首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
红火蚁触角及其上感受器的扫描电镜观察   总被引:9,自引:0,他引:9  
高艳  罗礼智 《昆虫学报》2005,48(6):986-992
应用扫描电镜对采自我国广东吴川和广西南宁的红火蚁Solenopsis invicta Buren工蚁、有翅雌蚁和雄蚁触角的形态和感受器类型进行了研究。结果表明,工蚁、雌蚁和雄蚁的触角存在着较大的差异。工蚁和雌蚁的触角为膝状,末端2或3节膨大为棒状,雌蚁的触角11节,比工蚁(10节)的多1节。雄蚁的触角为线状,12节,末端没有棒状结构。工蚁和雌蚁的触角上共有7种感受器,分别为毛形、曲毛形、锥形、腔锥形、坛形、刺形感受器和Böhm氏鬃毛,前6种感受器大多集中在触角末端的棒节,棒节以外的各鞭节上主要是毛形感受器,Böhm氏鬃毛则分布于柄节和梗节的基部,鞭节上无此感受器。雄蚁触角上也有7种感受器,但其分布与工蚁的有较大差异,Böhm氏鬃毛的分布与工蚁和雌蚁的相同,锥形感受器分布在末端2节,坛形感受器分布在末端3节,其余的4种感受器较为均匀地分布在各鞭节,而不是聚集在端节。另外,新发现雄蚁中存在一种与已知的毛型感受器不同的超短毛状感受器,定名为超短毛感受器。最后,对红火蚁的触角及感受器在蚁群社会性行为中的作用进行了讨论。  相似文献   

2.
The morphology and ultrastructure of the olfactory sensilla on the antennae and maxillary palps were investigated through scanning electron microscopy (SEM) and transmission electron microscopy (TEM), and their responses to five volatile compounds were measured using electroantenogram (EAG) and electropalpogram (EPG) techniques in the pumpkin fruit fly, Bactrocera depressa (Shiraki; Diptera: Tephritidae). Male and female B. depressa displayed distinct morphological types of olfactory sensilla in the antennae and maxillary palps, with predominant populations of trichoid, basiconic, and coeloconic sensilla. Basiconic sensilla, the most abundant type of olfactory sensilla in the antennae, could be further classified into two different types. In contrast, the maxillary palps exhibited predominant populations of a single type of curved basiconic sensilla. High‐resolution SEM observation revealed the presence of multiple nanoscale wall‐pores on the cuticular surface of trichoid and basiconic sensilla, indicating that their primary function is olfactory. In contrast, coeloconic sensilla displayed several longitudinal grooves around the sensillum peg. The TEM observation of individual antennal olfactory sensilla indicates that the basiconic sensilla are thin‐walled, while the trichoid sensilla are thick‐walled. The profile of EAG responses of male B. depressa was different from their EPG response profile, indicating that the olfactory function of maxillary palps is different from that of antennae in this species. The structural and functional variation in the olfactory sensilla between antennae and maxillary palps suggests that each plays an independent role in the perception of olfactory signals in B. depressa.  相似文献   

3.
伪鞘榕小蜂Sycoscapter trifemmensis是一种寄生于鸡嗉子榕间花期榕果的专性寄生蜂,雌雄两性繁殖策略分化明显,为更好理解和诠释雌蜂寄主定位和雄蜂配偶识别机制,有必要对两性的触角感器进行观察。运用环境扫描电镜观察,对比和探讨了伪鞘榕小蜂雌雄成虫的触角和触角感器类型、分布、数量及其生态适应性。结果表明:雌蜂触角鞭节由11鞭小节组成,总长817.82±33.23μm,分布有毛形感器、刺形感器(类型1)、锥形感器(类型1)、多孔板形感器(类型1)、栓锥形乳突状感器5类5种;雄蜂触角鞭节仅由6鞭小节组成,全长为雌蜂的1/3,且各节有明显的缩短和增粗特征,着生感器包括毛形感器、刺形感器(类型2和类型3)、锥形感器(类型1和类型2)、多孔板形感器(类型2)、腔锥形感器5类7种。雌蜂触角感器的数量与分布显著高于雄蜂,且同类型感器在雌蜂上具有明显的延伸、增粗、分支的特征,以板形感器和锥形感器最为突出。伪鞘榕小蜂雌雄成虫的触角及其感器有明显的性二型,特别是与化学信息识别相关的感器,反映了雌雄蜂在不同生态环境和繁殖压力下的形态分化、行为策略和生态适应。  相似文献   

