal size and averaged 32.8%+/-4.4% of total ingested energy. We estimate that a nonreproductive 500-g adult cottonmouth at Seahorse Key uses 3,656 kJ of assimilated energy annually for maintenance and activity, which requires ingestion of approximately 1 kg of fish.  相似文献   

9.
Measuring standard metabolic rate (SMR) and specific dynamic action (SDA) has yielded insight into patterns of energy expenditure in snakes, but less emphasis has been placed on identifying metabolic variation and associated energy cost of circadian rhythms. To estimate SMR, SDA, and identify metabolic variation associated with circadian cycles in nocturnally active African house snakes (Lamprophis fuliginosus), we measured oxygen consumption rates (VO2) at frequent intervals before and during digestion of meals equaling 10%, 20% and 30% of their body mass. Circadian rhythms in metabolism were perceptible in the VO2 data during fasting and after the initial stages of digestion. We estimated SMR of L. fuliginosus (mean mass=16.7+/-0.3 g) to be 0.68+/-0.02 (+/-SEM) mL O2/h at 25 degrees C. Twenty-four hours after eating, VO2 peaked at 3.2-5.3 times SMR. During digestion of meals equaling 10-30% of their body mass, the volume of oxygen consumed ranged from 109 to 119 mL O2 for SMR, whereas extra oxygen consumed for digestion and assimilation ranged from 68 to 256 mL O2 (equivalent to 14.5-17.0% of ingested energy). The oxygen consumed due to the rise in metabolism during the active phase of the daily cycle ranged from 55 to 66 mL O2 during digestion. Peak VO2, digestive scope, and SDA increased with increasing meal size. Comparisons of our estimates to estimates derived from methods used in previous investigations resulted in wide variance of metabolic variables (up to 39%), likely due to the influence of circadian rhythms and activity on the selection of baseline metabolism. We suggest frequent VO2 measurements over multiple days, coupled with mathematical methods that reduce the influence of undesired sources of VO2 variation (e.g., activity, circadian cycles) are needed to reliably assess SMR and SDA in animals exhibiting strong circadian cycles.  相似文献   

10.
The energetic costs associated with feeding by juvenile cod were determined by means of an open-circuit respirometer. Fish acclimated to several temperatures (7, 10, 15 and 18°C) were kept at natural lighting levels, and fed inside their individual respirometers. They consumed a diet compounded from natural foods, at five different ration levels, their oxygen consumption being monitored continually over an 11–16 day period.
After each meal the rate of oxygen consumption increased to above the pre-feeding level, reaching a peak 8–10 h later. With each successive meal the oxygen consumption showed a cumulative increase, reaching a maximum usually after the last meal.
The elevation in metabolic rate associated with feeding was dependent upon ration size, increasing linearly as the food intake increased. The effect was also dependent upon temperature; for fish fed to satiation the total energy cost was equivalent to 11.9, 10.9, 16.4 and 17.1% of the ingested energy at 7, 10, 15 and 18°C respectively. For resting satiated fish the rate of oxygen consumption was close to the maximum rate for active fish.  相似文献   

11.
Specific dynamic action (SDA), the accumulated energy expended on all physiological processes associated with meal digestion, is strongly influenced by features of both the meal and the organism. We assessed the effects of meal size, meal type, body temperature, and body size on the postprandial metabolic response and calculated SDA of the marine toad, Bufo marinus. Peak postprandial rates of O(2) consumption (.V(O2)) and CO(2) production (.V(CO2)) and SDA increased with meal size (5%-20% of body mass). Postprandial metabolism was impacted by meal type; the digestion of hard-bodied superworms (Zophobas larva) and crickets was more costly than the digestion of soft-bodied earthworms and juvenile rats. An increase in body temperature (from 20 degrees to 35 degrees C) altered the postprandial metabolic profile, decreasing its duration and increasing its magnitude, but did not effect SDA, with the cost of meal digestion remaining constant across body temperatures. Allometric mass exponents were 0.69 for standard metabolic rate, 0.85 for peak postprandial .V(O2), and 1.02 for SDA; therefore, the factorial scope of peak postprandial .V(O2) increased with body mass. The mass of nutritive organs (stomach, liver, intestines, and kidneys) accounted for 38% and 20% of the variation in peak postprandial .V(O2) and SDA, respectively. Toads forced to exercise experienced 25-fold increases in .V(O2) much greater than the 5.5-fold increase experience during digestion. Controlling for meal size, meal type, and body temperature, the specific dynamic responses of B. marinus are similar to those of the congeneric Bufo alvarius, Bufo boreas, Bufo terrestris, and Bufo woodhouseii.  相似文献   

