首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The telomerase activity and the senescence profile of cultured breast fibroblasts from normal human interstitial and malignant stromal tissue were studied in comparison with their proliferation and differentiation pattern. Fibroblasts were grown either in the presence or absence of a conditioned medium (CM) obtained from cultures of the oestrogen receptor-positive breast cancer MCF-7 cell line. At different passages (from the 2nd up to the 48th), fibroblasts were examined for the telomerase activity by the Telomerase Repeats Amplification Protocol (TRAP) assay, for proliferation profile by Ki-67 antigen expression, and the myofibroblast or smooth muscle cell-like differentiation pattern by immunofluorescence with monoclonal antibodies specific for smooth muscle markers. Serial passages of fibroblasts from normal or tumour breast reveal that the relationship between the levels of telomerase activity and phenotypic/proliferation profile changes with cell subcultivation in a different manner in the two cell populations. The fibroblasts from normal tissue completed 12 passages in a CM-independent way prior to senescence whereas fibroblasts from tumour stroma senescence were attained after 48 passages. These cells showed a marked decrease of telomerase activity, growth rate and smooth muscle -actin expressing myofibroblasts after the 32nd passage. CM treatment of this fibroblast population induces a decline in the myofibroblast content, which precedes the changes in telomerase activity. Passaged fibroblasts from normal breast tissue can be converted to myofibroblasts upon CM treatment whereas those from tumour stroma were CM-insensitive. Taken together our data suggest that a heterogeneous fibroblast population with different life span is activated/recruited in the breast interstitium and poses the problem of a unique activation/recruitment of fibroblasts in neoplastic conditions.  相似文献   

2.
Summary Myofibroblasts from human breast carcinomas were identified and experimentally generated in culture, and a possible function was examined. The frequency ofα-smooth muscle actin immunoreactive cells was evaluated as a measure of myofibroblast differentiation in primary culture. Few or noα-smooth muscle actin-positive stromal cells (6.1 ± 8.4%) were identified in primary cultures from normal breast tissue (n=9). In contrast, high frequencies (68.8 ± 15.1%) were observed in primary cultures from carcinomas (n=19). The frequencies of myofibroblasts in primary cultures were almost identical to those obtained in the corresponding cryostat sections (69.1 vs. 68.8%). A possible precursor cell to the myofibroblast was looked for among typical fibroblasts and vascular smooth muscle cells. Purified blood vessels containing both fibroblasts and vascular smooth muscle cells were embedded in collagen gel and incubated with medium conditioned by breast epithelial cells. Fibroblasts rather than smooth muscle cells were recruited from the blood vessels. In medium conditioned by carcinoma cell lines or in co-cultures of carcinoma cell lines and purified fibroblasts,α-smooth muscle actin and the typical myofibroblast phenotype were induced in otherwiseα-smooth muscle actin-negative fibroblasts. The effect of myofibroblasts on cellular movement—essential to neoplastic cells—was analyzed. Spontaneous motility of tumor cells (MCF-7) was entirely suppressed in a collagen gel assay. Under these conditions tumor cell motility was selectively mediated by direct cell-to-cell interaction between tumor cells and myofibroblasts. Under chemically defined conditions, interaction was dependent on the presence of plasminogen. Anti-plasminogen, soybean trypsin inhibitor, and anti-fibronectin partly neutralized the effect of plasminogen. It is concluded that elements of myofibroblast differentiation and function may be studied in culture.  相似文献   

3.
Fibroblasts are critical for tissue homeostasis, and their inappropriate proliferation and activation can result in common and debilitating conditions including fibrosis and cancer. We currently have a poor understanding of the mechanisms that control the growth and activation of fibroblasts in vivo, in part because of a lack of suitable fibroblast markers. We have taken advantage of an antibody previously shown to stain stromal cells in frozen tissues (TE-7) and identified conditions in which it can be used to stain fibroblasts and myofibroblasts in the paraffin-embedded tissue samples routinely collected for pathological analysis. We show that this antibody recognizes growing and quiescent fibroblasts and myofibroblasts by immunohistochemistry, immunofluorescence, and ELISA assays. We also present its staining patterns in normal tissue samples and in breast tumors.  相似文献   