4.
《Journal of Asia》2020,23(4):1165-1180
Drosophila suzukii is a serious horticultural and quarantine pest, damaging various berry crops. Although the active use of olfactory communication in D. suzukii is well-known, their olfactory sensory system has not been comprehensively reported. Therefore, the present study was carried out to understand the morphology, distribution and ultrastructure of olfactory sensilla present in the antennae and maxillary palps of D. suzukii, through scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The olfactory sensilla on the antennae of D. suzukii in both sexes could be classified into three major morphological types, basiconic, trichoid and coeloconic sensilla, according to their shapes. The antennal basiconic sensilla were further divided into three subtypes and the antennal trichoid sensilla into two subtypes, respectively, according to the size of individual sensillum. In contrast to the antennal olfactory sensilla showing diverse morphology, basiconic sensilla was the only type of olfactory sensilla in the maxillary palps of D. suzukii. The basiconic sensilla in the maxillary palps could be further classified into three subtypes, based on their size. Our SEM and TEM observations indicated that multiple nanoscale pores are present on the surface of all types of olfactory sensilla in the antennae and maxillary palps, except coeloconic sensilla. The difference in the morphological types and the distribution of olfactory sensilla suggests that their olfactory functions are different between antennae and maxillary palps in D. suzukii. The results of this study provide useful information for further studies to determine the function of olfactory sensilla in D. suzukii and to understand their chemical communication system.  相似文献   

5.
The stem borer Busseola fusca (Fuller) (Lepidoptera: Noctuidae) is a major pest of maize, Zea mays L., and sorghum, Sorghum bicolor (L.) Moench (both Poaceae), in sub-Saharan Africa. Like in many other lepidopteran insects, the success of B. fusca in recognizing and colonizing a limited variety of plants is based on the interaction between its sensory systems and the physicochemical characteristics of its immediate environment. The sensilla on the maxillary galeae of B. fusca larvae are typical of Lepidoptera and comprise two uniporous styloconic sensilla, which are contact chemoreceptors, three basiconic sensilla, and two aporous sensilla chaetica. The maxillary palp is two-segmented and has eight small basiconic sensilla at the tip, which were also found to be gustatory. The antennae of B. fusca larvae are short and simple. The sensilla of the antenna are composed of two aporous sensilla chaetica, three multiporous cone-shaped basiconic sensilla, three small basiconic sensilla, and one aporous styloconic sensillum. The basiconic sensillum located on the third antennal segment displayed a contact chemoreception response. The other basiconic sensilla did not show any action potential activity in tip-recording tests. The significant and positive dose–response curve obtained for the antennal basiconic sensillum with sucrose indicated for the first time the presence of gustatory chemoreceptors on the antennae of a lepidopteran larva.  相似文献   

6.
A transmission electron microscope study of the antennal sensilla of the whitefly Trialeurodes vaporariorum and Aleyrodes proletella (Homoptera : Aleyrodidae) revealed that of the sensilla unique to the antennal flagellum (basiconic, coeloconic and small digitate-tipped sensory pegs), basiconic and coeloconic sensilla occur as subtypes. Four subtypes of basiconic cone sensilla occur on the flagella of T. vaporariorum and 3 on A. proletella. All the subtypes of basiconic sensilla have an ultrastructure typical of olfactory sensilla and probably have a primary olfactory function. Two subtypes of coeloconic sensilla occur on the flagella of both species. Their ultrastructure suggests primarily a chemosensory function. The digitate-tipped sensory peg of both species possesses a triad of neurones which have ultrastructural characteristics similar to the known thermo-/hygroreceptors of other insect species. The other sensilla, which occur on the antennae of the whiteflies, include cheatae, campaniform and subcuticular sensilla, all of which have an ultrastructure typical of mechanoreceptors.  相似文献   