12.
Apparent specific dynamic action (SDA) amplitude in young juvenile Atlantic cod Gadus morhua (1 to 8 g wet mass), fed a standardized meal and then exercised in a circular swimming respirometer at a constant swimming speed of 0·5 ± 0·3 body lengths s-1, occurred within l h after feeding in all juveniles. SDA amplitude were 1·4 to 1·8 times higher in fed fish compared to unfed fish, and rates of oxygen consumption decreased as body mass increased. SDA duration had a tendency to decrease with increasing body mass and was shortest, at 6 h, in the smallest fish (1–1·5 g), but increased to 10–11 h in the largest fish. Apparent SDA in fed fish ( R r) scaled with a mass exponent of 0·89, while maximum metabolic rate ( R max) determined by chasing fish to exhaustion and then measuring oxygen consumption for 12 h, and unfed routine metabolic rate (Rr) scaled with a mass exponent of 0·79 and 0·76 respectively. Relative aerobic scope ( R max– unfed R r) did not appear to vary over the 1 to 8 g increase in wet mass. These results show that as body mass increased in young juvenile Atlantic cod: (1) apparent SDA ( R f) increased more rapidly than R max, and (2) apparent SDA took up >98% of the relative aerobic scope and that young Atlantic cod allocated most of the energy to growth, and left little for other metabolic activities.  相似文献   

13.
The effect of relative meal size (0.5–24% body mass) on specific dynamic action (SDA) was assessed in Chinese catfish (Silurus asotus Linnaeus) (30.90±1.30 g) at 25.0°C; the cutlets of freshly killed loach without viscera, head and tail were used as a test meal. There was no significant difference in either SDA duration or peak oxygen consumption (VO2) among low meal size ranges. But both increased linearly as meal size increased from 2 to 24% without reaching a plateau. Factorial metabolic scope was 5.92 in fish fed with 24% body mass, the highest documented feeding metabolic scope value in fish till now. The Peak VO2 of satiated meal size groups (175.85±10.55 mg O2 h−1) was above 80% of maximum metabolic rate during locomotion recovery process (215.48±7.07 mg O2 h−1). The relationship between energy expended on SDA (E) and energy ingested (I) was described as: E=0.0000432I 2+0.140I+2.12. The lowest value of SDA coefficient appeared at 2% body mass group.  相似文献   

14.
The effects of meal size and meal type on specific dynamic action (SDA) were investigated in a large, active asteroid, the sunflower star, Pycnopodia helianthoides. When the sunflower stars were fed clam flesh totalling 5%, 10%, or 20% of their body weight there was a step-wise increase in the scope, time to peak oxygen consumption, duration of the response and total SDA. The change in the rate of oxygen consumption was slower than other organisms, and oxygen uptake remained elevated for over 12 d following consumption of the largest meal. There were also differences in the characteristics of the SDA if sunflower stars consumed a whole clam versus the shucked flesh of a clam. The time to reach peak oxygen consumption was greater for sunflower stars consuming a whole clam. This occurred because the clam had to be opened before they could digest the flesh; a smaller initial peak comprising 3.5% of the total SDA represented the energy require to open the clam valves. When the sunflower stars were fed different prey items (e.g. butter clam, purple urchin and herring) of similar wet organic mass, there was no difference in the time to peak, peak oxygen uptake or total SDA despite the fact that the prey items differed in protein, lipid and caloric content. There was an increased duration for which oxygen uptake remained elevated for sea stars that consumed the urchin meal. Five of the seven sunflower stars that consumed urchins exhibited a smaller second peak in oxygen uptake, totalling approximately 8.5% of the SDA energy budget. This likely represented the energy required to eject the urchin test from the stomach. Although the sunflower star is much larger and more active than other sea stars, it displayed similar SDA responses to other members of the Asteroidea, indicative of the low metabolic rate of this class.  相似文献   

