首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Characterization of the oriC region of Mycobacterium smegmatis.   总被引:2,自引:0,他引:2       下载免费PDF全文
A 3.5-kb DNA fragment containing the dnaA region of Mycobacterium smegmatis has been hypothesized to be the chromosomal origin of replication or oriC (M. Rajagopalan et al., J. Bacteriol. 177:6527-6535, 1995). This region included the rpmH gene, the dnaA gene, and a major portion of the dnaN gene as well as the rpmH-dnaA and dnaA-dnaN intergenic regions. Deletion analyses of this region revealed that a 531-bp DNA fragment from the dnaA-dnaN intergenic region was sufficient to exhibit oriC activity, while a 495-bp fragment from the same region failed to exhibit oriC activity. The oriC activities of plasmids containing the 531-bp sequence was less than the activities of those containing the entire dnaA region, suggesting that the regions flanking the 531-bp sequence stimulated oriC activity. The 531-bp region contained several putative nine-nucleotide DnaA-protein recognition sequences [TT(G/C)TCCACA] and a single 11-nucleotide AT-rich cluster. Replacement of adenine with guanine at position 9 in five of the putative DnaA boxes decreased oriC activity. Mutations at other positions in two of the DnaA boxes also decreased oriC activity. Deletion of the 11-nucleotide AT-rich cluster completely abolished oriC activity. These data indicate that the designated DnaA boxes and the AT-rich cluster of the M. smegmatis dnaA-dnaN intergenic region are essential for oriC activity. We suggest that M. smegmatis oriC replication could involve interactions of the DnaA protein with the putative DnaA boxes as well as with the AT-rich cluster.  相似文献   

2.
We have shown previously that, when spores of a thymine-requiring strain of Bacillus subtilis were grown out in the absence of thymine, mid-cell Z rings formed over the nucleoid and much earlier than might be expected with respect to progression into the round of replication. It is now shown that such conditions allow no replication of oriC. Rather than replication, partial degradation of the oriC region occurs, suggesting that the status of this region is connected with the 'premature' mid-cell Z ring assembly. A correlation was observed between entry into the replication elongation phase and a block to mid-cell Z rings. The conformation of the nucleoid under various conditions of DNA replication inhibition or limitation suggests that relief of nucleoid occlusion is not primarily responsible for mid-cell Z ring formation in the absence of thymine. We propose the existence of a specific structure at mid-cell that defines the Z ring nucleation site (NS). It is suggested that this NS is normally masked by the replisome upon initiation of replication or soon after entry into the elongation phase, and subsequently unmasked relatively late in the round. During spore outgrowth in the absence of thymine, this checkpoint control over mid-cell Z ring assembly breaks down prematurely.  相似文献   

3.
The positions of DNA regions close to the chromosome replication origin and terminus in growing cells of Escherichia coli have been visualized simultaneously, using new widely applicable reagents. Furthermore, the positions of these regions with respect to a replication factory-associated protein have been analysed. Time-lapse analysis has allowed the fate of origins, termini and the FtsZ ring to be followed in a lineage-specific manner during the formation of microcolonies. These experiments reveal new aspects of the E. coli cell cycle and demonstrate that the replication terminus region is frequently located asymmetrically, on the new pole side of mid-cell. This asymmetry could provide a mechanism by which the chromosome segregation protein FtsK, located at the division septum, can act directionally to ensure that the septal region is free of DNA before the completion of cell division.  相似文献   