7.
A comparison was performed of the antennal sensilla of females of four chalcid wasp species Ceratosolen emarginatus Mayr, 1906, Sycophaga sp., Philotrypesis longicaudata Mayr, 1906, and Sycoscapter roxburghi Joseph, 1957, which are specific and obligatory associated with Ficus auriculata (Lour, 1790). The four species exhibit different oviposition strategies in the fig ovules where their offspring hatch and develop. Antennal sensilla morphology was evaluated using scanning electron microscopy. Females of the four species present 11 morphologically similar types of sensilla: trichoid sensilla, sensilla obscura, chaetica sensilla 1 and 2, which all have mechanosensory functions; uniporous basiconic sensilla, which are presumably contact chemosensilla; basiconic capitate peg sensilla, coeloconic sensilla 1, multiporous basiconic and placoid sensilla, which may be regarded as olfactory sensilla, and coeloconic sensilla 2 and 3, which are presumed to be proprioreceptors or pressure receptors. The four species have significant differences in the abundance and arrangement of trichoid sensilla and chaetica sensilla 1 on the flagellum. The coeloconic sensilla and sensilla obscura only occur on the antennae of C. emarginatus that enter figs. The chemosensilla which are presumably involved in host discrimination, i.e., basiconic sensilla, multiporous placoid sensilla and basiconic capitate peg sensilla, are similar in shape and configuration, although they present some differences in abundance. These findings provide practical information on the adaptations of fig wasps and the relationship between multisensory antennae and functions in fig wasp behaviour.  相似文献   

8.
The distribution and fine morphology of antennal sensilla of nymphal and adult mayfly, Baetis rhodani (Ephemeroptera : Baetidae), were examined. In the nymph, various kinds of sensilla (chaetica, basiconica, coeloconica and cuticular pits) are differently arranged on the antennal segments, whereas sensilla campaniformia delimit the distal border of the pedicel. A peculiar kind of sensillum basiconicum, named flat-tipped sensillum, is present along the entire antenna, even though in the flagellum it has a regular arrangement between the cuticular lobes that delimit the distal border of each article. In the subimago the scape and pedicel are profusely covered with microtrichia and scattered sensilla trichodea, whereas the flagellum shows cuticular ribs. Sensilla coeloconica are present along the ventral side of the flagellum. In the imago, the antenna is completely decorated with scales among which sensilla trichodea and sensilla coeloconica occasionally occur. As in the nymph, adult mayflies have a ring of sensilla campaniformia along the distal border of the pedicel. When compared with nymphal antennae, those of adults have fewer types of sensilla, presumably in relation to the short, non-feeding terrestrial life.  相似文献   

9.
Insects use antennal sensilla to not only detect chemical and mechanical cues but also to sense changes in temperature, humidity and CO2 levels. Very little is known about the variation in numbers, size and structure of sensilla in ants. Here we describe in detail the array of sensilla on the apical segment of the antennae of the nocturnal Australian bull ant Myrmecia pyriformis. Using scanning electron microscopy techniques we identified eight types of sensilla: trichodea curvata, basiconica, trichodea, coelocapitular, chaetica, trichoid II, ampullacea and coeloconica. Mapping the spatial location of each sensillum revealed distinct distribution patterns for different types of sensilla which were consistent across different individuals. We found, in most cases, the number of sensilla increases with the size of the apical antennomere, which in turn increases with body size. Conversely, the size of sensilla did not appreciably increase with the size of the apical antennomere. We discuss the size, numbers and distribution of sensilla of M. pyriformis compared to other ant species. Lastly, given the inconsistent use of sensillum nomenclature and difficulties associated in reliable identification we have attempted to consolidate the ant sensilla literature to make possible interspecific comparisons.  相似文献   