15.
A closed respirometer was used to measure oxygen consumption of the southern catfish Silurus meridionalis fed with six isonitrogenous (48% crude protein) diets replacing 0%, 13%, 26%, 39%, 52% and 65% fish meal (FM) protein by soybean meal (SBM) protein, in order to investigate the effects of dietary soybean protein level (SPL) (replacing FM) on metabolic rates of the southern catfish. The results showed that there were no significant differences in routine metabolism among dietary treatments. Either the total metabolic rate or specific dynamic action (SDA) was positively correlated with assimilated food energy at each diet, respectively (P<0.05). The SDA coefficient (means the energy spent in metabolism per unit of assimilated dietary energy) significantly increased with increasing dietary SPL (P<0.05). Fish fed the diet with 13% SPL had a significantly lower SDA coefficient (0.1528) than fish fed the diet with 52% or 65% SPL (0.1826 or 0.1932) (P<0.05). However, there were no significant differences in SDA coefficient among fish fed the diets with 13%, 26% and 39% SPL (P>0.05). Results of the present study suggested that an imbalance of essential amino acids at higher dietary SPL resulted in more energy channeled into metabolism, and subsequently increased the SDA coefficient.  相似文献   

16.
  • 1.1. Specific Dynamic Action (SDA) effects of diet were investigated in the supralittoral isopod, Ligia pallasii, using defined chemical diets.
  • 2.2. “Apparent SDA”, or the total rise in metabolic rate following a meal, was resolved in animals eating a nutritionally complete chemical diet into three components: 8% mechanical costs of moving food through the gut, 40% “excitement costs” due to investigator disturbance and presence of food, and 52% SDA.
  • 3.3. Excitement costs in animals exposed to food but which chose not to eat showed non-significant variation between diets containing different levels of chemical nutrients, but were significantly less on a diet containing only cellulose and agar.
  • 4.4. SDA increased with increasing concentration of amino acids in the diet.
  • 5.5. Substitution of whole-protein casein for free amino acids in the diet had no significant SDA effect, while substitution of free amino acids in the ratio found in casein more than doubled the SDA effect.
  • 6.6. Deletion of alanine from the diet caused no significant effect on SDA, while deletion of phenylalanine caused a highly significant elevation in SDA.
  相似文献   

17.
特殊动力作用(SDA)是指动物摄食过程中的代谢产热增加的现象,自上世纪初,一直受到相关领域专家的关注。近十年来该方面研究十分活跃。我们以南方鲇(Southern catfish/Silurus meridionalis)和鲇鱼(catfish/Silurus asotus)为实验对象,开展了大量相关研究。本文就我们的研究成果结合相关研究进行探讨,并指出了该方面研究将来可能的方向。  相似文献   

