首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Morphological changes of hepatocyte death have so far only been described on cells in culture or in tissue sections. Using a high-resolution and high-magnification multiphoton microscopic system, we recorded in living mice serial changes of acetaminophen (APAP)-induced hepatocyte necrosis in relevance to metabolism of a fluorogenic bile solute. Initial changes of hepatocyte injury included basal membrane disruption and loss of mitochondrial membrane potential. An overwhelming event of rupture at adjacent apical membrane resulting in flooding of bile into these hepatocytes might ensue. Belbs formed on basal membrane and then dislodged into the sinusoid circulation. Transmission electron microscopy disclosed a necrotic hepatocyte depicting well the changes after apical membrane rupture and bile flooding. Administration of the antidote N-acetylcysteine dramatically reduced the occurrence of apical membrane rupture. The present results demonstrated a hidden but critical step of apical membrane rupture leading to irreversible APAP-induced hepatocyte injury.  相似文献   

2.
Transport of endogenous chemicals both into (at the basolateral membrane) and out of (at the canalicular membrane) hepatocytes plays an important role in bile formation. Hence, interference with these processes, for example by chemicals, may result in reduced bile output. Several different systems are available for the study of transport and hence chemicals that may interfere with the process. These have been used to varying degrees with isolated hepatocytes probably being the most popular over recent years. It is likely that hepatocyte couplets and highly purified plasma membrane vesicles will be increasingly employed over the ensuing years. The inhibitory effects of several chemicals on the transport of bile acids have been demonstrated with indications that this may help to account for some aspects of chemical-induced hepatobiliary dysfunction. For example, the inhibition of transport of bile acids by cyclosporin A is consistent with the reported pattern of liver dysfunction in patients on high doses of this immunosuppressant. Investigation into chemical-induced interference with electrolyte transport has yet to receive the same degree of attention. This and other aspects have been suggested as deserving of and likely to be subjected to more intensive experimentation over the next few years.  相似文献   

3.
Autophagy     
《Autophagy》2013,9(4):545-558
The role of autophagy in the response of human hepatocytes to oxidative stress remains unknown. Understanding this process may have important implications for the understanding of basic liver epithelial cell biology and the responses of hepatocytes during liver disease. To address this we isolated primary hepatocytes from human liver tissue and exposed them ex vivo to hypoxia and hypoxia-reoxygenation (H-R). We showed that oxidative stress increased hepatocyte autophagy in a reactive oxygen species (ROS) and class III PtdIns3K-dependent manner. Specifically, mitochondrial ROS and NADPH oxidase were found to be key regulators of autophagy. Autophagy involved the upregulation of BECN1, LC3A, Atg7, Atg5 and Atg 12 during hypoxia and H-R. Autophagy was seen to occur within the mitochondria of the hepatocyte and inhibition of autophagy resulted in the lowering a mitochondrial membrane potential and onset of cell death. Autophagic responses were primarily observed in the large peri-venular (PV) hepatocyte subpopulation. Inhibition of autophagy, using 3-methyladenine, increased apoptosis during H-R. Specifically, PV human hepatocytes were more susceptible to apoptosis after inhibition of autophagy. These findings show for the first time that during oxidative stress autophagy serves as a cell survival mechanism for primary human hepatocytes.  相似文献   

4.
The role of autophagy in the response of human hepatocytes to oxidative stress remains unknown. Understanding this process may have important implications for the understanding of basic liver epithelial cell biology and the responses of hepatocytes during liver disease. To address this we isolated primary hepatocytes from human liver tissue and exposed them ex vivo to hypoxia and hypoxia-reoxygenation (H-R). We showed that oxidative stress increased hepatocyte autophagy in a reactive oxygen species (ROS) and class III PtdIns3K-dependent manner. Specifically, mitochondrial ROS and NADPH oxidase were found to be key regulators of autophagy. Autophagy involved the upregulation of BECN1, LC3A, Atg7, Atg5 and Atg 12 during hypoxia and H-R. Autophagy was seen to occur within the mitochondria of the hepatocyte and inhibition of autophagy resulted in the lowering a mitochondrial membrane potential and onset of cell death. Autophagic responses were primarily observed in the large peri-venular (PV) hepatocyte subpopulation. Inhibition of autophagy, using 3-methyladenine, increased apoptosis during H-R. Specifically, PV human hepatocytes were more susceptible to apoptosis after inhibition of autophagy. These findings show for the first time that during oxidative stress autophagy serves as a cell survival mechanism for primary human hepatocytes.  相似文献   