10.
The labial palpus of the elephant louse Haematomyzus elephantis has six sensilla that represent three different types: trichoid, basiconic, and styloconic. Two rows of basiconic sensilla are situated on the dorsal and ventral surfaces of the rostrum, and each row consists of three sensilla. Male and female antennae have 15–17 trichoid sensilla situated on the scape, pedicel, and three antennal annuli. Both sexes have two sensilla basiconica on the dorsal surface of the pedicel near the junction of the scape and pedicel. Two coeloconic (tuft) sensilla are situated on the antennae of both sexes, one sensillum on each of the last two annuli. There are three plate organs, two on the last annulus and one on the penultimate annulus of the male and female antennae. Sexual dimorphism is exhibited in the male and female antennae, in that the male has about twice as many sensilla basiconica on the apex of the last annulus as does the female. The total number of sensilla basiconica on the apex of the male antennae is at least two times the number that is known to be present in any other species of lice. © 1992 Wiley-Liss, Inc.  相似文献   

11.
Scanning electron microscopy has revealed the detailed structure of the antennae of three species of whitefly, Trialeurodes vaporariorum, Aleyrodes proletella, and Bemisia tabaci (Homoptera : Aleyrodidae). All 3 species have microtrichia and 5 types of sensilla on the antennae: chaetica, campaniform, basiconic, coeloconic, and pegs with digitate tips, the latter 3 of these being unique to the flagellum. The number and distribution of the sensilla unique to the flagellum vary among the species studied. The cuticle of the basiconic and the coeloconic sensilla is pitted and grooved, respectively, a prerequisite for an olfactory and/or a thermo-, hygroreceptive function. A sexual dimorphism does occur with respect to the position of the basiconic sensilla on flagella segment 5 of A. proletella, but not T. vaporariorum or B. tabaci.  相似文献   

12.
Stable flies, Stomoxys calcitrans L. (Diptera: Muscidae), are economically important biting flies that have caused billions of dollars in losses in the livestock industry. Field monitoring studies have indicated that olfaction plays an important role in host location. To further our understanding of stable fly olfaction, we examined the antennal morphology of adults using scanning electron microscopy techniques. Four major types of sensillum were found and classified as: (a) basiconic sensilla; (b) trichoid sensilla with three subtypes; (c) clavate sensilla, and (d) coeloconic sensilla. No significant differences between male and female flies in abundances (total numbers) of these sensillum types were observed, except for medium-sized trichoid sensilla. The distinctive pore structures found on the surface of basiconic and clavate sensilla suggest their olfactory functions. No wall pores were found in trichoid and coeloconic sensilla, which suggests that these two types of sensillum may function as mechano-receptors. Details of the distributions of different sensillum types located on the funicle of the fly antenna were also recorded. Electroantennogram results indicated significant antennal responses to host-associated compounds. The importance of stable fly olfaction relative to host and host environment seeking is discussed. This research provides valuable new information that will enhance future developments in integrated stable fly management.  相似文献   

13.
By immunizing mice with homogenized brains, heads, or a mixture of heads and antennae of D. melanogaster, we obtained six monoclonal antibodies (mabs) that bind to the olfactory system of Drosophila with various degrees of specificity. They can be divided into three groups with respect to their staining pattern: (1) The antibodies ca51/2, na21/2, and nb230 label both in the third (olfactory) antennal segment and in the visual ganglia. All of them bind to antennal structures that can be correlated with basiconic sensilla. The antibody ca51/2 labels sensory neurons of these sensilla. In the antenna of the lozenge 3 mutant, which lacks basiconic sensilla, no labeling is present. In Western blots ca51/2 recognizes in the antenna an antigen of 43.5 kDa, which is expressed in the antenna only in the presence of basiconic sensilla. The antibody na21/2 binds to basiconic and coeloconic sensilla, most likely to the apical part of sheath cells. In immunoblots it recognizes in the antenna two antigens of 42.2 kDa and 46.7 kDa. The latter appears to be correlated in the antenna with the presence of basiconic sensilla. (2) The staining pattern of antibody nc10 is associated with the sheath cells of basiconic and coeloconic sensilla. Moreover, nc10 binds to a subset of glomeruli in the antennal lobe. (3) The staining pattern of the antibodies VG2 and I24B5 is restricted to the antenna. I24B5 recognizes coeloconic sensilla and VG2 recognizes both coeloconic and basiconic sensilla. Staining patterns in both cases include sheath cells.  相似文献   