18.
The effect of meal type on specific dynamic action was investigated in the green shore crab, Carcinus maenas. When the crabs were offered a meal of fish, shrimp, or mussel of 3 % of their body mass the duration of the SDA response and thus the resultant SDA was lower for the mussel, compared with the shrimp or fish meals. In feeding behaviour experiments the crabs consumed almost twice as much mussel compared with fish or shrimp. When the animals were allowed to feed on each meal until satiated, the differences in the SDA response were abolished. The mussel was much softer (compression test) than the fish or shrimp meal, and meal texture is known to affect the SDA response in amphibians and reptiles. When the crabs were offered a meal of homogenized fish muscle or whole fish muscle, the SDA for the homogenized meal was approximately 35 % lower. This suggested that a significant portion of the SDA budget in decapod crustaceans may be related to mechanical digestion. This is not unexpected since the foregut is supplied by over forty muscles which control the cutting and grinding movements of the gastric mill apparatus. There were slight, but significant differences in protein, lipid, moisture and total energy content of each meal type. Three prepared meals that were high in either protein, lipid or carbohydrate were offered to the crabs to determine if the nutrient content was also a contributing factor to the observed differences in the SDA. The crabs did not eat the prepared meals as readily as the natural food items and as they are messy feeders there was a large variation in the amount of food eaten. The lack of significant differences in the SDA response as a function of nutrient content was likely due to differences in amount of food eaten, which is a major factor determining the SDA response. The differences in SDA when consuming natural food items were likely due to a combination of the costs of mechanical digestion, variation in nutrient content and food preference: determining how each of these factors contributes to the overall SDA budget remains a pressing question for comparative physiologists.  相似文献   

19.
Individual grass carp, Ctenopharyngodon idellu , were maintained in a respirometer for a month and fed pelleted diets containing various proportions of carbohydrate, fat and protein at different ration levels. Oxygen consumption was measured continuously, allowing the effects of consecutive daily feeding on respiration to be studied. The relationships established between daily food intake and oxygen consumption showed that, on average, 23.3% (high protein diet), 15.3% (high carbohydrate diet), 20.7% (high lipid diet) and 7.0% ( Lemnu diet ) of the absorbed energy was partitioned into specific dynamic action (SDA). (Here the term SDA is used to describe the oxygen consumption of a feeding fish in excess of the routine metabolic rate.) In terms of the overall energy budgets of growing fish, SDA represented between 12 and 58% of the total heat lost over the experimental period and was equivalent to between 14 and 33% of the consumed energy. Ration was positively correlated with heat loss due to total respiration ( r = 0.881) and with heat loss due to SDA ( r = 0.762). As ration increased, the size of SDA relative to total respiration increased. Significant positive correlations were found between oxygen consumption (total or due to SDA) and specific growth rate, and between oxygen consumption and the deposition of protein and energy. However, growth rate had a minimal influence on daily oxygen consumption when compared with food intake.  相似文献   

20.
Lech GP  Reigh RC 《PloS one》2012,7(4):e34981
Costs of compounded diets containing fish meal as a primary protein source can be expected to rise as fish meal prices increase in response to static supply and growing demand. Alternatives to fish meal are needed to reduce production costs in many aquaculture enterprises. Some plant proteins are potential replacements for fish meal because of their amino acid composition, lower cost and wide availability. In this study, we measured utilization of soybean meal (SBM) and soy protein concentrate (SPC) by Florida pompano fed compounded diets, to determine the efficacy of these products as fish meal replacements. We also calculated apparent digestibility coefficients (ADCs) for canola meal (CM), corn gluten meal (CGM), and distillers dried grains with solubles (DDGS), following typical methods for digestibility trials. Juvenile Florida pompano were fed fish-meal-free diets containing graded levels of SBM and SPC, and weight gain was compared to a control diet that contained SBM, SPC, and fish meal. Fish fed diets that contained 25-30 percent SBM in combination with 43-39 percent SPC had weight gain equivalent to fish fed the control diet with fish meal, while weight gain of fish fed other soy combinations was significantly less than that of the control group. Apparent crude protein digestibility of CGM was significantly higher than that of DDGS but not significantly different from CM. Apparent energy digestibility of DDGS was significantly lower than CGM but significantly higher than CM. Findings suggested that composition of the reference diet used in a digestibility trial affects the values of calculated ADCs, in addition to the chemical and physical attributes of the test ingredient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号