4.
5.
Regions of bacterial chromosomes occupy characteristic locations within the cell. In Bacillus subtilis, the origin of replication, oriC, is located at 0 degrees /360 degrees on the circular chromosome. After duplication, sister 0 degrees regions rapidly move to and then reside near the cell quarters. It has been hypothesized that origin function or oriC sequences contribute to positioning and movement of the 0 degrees region. We found that the position of a given chromosomal region does not depend on initiation of replication from the 0 degrees region. In an oriC mutant strain that replicates from a heterologous origin (oriN) at 257 degrees , the position of both the 0 degrees and 257 degrees regions was similar to that in wild-type cells. Thus, positioning of chromosomal regions appears to be independent of which region is replicated first. Furthermore, we found that neither oriC sequences nor the replication initiator DnaA is required or sufficient for positioning a region near the cell quarters. A sequence within oriC previously proposed to play a critical role in chromosome positioning and partitioning was found to make little, if any, contribution. We propose that uncharacterized sites outside of oriC are involved in moving and/or maintaining the 0 degrees region near the cell quarters.  相似文献   

6.
The circular Escherichia coli chromosome is organized by bidirectional replication into two equal left and right arms (replichores). Each arm occupies a separate cell half, with the origin of replication (oriC) at mid-cell. E. coli MukBEF belongs to the ubiquitous family of SMC protein complexes that play key roles in chromosome organization and processing. In mukBEF mutants, viability is restricted to low temperature with production of anucleate cells, reflecting chromosome segregation defects. We show that in mukB mutant cells, the two chromosome arms do not separate into distinct cell halves, but extend from pole to pole with the oriC region located at the old pole. Mutations in topA, encoding topoisomerase I, do not suppress the aberrant positioning of chromosomal loci in mukB cells, despite suppressing the temperature-sensitivity and production of anucleate cells. Furthermore, we show that MukB and the oriC region generally colocalize throughout the cell cycle, even when oriC localization is aberrant. We propose that MukBEF initiates the normal bidirectional organization of the chromosome from the oriC region.  相似文献   

7.
R B Jensen  K Gerdes 《The EMBO journal》1999,18(14):4076-4084
The parA locus of plasmid R1 encodes a prokaryotic centromere-like system that mediates genetic stabilization of plasmids by an unknown mechanism. The locus codes for two proteins, ParM and ParR, and a centromere-like DNA region (parC) to which the ParR protein binds. We showed recently that ParR mediates specific pairing of parC-containing DNA molecules in vitro. To obtain further insight into the mechanism of plasmid stabilization, we examined the intracellular localization of the components of the parA system. We found that ParM forms discrete foci that localize to specific cellular regions in a simple, yet dynamic pattern. In newborn cells, ParM foci were present close to both cell poles. Concomitant with cell growth, new foci formed at mid-cell. A point mutation that abolished the ATPase activity of ParM simultaneously prevented cellular localization and plasmid partitioning. A parA-containing plasmid localized to similar sites, i.e. close to the poles and at mid-cell, thus indicating that the plasmid co-localizes with ParM. Double labelling of single cells showed that plasmid DNA and ParM indeed co-localize. Thus, our data indicate that parA is a true partitioning system that mediates pairing of plasmids at mid-cell and subsequently moves them to the cell poles before cell division.  相似文献   

8.
Dam methyltransferase deficient Escherichia coli cells containing minichromosomes were constructed. Free plasmid DNA could not be detected in these cells and the minichromosomes were found to be integrated in multiple copies in the origin of replication (oriC) region of the host chromosome. The absence of the initiation cascade in Dam- cells is proposed to account for this observation of apparent incompatibility between plasmid and chromosomal copies of oriC. Studies using oriC-pBR322 chimeric plasmids and their deletion derivatives indicated that the incompatibility determinant is an intact and functional oriC sequence. The seqA2 mutation was found to overcome the incompatability phenotype by increasing the cellular oriC copy number 3-fold thereby allowing minichromosomes to coexist with the chromosome. The replication pattern of a wild-type strain with multiple integrated minichromosomes in the oriC region of the chromosome, led to the conclusion that initiation of DNA replication commences at a fixed cell mass, irrespective of the number of origins contained on the chromosome.  相似文献   

