首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 53 毫秒
1.
Aims: To evaluate the production and stability of laccases by Pleurotus ostreatus in liquid co‐cultures with Trichoderma viride as a function of infection time and agitation rate. Methods and Results: Pleurotus ostreatus cultures were infected with T. viride spores at 30 and 48 h. Maximal laccase volumetric activity was seen after 48 h (control cultures) or 72 h (co‐cultures) of cultivation time. Only the cultures infected at 30 h showed an increased laccase volumetric activity compared to control cultures. After maximal laccase volumetric activity value was reached, a sharp decrease in it was observed in control cultures. Co‐cultures exhibited a comparatively lower loss of activity. The influence of P. ostreatus and/or T. viride on the stability of laccase volumetric activity and isoenzyme pattern was evaluated. Trichoderma viride induced changes in the laccase isoenzyme pattern. Agitated cultures increased biomass growth and specific productivity threefold and sevenfold, respectively, to the static cultures. Conclusions: The laccase volumetric activity is very likely the result of the balance between biosynthesis and degradation/biotransformation rates occurring during the cultures. The individual presence of P. ostreatus or T. viride in the culture negatively affected the volumetric laccase activity. Significance and Impact of the Study: The evaluation of culture parameters that could influence Trichoderma–basidomycetes interaction and laccase production during submerged fermentation has not been reported. This study showed how laccase production in co‐cultures of P. ostreatus and T. viride was influenced by the infection time and agitation/oxygenation conditions.  相似文献   

2.
Laccase (EC 1.10.3.2) from the culture filtrate of a strain of white rot basidiomycetePleurotus ostreatus was purified using DEAE-Toyopearl 650M and butyl-Toyopearl 650M column chromatographies and Superdex 75 HR 10/30 fast protein liquid chromatography. Molecular weight of the purified laccase was about 55,000, and the isoelectric point was 3.0. The optimum pH for enzyme activity was 6.5, and the optimum temperature was 50°C. This enzyme contained 7.4% sugar and two copper atoms per molecule. The substrate specificity was similar to those of other fungal laccases. Comparison of the N-terminal amino acid sequence of theP. ostreatus laccase with those fromPleurotus ostreatus Florida,Coriolus hirsutus, Phlebia radiata, basidiomycete PM1 (CECT 2971),Trametes villosa, Pycnoporus cinnabarinus, Ceriporiopsis subvermispora, andAgaricus bisporus showed 95, 65, 60, 55, 55, 55, 50, and 35% similarity, respectively, in the first 20 residues. No similarity in this region was detected with laccases fromNeurospora crassa, Aspergillus nidulans, andCryptococcus neoformans.  相似文献   

3.
The enzyme production of the white‐rot fungus, the edible mushroom Pleurotus ostreatus, was determined in shaken culture media containing extracts of agro‐industrial wastes (tomato, potato and pepper residues) as an unique carbon source. The activity of β‐glucosidase, xylanase, laccase as well as manganese‐dependent and independent peroxidases was measured at 0, 3.5, 7.0, 10.5, 14.0, 17.5, 21.0, 24.5, 28.0 and 31.5 days of cultivation. A spectral mapping technique and non‐linear mapping were employed for the calculation of the relationships among the fermentation parameters, such as fermentation time, enzyme activity and selectivity of enzyme production. It was established that P. ostreatus produced β‐glucosidase, xylanase, laccase, manganese‐dependent and independent peroxidases in each culture medium and that the enzyme activities were higher in cultures containing agro‐industrial wastes than in the control containing glucose as a carbon source. The spectral mapping technique allowed demonstrating that the enzyme activities were the highest in the culture completed with pepper extract followed by cultures containing potato and tomato extracts. The differences among the selectivity of the enzyme activities were negligible up to 21.0 days of fermentation and reached the maximum at the end of the fermentation process. The production of laccase as well as manganese‐dependent and independent peroxidases showed similar patterns while the selectivity patterns of xylanase and β‐galactoside production were different. In addition, it became evident that the agro‐industrial wastes influenced the enzyme production in a distinct way.  相似文献   