5.
We previously found that water transport across hepatocyte plasma membranes occurs mainly via a non-channel mediated pathway. Recently, it has been reported that mRNA for the water channel, aquaporin-8 (AQP8), is present in hepatocytes. To further explore this issue, we studied protein expression, subcellular localization, and regulation of AQP8 in rat hepatocytes. By subcellular fractionation and immunoblot analysis, we detected an N-glycosylated band of approximately 34 kDa corresponding to AQP8 in hepatocyte plasma and intracellular microsomal membranes. Confocal immunofluorescence microscopy for AQP8 in cultured hepatocytes showed a predominant intracellular vesicular localization. Dibutyryl cAMP (Bt(2)cAMP) stimulated the redistribution of AQP8 to plasma membranes. Bt(2)cAMP also significantly increased hepatocyte membrane water permeability, an effect that was prevented by the water channel blocker dimethyl sulfoxide. The microtubule blocker colchicine but not its inactive analog lumicolchicine inhibited the Bt(2)cAMP effect on both AQP8 redistribution to cell surface and hepatocyte membrane water permeability. Our data suggest that in rat hepatocytes AQP8 is localized largely in intracellular vesicles and can be redistributed to plasma membranes via a microtubule-depending, cAMP-stimulated mechanism. These studies also suggest that aquaporins contribute to water transport in cAMP-stimulated hepatocytes, a process that could be relevant to regulated hepatocyte bile secretion.  相似文献   

6.
In the present paper rat hepatocytes in primary monolayer culture were used to investigate the adverse effects of chlorpromazine (CPZ) at the cellular level. As revealed by thin sectioning many of the ultrastructural alterations were comparable to those described for the isolated perfused rat liver under the influence of CPZ. Alterations comprised short-term effects, such as dilation of the rough endoplasmic reticulum and the nuclear envelope, and long-term effects including huge accumulations of myeloid bodies within the cytoplasm as well as dilation and diverticulation of bile canaliculi. Freeze-fracturing revealed the dislocation of intramembrane particles in the sinusoidal plasma membrane which could be detected as early as 30 min after exposure to CPZ. As judged from filipin cytochemistry, alterations in the cholesterol content seems to play a minor role in the process of membrane damage except at the sinusoidal surface where a reduction of cholesterol content may contribute to the impairment of membrane functions. It is concluded that CPZ exerts its cholestatic effect primarily by a rapid disturbance of the membrane architecture of the sinusoidal surface and secondarily by other interactions with the bile secretory apparatus.  相似文献   

7.
The formation of hepatic bile requires that water be transported across liver epithelia. Rat hepatocytes express three aquaporins (AQPs): AQP8, AQP9, and AQP0. Recognizing that cholesterol and sphingolipids are thought to promote the assembly of proteins into specialized membrane microdomains, we hypothesized that canalicular bile secretion involves the trafficking of vesicles to and from localized lipid-enriched microdomains in the canalicular plasma membrane. Hepatocyte plasma membranes were sonicated in Triton and centrifuged overnight on a sucrose gradient to yield a Triton-soluble pellet and a Triton-insoluble, sphingolipid-enriched microdomain fraction at the 5%/30% sucrose interface. The detergent-insoluble portion of the hepatocyte plasma membrane was enriched in alkaline phosphatase (a microdomain-positive marker) and devoid of amino-peptidase N (a microdomain-negative marker), enriched in caveolin, both AQP8 and AQP9, but negative for clathrin. The microdomain fractions contained chloride-bicarbonate anion exchanger isoform 2 and multidrug resistance-associated protein 2. Exposure of isolated hepatocytes to glucagon increased the expression of AQP8 but not AQP9 in the microdomain fractions. Sphingolipid analysis of the insoluble fraction showed the predominant species to be sphingomyelin. These data support the presence of sphingolipid-enriched microdomains of the hepatocyte membrane that represent potential localized target areas for the clustering of AQPs and functionally related proteins involved in canalicular bile secretion.  相似文献   