9.
The lacZ – hobH fusion clone, containing an Escherichia coli DNA segment located at 92 min on the chromosomal map, was screened as a producer of E. coli oriC hemi-methylated binding activity. We have purified the protein encoded by this locus to near homogeneity. The protein corresponds to the monomeric form of a non-specific acid phosphatase (NAP) whose gene has been designated aphA. oriC DNA footprinting experiments showed protection of hemi-methylated probe by partially purified NAP, but not by purified preparations. Yet, gel retardation experiments with an oriC oligonucleotide demonstrated DNA binding activity of purified NAP in the presence of Mg2+. This experiment also showed an increased affinity of the protein for the hemi-methylated probe compared with the fully or unmethylated form. Indirect immunofluorescence microscopy revealed the existence of discrete NAP foci at mid-cell in cells with two nucleoids, but at cell poles in those with one nucleoid.  相似文献   

10.
Current views of bacterial chromosome segregation vary in respect of the likely presence or absence of an active segregation mechanism involving a mitotic-like apparatus. Furthermore, little is known about cis-acting elements for chromosome segregation in bacteria. In this report, we show that two separate DNA regions, a 3' coding region of dnaA and the AT-rich sequence between dnaA and dnaN (the initial opening site of duplex DNA during replication), are necessary for efficient segregation of the chromosome in Bacillus subtilis. When a plasmid replicon was integrated into argG, far from oriC, on the chromosome and then the oriC function was disrupted, the oriC-deleted mutant formed anucleate cells at 5% possibly because of defects in chromosome segregation. However, when the two DNA sequences were added near oriN, frequency of anucleate cells decreased to 1%. In these cells, the origin (argG) regions were localized near cell poles, whereas they were randomly distributed in cells without the two DNA sequences. These results suggest that the two DNA sequences in and downstream of the dnaA gene participate in correct positioning of the replication origin region within the cell and that this function is associated with accurate chromosome segregation in B. subtilis.  相似文献   

11.
G B Ogden  M J Pratt  M Schaechter 《Cell》1988,54(1):127-135
DNA from the E. coli replicative origin binds with high affinity to outer membrane preparations. Specific binding regions are contained within a 463 bp stretch of origin DNA between positions -46 and +417 on the oriC map. This region of DNA contains an unusually high number of GATC sites, the recognition sequence for the E. coli DNA adenine methylase. We show here that oriC DNA binds to membrane only when it is hemimethylated. The E. coli chromosomal origin is hemimethylated for 8-10 min after initiation of replication, and origin DNA binds to membranes only during this time period. Based on these results, we propose a speculative model for chromosome segregation in E. coli.  相似文献   

12.
Fluorescence in situ hybridization (FISH) analysis has revealed the subcellular localization of specific chromosomal segments and plasmid molecules during the cell division cycle in Escherichia coli: the replication origin (oriC) segments on the chromosome are localized at nucleoid borders, and actively partitioning mini-F plasmid molecules are localized at the 1/4 and 3/4 positions of the cell. In contrast, mini-F plasmid molecules lacking the sopABC segment are randomly localized in cytoplasmic areas at cell poles. In this study, we analysed the subcellular localization of an oriC plasmid that contains the minimum E. coli chromosomal replication origin and its flanking regions. These oriC plasmid molecules were mainly localized in cytosolic areas at cell poles. On the other hand, oriC plasmid DNA molecules carrying the sopABC segment of F plasmid were localized at cell quarter sites, as were actively partitioning mini-F plasmid DNA molecules. Therefore, we conclude that oriC itself and its flanking regions are not sufficient for positioning the replication origin domain of the E. coli chromosome within the cell.  相似文献   

13.
RNA-linked DNA molecules were obtained from E. coli dnaCts cells synchronously initiating a new round of chromosome replication. The deoxynucleotides at the transition from primer RNA to DNA were 32P-labeled, and their positions were located on the nucleotide sequence of 1.4 kb genomic region (position -906 to +493) including the oriC and its leftside flanking region. In the r-strand (the counterclockwise strand), many strong transition sites were mapped in the left half portion of the oriC and a few weak sites in the left outside region. In the 1-strand (the clockwise strand), no transition sites were found inside the oriC but many weak sites were found in the left outside region. The results support the initiation mechanism in which the first leading strand synthesis starts with the r-strand counterclockwise from the oriC that is followed by the 1-strand synthesis on the displaced template strand on the left of oriC. Primer RNA molecules attached to the strong r-strand transition sites were only a few residues in length. Properties of the transition sites were discussed.  相似文献   