4.
Effects of pellet morphology on broth rheology are reported for pelleted submerged cultures of the lovastatin producing filamentous fungus Aspergillus terreus, growing in fluidized bed and stirred tank bioreactors. The pellet diameter and compactness were affected by the agitation intensity of the broth; however, the total biomass productivity was not affected. In fluidized beds and stirred tanks with agitation intensity of up to 300 rpm (impeller tip speed of 1.02 m s−1), the fungal pellets were stable at diameters of up to about 2300 μm. In more intensely agitated stirred tanks (≥600 rpm; impeller tip speed of ≥2.03 m s−1), the stable pellet size was only about ≤900 μm. The biomass concentration and the pellet diameter were the main factors that influenced the flow index and the consistency index of the power-law broths. Because the biomass productivity was the same in all experiments in a given type of reactor and the oxygen concentration was kept at ∼400% of air saturation, the pellet size and morphology were not influenced by oxygen mass transfer effects. Pellets were always dense in the core region and no necrosis of the biomass occurred.  相似文献   

5.
The effects of pH, agitation speed, and dissolved oxygen tension (DOT), significant in common fungal fermentations, on the production of polygalacturonase (PG) enzyme and their relation to morphology and broth rheology were investigated using Aspergillus sojae in a batch bioreactor. All three factors were effective on the response parameters under study. An uncontrolled pH increased biomass and PG activity by 27% and 38%, respectively, compared to controlled pH (pH 6) with an average pellet size of 1.69 +/- 0.48 mm. pH did not significantly affect the broth rheology but created an impact on the pellet morphology. Similarly, at constant agitation speed the maximum biomass obtained at 500 rpm and at 30 h was 3.27 and 3.67 times more than at 200 and 350 rpm, respectively, with an average pellet size of 1.08 +/- 0.42 mm. The maximum enzyme productivity of 0.149 U mL-1 h-1 was obtained at 200 rpm with an average pellet size of 0.71 +/- 0.35 mm. Non-Newtonian and pseudoplastic broth rheology was observed at 500 rpm agitation speed, broth rheology exhibited dilatant behavior at the lower agitation rate (200 rpm), and at the medium agitation speed (350 rpm) the broth was close to Newtonian. Furthermore, a DOT range of 30-50% was essential for maximum biomass formation, whereas only 10% DOT was required for maximum PG synthesis. Non-Newtonian shear thickening behavior (n > 1.0) was depicted at DOT levels of 10% and 30%, whereas non-Newtonian shear thinning behavior (n < 1.0) was dominant at 50% DOT. The overall fermentation duration (50-70 h) was considerably shorter compared to common fungal fermentations, revealing the economic feasibility of this particular process. As a result this study not only introduced a new strain with a potential of producing a highly commercially significant enzyme but also provided certain parameters significant in the design and mathematical modeling of fungal bioprocesses.  相似文献   

6.
Aims: To achieve high laccase production from Pleurotus ostreatus in a bench top bioreactor and to utilize the enzyme for determination of the total antioxidant concentration (TAC) of human plasma. Methods and Results: Laccase production by P. ostreatus studied in a benchtop bioreactor was as high as, 874·0 U ml?1 in presence of copper sulfate. The enzyme was used to replace metmyoglobin and hydrogen peroxide for the estimation of TAC in human plasma. The trolox equivalent antioxidant concentrations determined by the laccase‐based method and metmyoglobin method ranged from 1·63 ± 0·011 to 1·80 ± 0·006 mmol l?1 and from 1·41 ± 0·004 to 1·51 ± 0·008 mmol l?1 plasma, respectively. Conclusions: Pleurotus ostreatus produced high amount of extracellular laccase in a benchtop bioreactor. The enzyme can be used to assay TAC of blood plasma without the interference encountered with the hydrogen peroxide and metmyoglobin mediated assay method. Significance and Impact of the Study: Laccase production by P. ostreatus obtained in this study was the highest among all reported laccase producing white‐rot fungi. Moreover, an accurate laccase‐based assay method was developed for detection of TAC in human plasma.  相似文献   

