首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Background  

Vector competence refers to the intrinsic permissiveness of an arthropod vector for infection, replication and transmission of a virus. Notwithstanding studies of Quantitative Trait Loci (QTL) that influence the ability of Aedes aegypti midgut (MG) to become infected with dengue virus (DENV), no study to date has been undertaken to identify genetic markers of vector competence. Furthermore, it is known that mosquito populations differ greatly in their susceptibility to flaviviruses. Differences in vector competence may, at least in part, be due to the presence of specific midgut epithelial receptors and their identification would be a significant step forward in understanding the interaction of the virus with the mosquito. The first interaction of DENV with the insect is through proteins in the apical membrane of the midgut epithelium resulting in binding and receptor-mediated endocytosis of the virus, and this determines cell permissiveness to infection. The susceptibility of mosquitoes to infection may therefore depend on their specific virus receptors. To study this interaction in Ae. aegypti strains that differ in their vector competence for DENV, we investigated the DS3 strain (susceptible to DENV), the IBO-11 strain (refractory to infection) and the membrane escape barrier strain, DMEB, which is infected exclusively in the midgut epithelial cells.  相似文献   

2.

Background  

Dengue (DEN) is an infectious disease caused by the DEN virus (DENV), which belongs to the Flavivirus genus in the family Flaviviridae. It has a (+) sense RNA genome and is mainly transmitted to humans by the vector mosquito Aedes aegypti. Dengue fever (DF) and dengue hemorrhagic fever (DHF) are caused by one of four closely related virus serotypes (DENV-1, DENV-2, DENV-3 and DENV-4). Epidemiological and evolutionary studies have indicated that host and viral factors are involved in determining disease outcome and have proved the importance of viral genotype in causing severe epidemics. Host immune status and mosquito vectorial capacity are also important influences on the severity of infection. Therefore, an understanding of the relationship between virus variants with altered amino acids and high pathogenicity will provide more information on the molecular epidemiology of DEN. Accordingly, knowledge of the DENV serotypes and genotypes circulating in the latest DEN outbreaks around the world, including Mexico, will contribute to understanding DEN infections.  相似文献   

3.
4.
1. Selection does not only operate in a genotype (G) × environment (E) context, but can also be modulated by the activities of organisms interacting with their environment (G × G × E). 2. The influences of aphid clonal identity and host plant (Vicia faba) intraspecific genetic variation on the performance of five genotypes of pea aphid (Acyrthosiphon pisum) were investigated – with and without interaction with a competing heterospecific clone of vetch aphid (Megoura viciae) – across three cultivars of V. faba. 3. Pea aphid performance in the presence of a competing vetch aphid clone (G × G × E) compared with the absence of competition (G × E) revealed strong context‐dependent, genotype‐specific shifts in performance, influenced by plant cultivar, competitor presence and their interaction. 4. The performance of vetch aphid in competition with each pea aphid clone was also compared. Here, competitor's genotype and abundance underlay a remarkably varied response by vetch aphid across interactions. 5. The study shows that aphid genotypes exhibit a varying degree of risk spreading, contingent on competitor identity and the patterns of aggregation across three plant cultivars. Owing to feedback loops between species activities and selective forces acting on them, our findings suggest that there are context‐dependent responses by competitors that are shaped via the interplay of the co‐occurring species and their biotic environment. 6. This work highlights the complexity of species interactions and the importance of investigating reciprocity between competition and intraspecific genetic variation. A better understanding of the eco‐evolutionary interactions between phloem‐feeding insects and their host plants can potentially be used to enhance crop protection and pest control.  相似文献   

5.
6.
The maintenance of genetic and species diversity in an assemblage of genotypes (clones) in the Daphnia pulex species complex (Cladocera: Anomopoda) in response to variation in the carbon:phosphorus ratio (quantity and quality) of the green alga, Scenedesmus acutus, was examined in a 90-day microcosm competition experiment. Results indicated that mixed assemblages of seven distinct genotypes (representing clonal lineages of D. pulex, D. pulicaria and interspecific hybrids) showed rapid loss of genetic diversity in all treatments (2 × 2 factorial design, high vs. low quantity, and high vs. low quality). However, the erosion of diversity (measured as the effective number of clones) was slowest under the poorest food conditions (i.e., low quantity, low quality) and by the conclusion of the experiment (90 days) had resulted in the (low, low) treatment having significantly greater genetic diversity than the other three treatments. In addition, significant genotype (clone) × (food) environment interactions were observed, with a different predominant species/clone found under low food quality versus high food quality (no significant differences were detected for the two food quantities). A clone of D. pulex displaced the other clones under low food quality conditions, while a clone of D. pulicaria displaced the other clones in the high food quality treatments. Subsequent life-history experiments were not sufficient to predict the outcome of competitive interactions among members of this clonal assemblage. Our results suggest that genetic diversity among herbivore species such as Daphnia may be impacted not only by differences in food quantity but also by those in food quality and could be important in the overall maintenance of genetic diversity in natural populations. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.