14.
To demonstrate that sequestration A (SeqA) protein binds preferentially to hemimethylated GATC sequences at replication forks and forms clusters in Escherichia coli growing cells, we analysed, by the chromatin immunoprecipitation (ChIP) assay using anti-SeqA antibody, a synchronized culture of a temperature-sensitive dnaC mutant strain in which only one round of chromosomal DNA replication was synchronously initiated. After synchronized initiation of chromosome replication, the replication origin oriC was first detected by the ChIP assay, and other six chromosomal regions having multiple GATC sequences were sequentially detected according to bidirectional replication of the chromosome. In contrast, DNA regions lacking the GATC sequence were not detected by the ChIP assay. These results indicate that SeqA binds hemimethylated nascent DNA segments according to the proceeding of replication forks in the chromosome, and SeqA releases from the DNA segments when fully methylated. Immunofluorescence microscopy reveals that a single SeqA focus containing paired replication apparatuses appears at the middle of the cell immediately after initiation of chromosome replication and the focus is subsequently separated into two foci that migrate to 1/4 and 3/4 cellular positions, when replication forks proceed bidirectionally an approximately one-fourth distance from the replication origin towards the terminus. This supports the translocating replication apparatuses model.  相似文献   

15.
Fluorescent polyclonal antibodies specific for MukB have been used to study its localization in Escherichia coli. In wild-type cells, the MukB protein appeared as a limited number of oblong shapes embracing the nucleoid. MukB remained associated with the nucleoid in the absence of DNA replication. The centre of gravity of the dispersed MukB signal initially localized near mid-cell, but moved to approximately quarter positions well before the termination of DNA replication and its subsequent reinitiation. Because MukB had been reported to bind to FtsZ and to its eukaryotic homologue tubulin in vitro, cells were co-labelled with MukB- and FtsZ-specific fluorophores. No co-localization of MukB with polymerized FtsZ (the FtsZ ring) was observed at any time during the cell cycle. A possible role for MukB in preventing premature FtsZ polymerization and in DNA folding that might assist DNA segregation is discussed.  相似文献   

16.
The localization of SeqA, thymidylate synthase, DnaB (helicase) and the DNA polymerase components alpha and tau, has been studied by immunofluorescence microscopy. The origin has been labelled through GFP-LacI bound near oriC. SeqA was located in the cell centre for one replication factory (RF) and at 1/4 and 3/4 positions in pre-divisional cells harbouring two RFs. The transition of central to 1/4 and 3/4 positions of SeqA appeared abrupt. Labelled thymidylate synthetase was found all over the cell, thus not supporting the notion of a dNTP-synthesizing complex exclusively localized near the RF. More DnaB, alpha and tau foci were found than expected. We have hypothesized that extra foci arise at pre-replication assembly sites, where the number of sites equals the number of origins, i.e. the number of future RFs. A reasonable agreement was found between predicted and found foci. In the case of multifork replication the number of foci appeared consistent with the assumption that three RFs are grouped into a higher-order structure. The RF is probably separate from the foci containing SeqA and the hemi-methylated SeqA binding sites because these foci did not coincide significantly with DnaB as marker of the RF. Co-labelling of DnaB and oriC revealed limited colocalization, indicating that DnaB did not yet become associated with oriC at a pre-replication assembly site. DnaB and tau co-labelled in the cell centre, though not at presumed pre-replication assembly sites. By contrast, alpha and tau co-labelled consistently suggesting that they are already associated before replication starts.  相似文献   