8.
We have utilized antibodies against five domain-specific integral proteins of the rat hepatocyte plasma membrane to examine the fates of the plasma membrane domains during hepatocyte division in the regenerating rat liver. The proteins were quantified on immunoblots of liver homogenates prepared during the peak of hepatocyte mitotic activity, 28-30 hr after two-thirds hepatectomy. Two sinusoidal/lateral proteins, CE 9 and the asialoglycoprotein receptor, and one bile canalicular protein, dipeptidylpeptidase IV, were not changed significantly in amount; whereas one sinusoidal/lateral protein, the epidermal growth factor receptor, and one bile canalicular protein, HA 4, were reduced to less than or equal to 50% of control levels. Light microscopic examination of plastic sections of regenerating liver tissue revealed that the mitotic hepatocytes generally appeared to retain normal contacts with neighboring interphase hepatocytes. Immunofluorescence was used to localize the domain-specific proteins on mitotic hepatocytes identified in 0.5-micron frozen sections of 28- to 30-hr regenerating liver tissue. Independent of mitotic stage, the hepatocytes retained mutually exclusive bile canalicular and sinusoidal/lateral domains, as defined at the molecular level by the distributions of specific proteins, such as HA 4 and CE 9, respectively.  相似文献   

9.
10.
Monoclonal antibodies have been utilized to characterize the hepatocyte Na+-dependent bile acid transport system. Sinusoidal plasma membrane proteins in the 49-54-kDa range, which are thought to be components of this transport system, based on photo-affinity labeling and reconstitution studies, have been partially purified by affinity chromatography and utilized as an immunogen for the production of a panel of monoclonal antibodies (mAb). One of these mAbs, 25A-3, recognized both a 49- and a 54-kDa protein as assessed by immunoprecipitation. In addition, it was shown to protect the bile acid transport system from inhibition by 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) in a dose-dependent manner. DIDS covalently labeled membrane proteins of 49 and 54 kDa, and this process could be significantly inhibited when performed in the presence of mAb 25A-3. Furthermore, the DIDS-labeled membrane proteins were immunoprecipitated by 25A-3. These results establish that one of these membrane components is the bile acid carrier protein. Another mAb (25D-1) which immunoprecipitated only a 49-kDa protein was shown to block the protective effect of 25A-3 on DIDS inhibition of bile acid transport. In addition both antibodies effected each other's binding capacity to hepatocytes and reacted with the same 49-kDa protein as established by sequential immunoprecipitation. Binding studies indicated that there are approximately 3.3 X 10(6) 49-kDa transport molecules/hepatocyte. These results firmly establish that the 49-kDa protein is the Na+-dependent hepatocyte bile acid transporter.  相似文献   

11.
12.
Gut-derived lipopolysaccharide (LPS) plays a role in the pathogenesis of liver diseases like fibrosis. The enzyme alkaline phosphatase (AP) is present in, among others, the intestinal wall and liver and has been previously shown to dephosphorylate LPS. Therefore, we investigated the effect of LPS on hepatic AP expression and the effect of AP on LPS-induced hepatocyte responses. LPS-dephosphorylating activity was expressed at the hepatocyte canalicular membrane in normal and fibrotic animals. In addition to this, fibrotic animals also displayed high LPS-dephosphorylating activity around bile ducts. The enzyme was shown to dephosphorylate LPS from several bacterial species. LPS itself rapidly enhanced the intrahepatic mRNA levels for this enzyme within 2 h by a factor of seven. Furthermore, in vitro and in vivo studies showed that exogenous intestinal AP quickly bound to the asialoglycoprotein receptor on hepatocytes. This intestinal isoform significantly attenuated LPS-induced hepatic tumor necrosis factor-alpha and nitric oxide (nitrite and nitrate) responses in vitro. The enzyme also reduced LPS-induced hepatic glycogenolysis in vivo. This study shows that LPS enhances AP expression in hepatocytes and that intestinal AP is rapidly taken up by these same cells, leading to an attenuation of LPS-induced responses in vivo. Gut-derived LPS-dephosphorylating activity or enzyme upregulation within hepatocytes by LPS may therefore be a protective mechanism within the liver.  相似文献   