4.
Fibroblasts with smooth muscle differentiation are frequently derived from human breast tissue. Immunofluorescence cytochemistry of a fibroblast-associated antigen recognized by a monoclonal antibody (MAb), 1B10, was analyzed with a view to discriminating smooth muscle differentiated fibroblasts from vascular smooth muscle cells. The antigen was detected on the cell surface and in cathepsin D-positive and acridine orange-accumulating vesicular compartments of fibroblasts. Ultrastructurally, the antigen was revealed in coated pits and in endosomal and lysosomal structures. 1B10 recognized three major brands migrating at apparent Mr of 38,000, 45,000, and 80,000, in addition to many minor bands between Mr 45,000 and 97,000, including Mr 52,000. The Mr 45,000 and 38,000 were associated with the cell membrane and Mr 52,000 as well as Mr 38,000 were associated with the lysosomes. The 1B10 immunoreactivity was specific to fibroblasts and smooth muscle differentiated fibroblasts within the context of vascular smooth muscle cells.  相似文献   

5.
Renal fibroblasts from normal kidneys (NKF cells) and from kidneys with interstitial fibrosis (FKIF cells) were established from biopsy material. In primary and passage 1 cell cultures, the amount of fibroblasts was increased by a factor of 5-10 in cultures derived from kidneys with interstitial fibrosis as compared with cultures of normal origin. As tested by clonal growth and growth kinetic experiments, FKIF cells showed significant alterations in the proliferation capacity and generation time resulting in a hyperproliferative growth in primary and secondary fibroblast cultures in vitro. Two-dimensional gel electrophoresis experiments of [35S]methionine-labeled intracellular polypeptides revealed that FKIF cells express two proteins, p53/6.1 and p48/7.5, that are not present in normal kidney and skin fibroblasts. In addition, as analyzed by two-dimensional gel electrophoresis of medium supernatants of FKIF cells, two secreted proteins specific for FKIF cells could be demonstrated. Cross-feeding experiments using conditioned medium of FKIF cells on cultures of normal human skin fibroblasts (NSF cells) revealed that FKIF cells may secrete proteins into the medium or may modify preexisting serum factors that can induce hyperproliferation in normal dermal fibroblasts. As tested by serial subcultivation and clonal analysis, FKIF cells exert significant changes in the differentiation pattern of potentially mitotic fibroblasts populations.  相似文献   

6.
A new culture model was developed to study the role of proliferation and apoptosis in the etiology of keloids. Fibroblasts were isolated from the superficial, central, and basal regions of six different keloid lesions by using Dulbecco's Modified Eagle Medium containing 10% fetal calf serum as a culture medium. The growth behavior of each fibroblast fraction was examined in short-term and long-term cultures, and the percentage of apoptotic cells was assessed by in situ end labeling of fragmented DNA. The fibroblasts obtained from the superficial and basal regions of keloid tissue showed population doubling times and saturation densities that were similar to those of age-matched normal fibroblasts. In contrast, the fibroblasts from the center of the keloid lesions showed significantly reduced doubling times (25.9 +/- 6.3 hours versus 43.5 +/- 6.3 hours for normal fibroblasts) and reached higher cell densities. In long-term culture, central keloid fibroblasts formed a stratified three-dimensional structure, contracted the self-produced extracellular matrix, and gave rise to nodular cell aggregates, mimicking the formation of keloid tissue. Apoptotic cells were detected in both normal and keloid-derived fibroblasts, but their numbers were twofold higher in normal cells compared with all keloid fibroblasts. To examine whether apoptosis mediates the therapeutic effect of ionizing radiation on keloids, the cells were exposed to gamma rays at a dose of 8 Gy. Under these conditions, a twofold increase in the population of apoptotic cells was detected. These results indicate that the balance between proliferation and apoptosis is impaired in keloid fibroblasts, which could be responsible for the formation of keloid tumors. The results also suggest that keloids contain at least two different fibroblast fractions that vary in growth behavior and extracellular matrix metabolism.  相似文献   

7.
Both endothelial cells (EC) and fibroblasts, two discrete populations of hemopoietic stroma, are known to modulate the proliferation and differentiation of hemopoietic progenitors. Recent reports also demonstrated that EC stimulate the in vitro growth of fibroblasts via a soluble factor. This finding seems to support the hypothesis that EC may play a role in the pathogenesis of bone marrow fibrosis in myeloproliferative disorders (MD). We have studied the effects of the conditioned medium (CM) from human umbilical vein EC cultures, obtained in serum free conditions, on the growth of bone marrow fibroblasts from normal donors and from patients with MD. The results show that EC derived CM contains a factor which stimulates the proliferation of fibroblasts and that can act as an authentic growth factor by inducing "quiescent" fibroblasts to proliferate. Moreover, we found that this endothelial derived growth factor (EDGF) equally promotes the proliferation of both normal and pathological progenitors of bone marrow fibroblasts (CFU-F) by increasing both the number and the size of the colonies.  相似文献   