17.
W Seufert  W Messer 《The EMBO journal》1986,5(12):3401-3406
The start sites for leading and lagging DNA strands were determined in vitro with minichromosomes as templates. Fragments from replication intermediates were analyzed by hybridization to single-stranded probes. Leading strand synthesis in the counterclockwise direction was found to originate in or close to (position 248 to -44) the minimal origin. Complementary lagging strand synthesis started several positions to the left outside of oriC. The results suggest in addition a concerted synthesis of leading and lagging strands following the dnaA directed assembly of initiation proteins at double-stranded oricC DNA (pre-replisome). In addition, DNA synthesis could initiate at protein n' recognition sequences located within and clockwise to the asnA gene. Initiation at n' sites was dependent on protein i activity, whereas leading and lagging strand initiation in the oriC region was not affected by protein i. Our results argue against an involvement of the phi X174-type primosome in the initiation of discontinuous DNA synthesis at oriC. An alternative function is suggested.  相似文献   

18.
The cell division phenotypes of Escherichia coli with its chromosome replication driven by oriR (from plasmid R1) were examined by fluorescence microscopy and flow cytometry. Chromosome replication patterns in these strains were followed by marker frequency analyses. In one of the strains, the unidirectional oriR was integrated so that the replication fork moved clockwise from the oriC region, and bacterial growth and division were similar to those of the wild-type parent. The bacteria were able to convert the unidirectional initiation from oriR into bidirectional replication. The site for conversion of uni- to bidirectional replication seemed to be localized and could be mapped genetically within 6 min to the immediate right of the minimal oriC . Replication starting in the counterclockwise direction from the R1 replicon integrated at the same site in the opposite orientation could not be described as either bi- or unidirectional, as no single predominant origin could be discerned from the more or less flat marker frequency pattern. These strains also showed extensive filamentation, irregular nucleoid distribution and the presence of anucleate cells, indicative of segregation and division defects. Comparison among intR1 derivatives differing in the position of the integrated oriR relative to the chromosome origin suggested that the oriC sequence itself was dispensable for the conversion to bidirectionality. However, passage of the replication fork over the 6 min region to the right of oriC seemed important for the bidirectional replication pattern and normal cell division phenotype.  相似文献   

19.
The DNA replication machinery, various regions of the chromosome, and some plasmids occupy characteristic subcellular positions in bacterial cells. We visualized the location of a multicopy plasmid, pHP13, in living cells of Bacillus subtilis using an array of lac operators and LacI-green fluorescent protein (GFP). In the majority of cells, plasmids appeared to be highly mobile and randomly distributed. In a small fraction of cells, there appeared to be clusters of plasmids located predominantly at or near a cell pole. We also monitored the effects of the presence of multicopy plasmids on the position of DNA polymerase using a fusion of a subunit of DNA polymerase to GFP. Many of the plasmid-containing cells had extra foci of the replisome, and these were often found at uncharacteristic locations in the cell. Some of the replisome foci were dynamic and highly mobile, similar to what was observed for the plasmid. In contrast, replisome foci in plasmid-free cells were relatively stationary. Our results indicate that in B. subtilis, plasmid-associated replisomes are recruited to the subcellular position of the plasmid. Extending this notion to the chromosome, we postulated that the subcellular position of the chromosomally associated replisome is established by the subcellular location of oriC at the time of initiation of replication.  相似文献   

20.
The origin of replication of the Escherichia coli chromosomal DNA binds with high affinity to outer membrane preparations. This specific binding requires a 463-base-pair region of origin DNA between positions -45 and +417 of the oriC map. We show that binding does not require the presence of adjacent regions. From further analysis, we conclude that more than one binding site resides within the 325-base-pair fragment between positions +38 (BamHI) and +417 (XhoI). When this fragment is cut, two pieces bind with high affinity and one binds with lesser affinity. The binding ability of one of the high affinity sites is abolished by cutting it at position +92 with BamHI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号