7.
The influence of agitation and aeration on growth and on production of glucose oxidase of Asp. niger has been studied. It was found that both rate of growth and glucose oxidase production was higher at an agitation speed of 700 rpm than at 460 rpm. Further increase in speed of agitation resulted in neither a higher rate of growth nor a higher glucose oxidase activity. Total glucose oxidase activity was highest in a medium containing 5% sugar (at an agitation speed of 700 rpm) and did not get higher when the sugar concentration of the medium was increased to 7%. When pure oxygen was bubbled through the culture the rate of growth of the culture (in the linear phase) was 95 mg. mycelial dry wt./100 ml./hr., and only 61 mg. when air was applied. The glucose oxidase activity of oxygenated culture was double the activity of aerated culture. Viscosity of the homogenized culture became higher with higher concentration of mycelia. The viscosity of oxygenated culture was found to be lower than that of aerated culture.  相似文献   

8.
Biodegradation of chlorinated pesticide γ-hexachlorocyclohexane (lindane) by a nonwhite rot fungus Conidiobolus 03-1-56 is reported for the first time. Conidiobolus 03-1-56, a phycomyceteous fungus isolated from litter, completely degraded lindane on the 5th day of incubation in the culture medium, and GC-ECD studies confirmed that lindane removal did not occur via adsorption on the fungal biomass. Degradation studies using different medium compositions showed that nitrogen/carbon limiting conditions (stress conditions) and presence of veratryl alcohol, induced the secretion of extracellular oxidative enzymes, which enhanced the rate of lindance biodegradation. Under optimum nutrient-limiting conditions, GC-ECD and GC-MS analysis showed complete absence of any degradation metabolite, indicating that lindane was completely mineralized. Assays for tannic acid utilization and lignin peroxidase showed similar enzymatic profiles between Conidiobolus 03-1-56 and standard white rot fungi Pleurotus ostreatus 1200 and Trametes versicolor 1086. Although Conidiobolus 03-1-56 showed a reduced enzyme activity compared to white rot fungi, preliminary evidence indicates that enzymes responsible for lignin degradation by white rots play a key role in lindane degradation by Conidiobolus 03-1-56.  相似文献   

9.
The effect of cultivation conditions on chrysene bioconversion by the fungus Pleurotus ostreatus D1 was shown. Under the laccase production conditions, transformation of this polycyclic aromatic hydrocarbon occurs with accumulation of the quinone metabolite. Under both the laccase and versatile peroxidase production conditions, chrysene degradation occurs, with the stages leading to phthalic acid formation and its further utilization. The formation of phthalic acid as a metabolite of chrysene degradation by white rot fungi was revealed for the first time. The data obtained suggest that the laccase revealed on the mycelial surface and the extracellular laccase are probably involved at the initial stages of chrysene metabolism, whereas versatile peroxidase seems to be required for oxidizing the metabolites formed.  相似文献   

10.
A white rot fungus Phlebia tremellosa produced lignin degrading enzymes, which showed degrading activity against various recalcitrant compounds. However, manganese peroxidase (MnP) activity, one of lignin degrading enzymes, was very low in this fungus under various culture conditions. An expression vector that carried both the laccase and MnP genes was constructed using laccase genomic DNA of P. tremellosa and MnP cDNA from Polyporus brumalis. P. tremellosa was genetically transformed using the expression vector to obtain fungal transformants showing increased laccase and MnP activity. Many transformants showed highly increased laccase and MnP activity at the same time in liquid medium, and three of them were used to degrade endocrine disrupting chemicals. The transformant not only degraded bisphenol A and nonylphenol more rapidly but also removed the estrogenic activities of the chemicals faster than the wild type strain.  相似文献   