13.
The plasma membrane of adult rat hepatocyte consists of three domains, which have been identified by the monoclonal antibodies A39 and A59 as markers of the sinusoidal domain, B1 of the lateral, and B10 of the canalicular domains (Eur J Cell Biol 39:122, 1985). These monoclonal antibodies were used to study, by indirect immunocytochemistry, formation of the hepatocyte plasma membrane domains during development, from day 15 of gestation to day 35 post partum. The antigens defined by A39, B1, and B10 were detected, from day 15, over the major part of the hepatocyte plasma membrane except for the membranes of newly formed bile canaliculi, which were not labeled by B1 and only poorly labeled, if at all, by A39 and B10. As soon as fetuses were 16 days old, B1 labeled predominantly the lateral domain, as in the adult. Labeling with B10 progressively intensified on the membranes of bile canaliculi, but localization was not exclusively canalicular until day 21 post partum. A39 intensely labeled the canalicular membranes at 19-21 days of gestation, while at 35 days post partum it exhibited the predominantly sinusoidal labeling observed in adult hepatocytes. The antigen defined by A59 was not detected before birth and was found exclusively on the sinusoidal domain, as in the adult. These results show that the patterns of antigen distribution on different plasma membrane domains establish themselves at different rates. The marked differences observed between fetal or neonatal and adult hepatocytes might be responsible for immaturity of liver functions in the neonate.  相似文献   

14.
The taurocholate transport system in normal and transformed hepatocytes has been characterized using transport kinetics and photoaffinity labeling procedures. A photoreactive diazirine derivative of taurocholate, (7,7-azo-3 alpha,12 alpha-dihydroxy-5 beta-cholan-24-oyl)-2-amino [ 1,2-3H ]ethanesulfonic acid (7-ADTC), which has been shown to be a substrate for the bile acid carrier system, was photolyzed in the presence of intact hepatocytes, hepatoma tissue culture (HTC) cells, and plasma membranes derived from the hepatocyte sinusoidal surface. Irradiation of membranes in the presence of 7-ADTC resulted in the incorporation of the photoprobe into two proteins with Mr = 68,000 and 54,000. The specificity of labeling was confirmed by the significant inhibition of labeling observed when photolysis was carried out in the presence of taurocholate. The 68,000-Da protein was easily extracted with water and was shown to exhibit electrophoretic properties identical with rat serum albumin. The 54,000-Da protein required Triton X-100 for solubilization, indicating a strong association with the plasma membrane. Labeling of intact hepatocytes also resulted in specific labeling of the 54,000-Da protein. In contrast to hepatocytes, HTC cells derived from Morris hepatoma 7288C as well as H4-II-E cells derived from Reuber hepatoma H-35 exhibited a total loss of mediated bile acid uptake. Photolysis of 7-ADTC in the presence of HTC cells did not result in the labeling of any proteins, a result consistent with the loss of transport activity, and further supporting the specificity of the labeling reaction. The anion transport inhibitor N-(4-azido-2-nitrophenyl)-2-aminoethyl-[ 35S ]sulfonate, which has been shown to be a substrate for the bile acid carrier system also labeled the 54,000-Da plasma membrane protein when photolyzed in the presence of intact hepatocytes. These results suggest that the 54,000-Da protein is a component of the hepatocyte bile acid transport system and that the activity of this system is greatly reduced in several hepatoma cell lines.  相似文献   