8.
Stromal-derived growth factors are required for normal epithelial growth but are also implicated in tumour progression. We have observed inactivation of the retinoblastoma protein (Rb), through phosphorylation, in cancer-associated fibroblasts in oro-pharyngeal cancer specimens. Rb is well known for its cell-autonomous effects on cancer initiation and progression; however, cell non-autonomous functions of Rb are not well described. We have identified a cell non-autonomous role of Rb, using three-dimensional cultures, where depletion of Rb in stromal fibroblasts enhances invasive potential of transformed epithelia. In part, this is mediated by upregulation of keratinocyte growth factor (KGF), which is produced by the depleted fibroblasts. KGF drives invasion of epithelial cells through induction of MMP1 expression in an AKT- and Ets2-dependent manner. Our data identify that stromal fibroblasts can alter the invasive behaviour of the epithelium, and we show that altered expression of KGF can mediate these functions.  相似文献   

9.
10.
Background information. Multipotent mesenchymal stem cells can participate in the formation of a microenvironment stimulating the aggressive behaviour of cancer cells. Moreover, cells exhibiting pluripotent ESC (embryonic stem cell) markers (Nanog and Oct4) have been observed in many tumours. Here, we investigate the role of cancer‐associated fibroblasts in the formation of stem cell supporting properties of tumour stroma. We test the influence of fibroblasts isolated from basal cell carcinoma on mouse 3T3 fibroblasts, focusing on the expression of stem cell markers and plasticity in vitro by means of microarrays, qRT‐PCR (quantitative real‐time PCR) and immunohistochemistry. Results. We demonstrate the biological activity of the cancer stromal fibroblasts by influencing the 3T3 fibroblasts to express markers such as Oct4, Nanog and Sox2 and to show differentiation potential similar to mesenchymal stem cells. The role of growth factors such as IGF2 (insulin‐like growth factor 2), FGF7 (fibroblast growth factor 7), LEP (leptin), NGF (nerve growth factor) and TGFβ (transforming growth factor β), produced by the stromal fibroblasts, is established to participate in their bioactivity. Uninduced 3T3 do not express the stem cell markers and show minimal differentiation potential. Conclusions. Our observations indicate the pro‐stem cell activity of cancer‐associated fibroblasts and underline the role of epithelial—mesenchymal interaction in tumour biology.  相似文献   

11.
Objective: Fibroblasts appear to modulate osteoclastogenesis, but their precise role in this process remains unclear. In this work, paracrine‐mediated osteoclastogenic potential of different human fibroblasts was assessed. Materials and methods: Fibroblast‐conditioned media (CM) from foetal skin (CM1), adult skin (CM2) and adult gingiva (CM3) were used to promote osteoclastogenesis of osteoclast precursor cells. Cultures supplemented with macrophage‐colony stimulating factor (M‐CSF) and receptor activator of nuclear factor‐κB ligand (RANKL) were used as controls. Results: All fibroblast cultures expressed FSP‐1, M‐CSF and RANKL and produced osteoprotegerin (OPG); gingival fibroblasts presented lowest expression of osteoclastogenic genes and higher production of OPG. All fibroblast CM were able to induce osteoclastogenesis. CM1 showed behaviour similar to positive controls, and slightly higher osteoclastogenic potential than CM, from adult ones. Gingival fibroblasts revealed lowest osteoclastogenic ability. Presence of anti‐MCSF or anti‐RANKL partially inhibited osteoclastogenesis promoted by CM, although the former antibody revealed higher inhibitory response. Differences among the osteoclastogenic effect of CM were noted, mainly in expression of genes involved in differentiation and activation of osteoclast precursor cells, c‐myc and c‐src, and less regarding functional related parameters. Conclusions: Fibroblasts are able to induce osteoclastogenesis by paracrine mechanisms, and age and anatomical location affect this ability. Other factors produced by fibroblasts, in addition to M‐CSF and RANKL, appear to contribute to observed osteoclastogenic potential.  相似文献   