14.
By immunizing mice with homogenized brains, heads, or a mixture of heads and antennae of D. melanogaster, we obtained six monoclonal antibodies (mabs) that bind to the olfactory system of Drosophila with various degrees of specificity. They can be divided into three groups with respect to their staining pattern: (1) The antibodies ca51/2, na21/2, and nb230 label both in the third (olfactory) antennal segment and in the visual ganglia. All of them bind to antennal structures that can be correlated with basiconic sensilla. The antibody ca51/2 labels sensory neurons of these sensilla. In the antenna of the lozenge 3 mutant, which lacks basiconic sensilla, no labeling is present. In Western blots ca51/2 recognizes in the antenna an antigen of 43.5 kDa, which is expressed in the antenna only in the presence of basiconic sensilla. The antibody na21/2 binds to basiconic and coeloconic sensilla, most likely to the apical part of sheath cells. In immunoblots it recognizes in the antenna two antigens of 42.2 kDa and 46.7 kDa. The latter appears to be correlated in the antenna with the presence of basiconic sensilla. (2) The staining pattern of antibody nc10 is associated with the sheath cells of basiconic and coeloconic sensilla. Moreover, nc10 binds to a subset of glomeruli in the antennal lobe. (3) The staining pattern of the antibodies VG2 and I24B5 is restricted to the antenna. I24B5 recognizes coeloconic sensilla and VG2 recognizes both coeloconic and basiconic sensilla. Staining patterns in both cases include sheath cells.  相似文献   

15.
Abstract. In an ultrastructural study of the apical antenna of the last nymphal stages of Libellula depressa (Odonata: Libellulidae), we found long sensilla trichodea, 2 sensory pegs, and a coeloconic sensillum on the last article of the flagellum (the distal part of the antenna). The long sensilla trichodea are mechanoreceptors, almost identical to the long filiform hairs of some terrestrial insects and the first sensilla of this kind to be described in aquatic insects. Particular attention was given to the complex coeloconic sensillum, a compound sensillum innervated by 2 groups of 3 neurons wrapped in a dendritic sheath. A cuticular sleeve envelops the distal portion of the outer dendritic segment. The cuticle of the coeloconic sensillum shows wide channels and is contiguous to the underlying granular and fibrillar layer. Similar structures on the antennae of the adults of other dragonflies were identified as chemoreceptors in previous studies. We hypothesize that this larval coeloconic sensillum might likewise have a chemosensory function, responding to molecules that diffuse through the cuticle and the underlying granular and fibrillar layer, as no clear pore or pore-tubule system is visible. Alternative functions are also explored on the basis of morphological details.  相似文献   

16.
李宗波  杨培  彭艳琼  杨大荣 《昆虫学报》2012,55(11):1272-1281
为探索木瓜榕传粉榕小蜂Ceratosolen emarginatus寄主定位机制, 应用扫描电镜和透射电镜观察了其雌蜂触角感器的类型、 分布和超微形态。结果显示: 木瓜榕传粉榕小蜂雌蜂触角呈膝状, 由柄节、 梗节和11个鞭小节组成的鞭节组成, 第3鞭小节着生一坚固的脊骨突。触角上共发现7类11种感器, 分别为毛形感器、 刺形感器、 锥形感器(包括单孔形和多孔形)、 多孔板形感器(包括长形和圆形)、 腔锥形感器(分为3种类型)、 栓锥形乳突状感器、 角锥形感器。结合表面特征和内部结构, 锥形感器、 多孔板形感器、 栓锥形乳突状感器和腔锥形感器类型1为有孔型, 为化学感器; 无孔型的毛形感器和刺形感器是机械感器, 但腔锥形感器类型2和3为本体感器或湿热压力感器; 最为特异的为角锥形感器, 其厚壁无孔, 逆向触角主轴, 为该科昆虫所特有, 推测可防止传粉榕小蜂进入榕果时滑脱。这些结果将有助于理解木瓜榕传粉榕小蜂特异性行为, 并为下一步开展电生理研究, 揭示其信息化学物质利用和分配模式奠定基础。  相似文献   