11.
The exploration of seven physiologically different white rot fungi potential to produce cellulase, xylanase, laccase, and manganese peroxidase (MnP) showed that the enzyme yield and their ratio in enzyme preparations significantly depends on the fungus species, lignocellulosic growth substrate, and cultivation method. The fruit residues were appropriate growth substrates for the production of hydrolytic enzymes and laccase. The highest endoglucanase (111 U ml−1) and xylanase (135 U ml−1) activities were revealed in submerged fermentation (SF) of banana peels by Pycnoporus coccineus. In the same cultivation conditions Cerrena maxima accumulated the highest level of laccase activity (7,620 U l−1). The lignified materials (wheat straw and tree leaves) appeared to be appropriate for the MnP secretion by majority basidiomycetes. With few exceptions, SF favored to hydrolases and laccase production by fungi tested whereas SSF was appropriate for the MnP accumulation. Thus, the Coriolopsis polyzona hydrolases activity increased more than threefold, while laccase yield increased 15-fold when tree leaves were undergone to SF instead SSF. The supplementation of nitrogen to the control medium seemed to have a negative effect on all enzyme production in SSF of wheat straw and tree leaves by Pleurotus ostreatus. In SF peptone and ammonium containing salts significantly increased C. polyzona and Trametes versicolor hydrolases and laccase yields. However, in most cases the supplementation of media with additional nitrogen lowered the fungi specific enzyme activities. Especially strong repression of T. versicolor MnP production was revealed.  相似文献   

12.
Levin L  Forchiassin F  Ramos AM 《Mycologia》2002,94(3):377-383
Trametes trogii, a white rot basidiomycete involved in wood decay worldwide, produces several ligninolytic enzymes, laccase being the dominant one, with higher titers than those reported for most other white rot fungi studied up to date. The effect of copper on in vitro production of extracellular ligninolytic activities was studied. CuSO(4)·5H(2)O concentrations from 1.6 μM to 1.5 mM were tested in a synthetic medium with glucose 20 g/L and asparagine 3 g/L. The addition of copper (up to 1 mM) did not affect growth but strongly stimulated ligninolytic enzyme production; faster decolorization of the polymeric dye Poly R-478 was observed as well. Maximal production of manganese peroxidase, laccase, and glyoxal oxidase [1.28 U/mL, 93.8 U/mL (with a specific activity of 720 U/mg protein), and 0.46 U/mL respectively] was attained with 1 mM CuSO(4)·5H(2)O. However, higher copper concentrations inhibited growth and notably decreased manganese peroxidase production, although they did not affect laccase secretion. Laccase activity in the culture filtrate was maximal at 50 C and pH 3.4, and the enzyme was completely stable at pH 4.4 and above, and at 30 C for up to 5 d. Denaturing polyacrylamide gel electrophoresis of extracellular culture fluids showed two laccase activity bands (mol wt 38 and 60 kDa respectively). The pattern of isoenzyme production was not affected by medium composition but differed with culture age.  相似文献   

13.
Petiole explants of centella plants (Centella asiatica L. Urban) were cultured on Murashige and Skoog (MS) solid medium containing 20 g/L sucrose, supplemented with 1.0 mg/L benzylaminopurine and 1.0 mg/L naphthaleneacetic acid for callus production. To establish a cell suspension culture, 2 g of fresh callus was cultured in 50 mL of the same medium but without solid agent at a 100 rpm agitation speed. Every 2 g of culture was subcultured in fresh MS liquid medium for maintenance. After 24 days of culture at a 120 rpm agitation speed, the centella cell biomass reached a maximum of 9.03 g/50 mL on the same MS medium with 30 g/L sucrose and a 3 g inoculum size. A high performance liquid chromatography analysis showed that asiaticoside content in 24-day old suspension cultured cells (45.35 mg/g dry weight) was significantly higher (4.5 fold) than that of in planta leaves (10.55 mg/g dry weight).  相似文献   