12.
The keratinocyte growth factor (KGF/FGF7), produced by stromal cells, is a key paracrine mediator of epithelial proliferation, differentiation and migration. Expression of the growth factor is increased in wound healing and in hyperproliferative epithelial diseases, as a consequence of the activation of dermal fibroblasts by the inflammatory microenvironment. The middle ear cholesteatoma, an aural epidermal pathology characterized by keratinocyte hyperproliferation and chronic inflammation, may represent a model condition to study the epithelial-mesenchymal interactions. To develop an in vitro model for this disease, we isolated and characterized human primary cultures of fibroblasts associated with the cholesteatoma lesion, analyzing their secretory behaviour and degree of differentiation or activation. Compared to the perilesional or control normal fibroblasts, all cultures derived from cholesteatoma tissues were less proliferating and more differentiated and their highly variable activated phenotype correlated with the secretion of KGF as well as of metalloproteases 2 and 9. Culture supernatants collected from the cholesteatoma-associated fibroblasts were able to increase the proliferation and differentiation of human keratinocytes assessed by the expression of Ki67 and keratin-1 markers. The single crucial contribution of the KGF released by fibroblasts on the keratinocyte biological response was shown by the specific, although partial, block induced by inhibiting the KGF receptor or by immunoneutralizing the growth factor. Altogether, these results suggest that the activation of the stromal fibroblasts present in the pathological tissue, and the consequent increased secretion of KGF, play a crucial role in the deregulation of the epidermal proliferation and differentiation.  相似文献   

13.
Using the cre-loxP system, we generated a new mouse model [double stromal androgen receptor knockout (dARKO)] with selectively deleted androgen receptor (AR) in both stromal fibroblasts and smooth muscle cells, and found the size of the anterior prostate (AP) lobes was significantly reduced as compared with those from wild-type littermate controls. The reduction in prostate size of the dARKO mouse was accompanied by impaired branching morphogenesis and partial loss of the infolding glandular structure. Further dissection found decreased proliferation and increased apoptosis of the prostate epithelium in the dARKO mouse AP. These phenotype changes were further confirmed with newly established immortalized prostate stromal cells (PrSC) from wild-type and dARKO mice. Mechanistically, IGF-1, placental growth factor, and secreted phosphoprotein-1 controlled by stromal AR were differentially expressed in PrSC-wt and PrSC-ARKO. Moreover, the conditioned media (CM) from PrSC-wt promoted prostate epithelium growth significantly as compared with CM from PrSC-dARKO. Finally, adding IGF-1/placental growth factor recombinant proteins into PrSC-dARKO CM was able to partially rescue epithelium growth. Together, our data concluded that stromal fibromuscular AR could modulate epithelium growth and maintain cellular homeostasis through identified growth factors.  相似文献   

14.
Fibroblasts often constitute the majority of the stromal cells within a breast carcinoma, yet the functional contributions of these cells to tumorigenesis are poorly understood. Using a coimplantation tumor xenograft model, we demonstrate that carcinoma-associated fibroblasts (CAFs) extracted from human breast carcinomas promote the growth of admixed breast carcinoma cells significantly more than do normal mammary fibroblasts derived from the same patients. The CAFs, which exhibit the traits of myofibroblasts, play a central role in promoting the growth of tumor cells through their ability to secrete stromal cell-derived factor 1 (SDF-1); CAFs promote angiogenesis by recruiting endothelial progenitor cells (EPCs) into carcinomas, an effect mediated in part by SDF-1. CAF-secreted SDF-1 also stimulates tumor growth directly, acting through the cognate receptor, CXCR4, which is expressed by carcinoma cells. Our findings indicate that fibroblasts within invasive breast carcinomas contribute to tumor promotion in large part through the secretion of SDF-1.  相似文献   

15.
16.
Cancer-associated fibroblasts (CAFs) promote tumorigenesis, growth, invasion and metastasis of cancer, whereas normal fibroblasts (NFs) are thought to suppress tumor progression. Little is known about miRNAs expression differences between CAFs and NFs or the patient-to-patient variability in miRNAs expression in breast cancer. We established primary cultures of CAFs and paired NFs from six resected breast tumor tissues that had not previously received radiotherapy or chemotherapy treatment and analyzed with miRNAs microarrays. The array data were analyzed using paired SAM t-test and filtered according to α and q values. Pathway analysis was conducted using DAVID v6.7. We identified 11 dysregulated miRNAs in CAFs: three were up-regulated (miR-221-5p, miR-31-3p, miR-221-3p), while eight were down-regulated (miR-205, miR-200b, miR-200c, miR-141, miR-101, miR-342-3p, let-7g, miR-26b). Their target genes are known to affect cell differentiation, adhesion, migration, proliferation, secretion and cell-cell interaction. By our knowledge it is firstly identify the expression profiles of miRNAs between CAFs and NFs and revealed their regulation on the associated signaling pathways.  相似文献   