15.
(Glyco)sphingolipids (GSL) are believed to protect the cell against harmful environmental factors by increasing the rigidity of plasma membrane. Marked decrease of membrane fluidity in cholestatic hepatocytes was described but the role of GSL therein has not been investigated so far. In this study, localization in hepatocytes of a representative of GSL, the GM1 ganglioside, was compared between of rats with cholestasis induced by 17α-ethinylestradiol (EE) and vehicle propanediol treated or untreated animals. GM1 was monitored by histochemical reaction employing cholera toxin B-subunit. Our findings in normal rat liver tissue showed that GM1 was localized in sinusoidal and canalicular hepatocyte membranes in both peripheral and intermediate zones of the hepatic lobules, and was nearly absent in central zones. On the contrary, in EE-treated animals GM1 was also expressed in central lobular zones. Moreover, detailed densitometry analysis at high magnification showed greater difference of GM1 expression between sinusoidal surface areas and areas of adjacent cytoplasm, caused as well by increased sinusoidal staining in central lobular zone as by decreased staining in cytoplasm in peripheral zone. These differences correlated with serum bile acids as documented by linear regression analyses. Both GM1 content and mRNA corresponding to GM1-synthase remained unchanged in livers; the enhanced expression of GM1 at sinusoidal membrane thus seems to be due to re-distribution of cellular GM1 at limited biosynthesis and could be responsible for protection of hepatocytes against harmful effects of bile acids accumulated during cholestasis.  相似文献   

16.
V. Iwanij  H. Stukenbrok 《Protoplasma》1995,188(3-4):202-212
Summary The binding of125I-glucagon to the cell surface and the pathway of intracellular transport of this hormone by rat hepatocytes in vivo were studied by light and EM autoradiography. Radiolabeled glucagon injected into the blood stream was taken up predominantly by the hepatocytes. Negligible radioactivity was found to be associated with other cell types such as endothelial or Kupffer cells. Our results indicate that at early time points after injection glucagon has been preferentially interacting with the sinusoidal domain of the hepatocytes and found to be associated with coated pits and uncoated vesicles corresponding to endosomes. At 15–20 min time intervals glucagon grains were found within hepatocyte interior. Later, at 30 min after injection glucagon grains accumulate in the Golgi-lysosomal region of hepatocyte often in close proximity to the opening of the bile canaliculi. Accordingly a portion of internalized125I-glucagon was found to be released into the bile thereby indicating that a transcytotic pathway may be involved in this peptide's clearance process.  相似文献   

17.
Whether hepatocytes can convert into biliary epithelial cells (BECs) during biliary injury is much debated. To test this concept, we traced the fate of genetically labeled [dipeptidyl peptidase IV (DPPIV)-positive] hepatocytes in hepatocyte transplantation model following acute hepato-biliary injury induced by 4,4’-methylene-dianiline (DAPM) and D-galactosamine (DAPM+D-gal) and in DPPIV-chimeric liver model subjected to acute (DAPM+D-gal) or chronic biliary injury caused by DAPM and bile duct ligation (DAPM+BDL). In both models before biliary injury, BECs are uniformly DPPIV-deficient and proliferation of DPPIV-deficient hepatocytes is restricted by retrorsine. We found that mature hepatocytes underwent a stepwise conversion into BECs after biliary injury. In the hepatocyte transplantation model, DPPIV-positive hepatocytes entrapped periportally proliferated, and formed two-layered plates along portal veins. Within the two-layered plates, the hepatocytes gradually lost their hepatocytic identity, proceeded through an intermediate state, acquired a biliary phenotype, and subsequently formed bile ducts along the hilum-to-periphery axis. In DPPIV-chimeric liver model, periportal hepatocytes expressing hepatocyte nuclear factor-1β (HNF-1β) were exclusively DPPIV-positive and were in continuity to DPPIV-positives bile ducts. Inhibition of hepatocyte proliferation by additional doses of retrorsine in DPPIV-chimeric livers prevented the appearance of DPPIV-positive BECs after biliary injury. Moreover, enriched DPPIV-positive BEC/hepatic oval cell transplantation produced DPPIV-positive BECs or bile ducts in unexpectedly low frequency and in mid-lobular regions. These results together suggest that mature hepatocytes but not contaminating BECs/hepatic oval cells are the sources of periportal DPPIV-positive BECs. We conclude that mature hepatocytes contribute to biliary regeneration in the environment of acute and chronic biliary injury through a ductal plate configuration without the need of exogenously genetic or epigenetic manipulation.  相似文献   