14.
Lavendamycin methyl ester (LME) is a derivative of a highly functionalized aminoquinone alkaloid lavendamycin and could be used as a scaffold for novel anticancer agent development. This work demonstrated LME production by cultivation of an engineered strain of Streptomyces flocculus CGMCC4.1223 ΔstnB1, while the wild-type strain did not produce. To enhance its production, the effect of shear stress and oxygen supply on ΔstnB1 strain cultivation was investigated in detail. In flask culture, when the shaking speed increased from 150 to 220 rpm, the mycelium was altered from a large pellet to a filamentous hypha, and the LME production was almost doubled, while no significant differences were observed among varied filling volumes, which implied a crucial role of shear stress in the morphology and LME production. To confirm this suggestion, experiments with agitation speed ranging from 400 to 1,000 rpm at a fixed aeration rate of 1.0 vvm were conducted in a stirred tank bioreactor. It was found that the morphology became more hairy with reduced pellet size, and the LME production was enhanced threefolds when the agitation speed increased from 400 to 800 rpm. Further experiments by varying initial k L a value at the same agitation speed indicated that oxygen supply only slightly affected the physiological status of ΔstnB1 strain. Altogether, shear stress was identified as a major factor affecting the cell morphology and LME production. The work would be helpful to the production of LME and other secondary metabolites by filamentous microorganism cultivation.  相似文献   

15.
This study on the lignocellulases in broth cultures of the basidiomycete Panus tigrinus indicates that laccase and xylanase enzymes are constitutive and cellulase is inducible. In stationary culture at 28°C, the greatest laccase and xylanase activity was observed after growth for approximately nine days. Laccase production was dependent on the presence, and the particular brand, of malt extract in the growth medium. While production of laccase was enhanced by growth at 37°C and 42°C, xylanase was not. Raising the pH of the growth medium from pH 5.6 to pH 7.0 did not affect xylanase production, but laccase production was reduced at the higher pH. In shake culture, growth was pelleted and biomass lower than in stationary culture, and synthesis of both enzymes was strongly inhibited. Cultures of P. tigrinus decolourised Poly R-478 and the toxic triphenyl methane dye, crystal violet. It was also shown to degrade a natural lignocellulosic waste, sawdust.  相似文献   

16.
Based on the impact of volatile organic compounds (VOCs) on secondary metabolite pathways, a novel submerged volatile co-culture system was constructed, and the effects of thirteen fungal and bacterial VOCs were investigated on Ganoderma lucidum exopolysaccharides production. The results demonstrated at least a 2.2-fold increase in exopolysaccharide (EPS) specific production yield in 6 days submerged volatile co-culture of G. lucidum with Pleurotus ostreatus. Therefore, P. ostreatus was selected as a variable culture, and the effects of agitation speed, inoculum size, initial pH, and co-culture volume on EPSs production were investigated using a Taguchi L9 orthogonal array. Finally, the highest concentration of EPSs (3.35 ± 0.22 g L?1) was obtained under optimized conditions; initial pH 5.0, inoculum size 10%, 150 rpm, and 3:1 volume ratio of variable culture to main culture.  相似文献   