17.
Transformation experiments have been carried out on human diploid fibroblasts derived from normal individuals and those from 2 groups with dominantly inherited cancer predisposition, familial polyposis coli (FPC), and multiple endocrine neoplasia, type 2 (MEN-2). Treatment with a single or multiple doses of the carcinogen, N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), resulted in limited anchorage-independent (AI) growth in both normal and FPC cultures; no permanent cell lines were produced but FPC cells showed increased proliferation with low doses of the carcinogen. Carcinogen treatment followed by application of the tumour promoter, 12-O-tetradecanoyl phorbol-13-acetate (TPA), for 38 weeks was insufficient to cause full transformation in cultures derived from normal people or MEN-2 patients although AI growth was induced in all 3 cell types. Three FPC cultures exhibited an extended life span over the solvent controls. Two of these are still actively dividing and have a clonal pseudodiploid karyotype.  相似文献   

18.
Summary Satellite cells, liberated from pectoral muscle of juvenile dystrophic chickens by sequential treatment with collagenase, hyaluronidase, and trypsin and preplated to remove fibroblasts and cultured on gelatin proliferated rapidly, fused and formed confluent muscle cultures within 6 d in vitro with minimal contamination by fibroblasts. When identical isolation and culturing techniques were applied to muscle from age-mateched normal chickens proliferation and differentiation were slower, contamination with fibroblasts was much greater, and only a small number of myotubes were formed. After injection of the myotoxic anesthetic marcaine into normal pectoral muscle for 5 consecutive days, myotube formation was accelerated in satellite cell cultures, but the rate of differentiation was not as rapid as that occurring in cells from dystrophic muscle. This research was supported by a grant from the Muscular Dystrophy Association of Canada.  相似文献   

19.
CD44, a cell adhesion protein, involves in various process in cancer such as cell survival and metastasis. Most researches on CD44 in cancer focus on cancer cells. Recently, it is found that CD44 expression is high in fibroblasts of tumour microenvironment. However, its role in communication between fibroblasts and breast cancer cells is seldom known. In this study, CD44‐positive (CD44+Fbs) and CD44‐negative carcinoma‐associated fibroblasts (CD44?Fbs) were isolated and cocultured with breast cancer cells for analysis of cell survival and drug resistance. We found that CD44+Fbs promoted breast cancer cell survival and paclitaxel resistance and inhibited paclitaxel‐induced apoptosis. Our further research for the molecular mechanism showed that IGF2BP3 bound to CD44 mRNA and enhanced CD44 expression, which increased IGF2 levels of fibroblasts and then stimulated breast cancer cell proliferation and drug resistance. IGF2 was found to activate Hedgehog signal pathway in breast cancer cells. In conclusion, the results illustrated that in CD44+Fbs, binding of IGF2BP3 and CD44 promotes IGF2 expression and then accelerates breast cancer cell proliferation, survival and induced chemotherapy resistance likely by activating Hedgehog signal pathways.  相似文献   

20.
Affinity toward each other was demonstrated in co-cultures between HeLa cells and fibroblasts originating from human tumor stromal or normal tissues. Both cell types in the mixed cultures (ratio 1:1, 1:2, 2:1) proliferated normally as shown by 3H-thymidine labeling index estimation for up to 48 hr of co-culture. At ratios of fibroblasts: HeLa lower than 1:10, fibroblasts were eventually eliminated after serial passaging. It was shown that 3H-nucleotides could be transferred between heterologous cells in either direction. Contact of cells was essential for this phenomenon. Transfer of the label from HeLa to fibroblasts required a longer interaction time and was evidently lower than the transfer from fibroblasts to HeLa. 3H-thymidine incorporated into the DNA of either cell type could not be transferred from one cell to another. The model provides a means for studying neoplastic X normal (or tumour stromal) cell interactions in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号