18.
Adult rat hepatocytes were cultured for 15 days on type I collagen-coated permeable membranes in a hormonally defined Waxman's modified medium supplemented with very low concentrations of insulin, glucagon and dexamethasone. Phase contrast examination showed that 15-day-old cultures still formed a regular monolayer of polygonal cells. In similarly aged cultures, intracellular glycogen was abundant and evenly distributed, while steatosis remained very limited. Scanning and transmission electron microscopy showed that well developed bile canaliculi could be observed on the lateral side of the hepatocyte membrane after 4 days of incubation and persisted for 2 weeks. These canalicular structures probably originated from coalescence of membrane invaginations observed in 1-day-old cultures. Transmission electron microscopy showed that the ultrastructure of the cells was very close to that of normal rat hepatocytes in the intact liver. These results suggest that rat hepatocytes cultured under these experimental conditions are able to develop and maintain tissue-specific cytochemical and morphological properties for at least 15 days.  相似文献   

19.
The accumulation of hydrophobic bile acids plays a role in the induction of apoptosis and necrosis of hepatocytes during cholestasis. Glycochenodeoxycholate acid (GCDC) triggers a rapid oxidative stress response as an event of glutathione (GSH) depletion and nuclear factor kappa B (NF-κB) activation. We therefore investigated whether the bioactivity of the antioxidant capillarisin (Cap) prevents GCDC-induced hepatocyte damage. Isolated rat hepatocytes were co-incubated with 100 μM GCDC and 0.5 mg/ml Cap for 4 h. GSH depletion and thiobarbituric acid-reactive substances (TBARS, measure of lipid peroxidation) increased after GCDC exposure, but were markedly suppressed by Cap treatment. Cap protected hepatocytes from a GCDC-induced increase in reactive oxygen species (ROS) generation and mitochondrial membrane potential induction, as measured by flow cytometry analysis. In addition, Cap was shown to inhibit GCDC-mediated NF-κB activation by using electrophoretic mobility shift assays (EMSA). In contrast to GCDC, Cap not only significantly decreased cytochrome c release and caspase-3 enzyme activity, but also suppressed heme oxygenase-1 protein and mRNA expression in hepatocytes. These results demonstrate that Cap function as an antioxidant reduced hepatocyte injury caused by hydrophobic bile acids, perhaps by preventing generation of ROS and release of cytochrome c, thereby minimizing hepatocytes apoptosis.  相似文献   

20.
Previous work from our laboratory supports an important role for aquaporins (AQPs), a family of water channel proteins, in bile secretion by hepatocytes. To further define the pathways and molecular mechanisms for water movement across hepatocytes, we directly assessed osmotic water permeability (Pf) and activation energy (Ea) in highly purified, rat hepatocytes basolateral membrane vesicles (BLMV) and canalicular membrane (CMV) vesicles by measuring scattered light intensity using stopped-flow spectrophotometry. The time course of scattered light for BLMV and CMV fit well to a single-exponential function. In BLMV, Pf was 108 +/- 4 mum.s-1 (25 degrees C) with an Ea of 7.7 kcal/mol; in CMV, Pf was 86 +/- 5 mum.s-1 (25 degrees C) with an Ea of 8.0 kcal/mol. The AQP blocker, dimethyl sulfoxide, significantly inhibited the Pf of both basolateral (81 +/- 4 mum.s-1; -25%) and canalicular (59 +/- 4 mum.s-1; -30%) membrane vesicles. When CMV were isolated from hepatocytes treated with dibutyryl cAMP, a double-exponential fit was needed, implying two functionally different vesicle populations; one population had Pf and Ea values similar to those of CMV from untreated hepatocytes, but the other population had a very high Pf (655 +/- 135 mum.s-1, 25 degrees C) and very low Ea (2.8 kcal/mol). Dimethyl sulfoxide completely inhibited the high Pf value in this second vesicle population. In contrast, Pf and Ea of BLMV were unaltered by cAMP treatment of hepatocytes. Our results are consistent with the presence of both lipid- and AQP-mediated pathways for basolateral and canalicular water movement across the hepatocyte plasma membrane barrier. Our data also suggest that the hepatocyte canalicular membrane domain is rate-limiting for transcellular water transport and that this domain becomes more permeable to water when hepatocytes are exposed to a choleretic agonist, presumably by insertion of AQP molecules. These data suggest a molecular mechanism for the efficient coupling of osmotically active solutes and water transport during canalicular bile formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号