17.
AIM: To investigate the impact of agitation speed on pectinase production and morphological changing of Aspergillus niger(A. niger) HFD5A-1 in submerged fermentation. METHODS: A. niger HFM5A-1 was isolated from a rotted pomelo. The inoculum preparation was performed by adding 5.0 m L of sterile distilled water containing 0.1% Tween 80 to a sporulated culture. Cultivation was carried out with inoculated 1 × 107 spores/m L suspension and incubated at 30 ℃ with different agitation speed for 6 d. The samples were withdrawn after 6 d cultivation time and were assayed for pectinase activity and fungal growth determination. The culture broth was filtered through filter paper(Whatman No. 1, London) to separate the fungal mycelium. The cell-free culture filtrate containing the crude enzyme was then assayed for pectinase activity. The biomass was dried at 80 ℃ until constant weight. The fungal cell dry weight was then expressed as g/L. The 6 d old fungal mycelia were harvested from various agitation speed, 0, 50, 100, 150, 200 and 250 rpm. The morphological changing of samples was then viewed under the light microscope and scanning electron microscope.RESULTS: In the present study, agitation speed was found to influence pectinase production in a batch cultivation system. However, higher agitation speeds than the optimal speed(150 rpm) reduced pectinase production which due to shear forces and also collision among the suspended fungal cells in the cultivation medium. Enzyme activity increased with the increasing of agitation speed up to 150 rpm, where it achieved its maximal pectinase activity of 1.559 U/m L. There were significant different(Duncan, P 0.05) of the pectinase production with the agitation speed at static, 50, 100, 200 and 250 rpm. At the static condition, a well growth mycelial mat was observed on the surface of the cultivation medium and sporulation occurred all over the fungal mycelial mat. However with the increased in agitation speed, the mycelial mat turned slowly to become a single circular pellet. Thus, it was found that agitation speed affected the morphological characteristics of the fungal hyphae/mycelia of A. niger HFD5A-1 by altering their external as well as internal cell structures.CONCLUSION: Exposure to higher shear stress with an increasing agitation speed could result in lower biomass yields as well as pectinase production by A. niger HFD5A-1.  相似文献   

18.
A study was carried out to optimize selected parameters for decolorization of a triarylmethane dye, such as crystal violet by white rot fungus, Pycnoporus sanguineus, pellets. The parameters studied were initial dye concentration (ppm), agitation speed (rpm), and process time (days) and were optimized using response surface methodology (RSM). It is shown that process time, agitation speed, and their interactions have significant effects on the decolorization process. Following the optimization, the decolorization study was extended to a stirred tank reactor (STR) process. Effects of different geometry of impellers on the decolorization process and power consumption were studied. Novel impeller geometries, such as 180° curved blade and 60° angled blade impellers, were used in the STR. The application of 180° curved blade impeller resulted in higher percentage of decolorization at a relatively less power consumption as compared with 60° angled blade impeller.  相似文献   

19.
The roles of lignin peroxidase, manganese peroxidase, and laccase were investigated in the biodegradation of pentachlorophenol (PCP) by several white rot fungi. The disappearance of pentachlorophenol from cultures of wild type strains,P. chrysosporium, Trametes sp. andPleurotus sp., was observed. The activities of manganese peroxidase and laccase were detected inTiametes sp. andPleurotus sp. cultures. However, the activities of ligninolytic enzymes were not detected inP. chrysosporium cultures. Therefore, our results showed that PCP was degraded under ligninolytic as well as nonligninolytic conditions. Indicating that lignin peroxidase, manganese peroxidase, and laccase are not essential in the biodegradation of PCP by white rot fungi.  相似文献   

20.
Summary The effect of various carbon and nitrogen sources on laccase, manganese-dependent peroxidase (MnP), and peroxidase production by two strains of Pleurotus ostreatus was investigated. The maximal laccase yield of P. ostreatus 98 and P. ostreatus 108 varied depending upon the carbon source from 5 to 62 U l−1 and from 55 to 390 U l−1, respectively. The highest MnP and peroxidase activities were revealed in medium supplemented by xylan. Laccase, MnP, and peroxidase activities of mushrooms decreased with supplementation of defined medium by inorganic nitrogen sources. Peptone followed by casein hydrolysate appeared to be the best nitrogen sources for laccase accumulation by both fungi. However, their positive effects on enzyme accumulation were due to a higher biomass production. The secretion of MnP and peroxidase by P. ostreatus 108 was stimulated with supplementation of casein hydrolysate to the control medium since the specific MnP and peroxidase activities increased 15-fold and 3.5-fold, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号