17.
The development of diet-induced phenotypic differences in numbers of sensilla on the antennae of the grasshopper Schistocerca americana was studied using the exuviae produced at each molt. This made it possible to follow changes within an individual insect. In the first instar, insects had similar numbers of four sensillum types: uniporous trichoid sensilla, coeloconic sensilla, and large and small multiporous basiconic sensilla. Rearing on lettuce resulted in sixth instars with greater numbers of three sensillum types than siblings reared on an artificial diet. The first statistically significant differences between treatments in numbers of trichoid sensilla and large basiconic sensilla occurred in the third and fourth instars, respectively. No major reductions in sensillum numbers occurred at any time and the phenotypic differences resulted from differences in the numbers added at each molt.  相似文献   

18.
Grasshoppers, Schistocerca americana, reared from hatching on artificial diet had fewer sensilla on the antennae in the final larval stage than insects reared on lettuce. This was true of basiconic and coeloconic sensilla (presumed olfactory) and trichoid sensilla (presumed gustatory). The degree of difference varied along the antenna and with sensillum type. Adding salicin to the diet restored the numbers of all types of sensillum to levels equal to, or approaching, those in lettuce-fed insects. The addition of some volatile compounds – carvone (monoterpene), chalcone (flavonoid), citral (monoterpene) and guaiacol (phenolic) – resulted in slight increases in number, but coumarin (phenylpropanoid) had no effect. None of the compounds, either singly or in combination, produced more sensilla than were present in plant-fed insects. Accepted: 26 January 1998  相似文献   

19.
Bootettix argentatus (Orthoptera : Acrididae) is a monophagous grasshopper in the subfamily Gomphocerinae. The numbers of chemoreceptors in most groups on the mouthparts increase with each molt and are generally similar in the 2 sexes. There are fewer sensilla in the A3 groups than in other gomphocerine grasshoppers, and the possibility that this is related to host-plant specificity is discussed. Only very small numbers of sensilla are present on the pulvillar pads of the tarsi and on the arolia. The number of sensilla on the antennae is proportional to the length of the flagellum and coeloconic sensilla comprise 30–35%. Most of the remainder are multiporous basiconic sensilla. Adult males have more antennal sensilla than adult females.  相似文献   

20.
Nine different types of sensilla have been identified on the antenna of the cassava mealybug Phenacoccus manihoti (Homoptera : Pseudococcidae) with scanning and transmission electron microscopes. Trichoid sensilla, distributed on all segments of the antenna and innervated by a single mechanoreceptive dendrite, have the characteristics of exteroceptors. A campaniform sensillum located on the pedicel and one basiconic sensillum on the flagellum have the characteristics of proprioceptors. Coeloconic sensilla, located ventrally on the pedicel and flagellum, related to poreless sensilla with inflexible sockets, have the characteristics of thermo/hygroreceptors. Uniporous sensilla with a mechanoreceptive dendrite (smooth pegs P1 and P2, grooved pegs P3) and multiporous chemosensilla (grooved pegs P4 and P5), present on the tip of the flagellum, have, respectively, the characteristics of gustatory and olfactory receptors. The results of this study seem to suggest that the cassava mealybug has sensory equipment on its antennae that can detect, by olfaction and contact, chemicals released by the plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号