Background

Aedes aegypti is the main mosquito vector of the four serotypes of dengue virus (DENV). Previous population genetic and vector competence studies have demonstrated substantial genetic structure and major differences in the ability to transmit dengue viruses in Ae. aegypti populations in Mexico.

Methodology/Principal Findings

Population genetic studies revealed that the intersection of the Neovolcanic axis (NVA) with the Gulf of Mexico coast in the state of Veracruz acts as a discrete barrier to gene flow among Ae. aegypti populations north and south of the NVA. The mosquito populations north and south of the NVA also differed in their vector competence (VC) for dengue serotype 2 virus (DENV2). The average VC rate for Ae. aegypti mosquitoes from populations from north of the NVA was 0.55; in contrast the average VC rate for mosquitoes from populations from south of the NVA was 0.20. Most of this variation was attributable to a midgut infection and escape barriers. In Ae. aegypti north of the NVA 21.5% failed to develop midgut infections and 30.3% of those with an infected midgut failed to develop a disseminated infection. In contrast, south of the NVA 45.2% failed to develop midgut infections and 62.8% of those with an infected midgut failed to develop a disseminated infection.

Conclusions

Barriers to gene flow in vector populations may also impact the frequency of genes that condition continuous and epidemiologically relevant traits such as vector competence. Further studies are warranted to determine why the NVA is a barrier to gene flow and to determine whether the differences in vector competence seen north and south of the NVA are stable and epidemiologically significant.  相似文献   

8.
Specific interactions between host genotypes and pathogen genotypes (G×G interactions) are commonly observed in invertebrate systems. Such specificity challenges our current understanding of invertebrate defenses against pathogens because it contrasts the limited discriminatory power of known invertebrate immune responses. Lack of a mechanistic explanation, however, has questioned the nature of host factors underlying G×G interactions. In this study, we aimed to determine whether G×G interactions observed between dengue viruses and their Aedes aegypti vectors in nature can be mapped to discrete loci in the mosquito genome and to document their genetic architecture. We developed an innovative genetic mapping strategy to survey G×G interactions using outbred mosquito families that were experimentally exposed to genetically distinct isolates of two dengue virus serotypes derived from human patients. Genetic loci associated with vector competence indices were detected in multiple regions of the mosquito genome. Importantly, correlation between genotype and phenotype was virus isolate-specific at several of these loci, indicating G×G interactions. The relatively high percentage of phenotypic variation explained by the markers associated with G×G interactions (ranging from 7.8% to 16.5%) is consistent with large-effect host genetic factors. Our data demonstrate that G×G interactions between dengue viruses and mosquito vectors can be assigned to physical regions of the mosquito genome, some of which have a large effect on the phenotype. This finding establishes the existence of tangible host genetic factors underlying specific interactions between invertebrates and their pathogens in a natural system. Fine mapping of the uncovered genetic loci will elucidate the molecular mechanisms of mosquito-virus specificity.  相似文献   

9.
10.
Within‐host interactions between co‐infecting parasites can significantly influence the evolution of key parasite traits, such as virulence (pathogenicity of infection). The type of interaction is expected to predict the direction of selection, with antagonistic interactions favouring more virulent genotypes and synergistic interactions less virulent genotypes. Recently, it has been suggested that virulence can further be affected by the genetic identity of co‐infecting partners (G × G interactions), complicating predictions on disease dynamics. Here, we used a natural host–parasite system including a fish host and a trematode parasite to study the effects of G × G interactions on infection virulence. We exposed rainbow trout (Oncorhynchus mykiss) either to single genotypes or to mixtures of two genotypes of the eye fluke Diplostomum pseudospathaceum and estimated parasite infectivity (linearly related to pathogenicity of infection, measured as coverage of eye cataracts) and relative cataract coverage (controlled for infectivity). We found that both traits were associated with complex G × G interactions, including both increases and decreases from single infection to co‐infection, depending on the genotype combination. In particular, combinations where both genotypes had low average infectivity and relative cataract coverage in single infections benefited from co‐infection, while the pattern was opposite for genotypes with higher performance. Together, our results show that infection outcomes vary considerably between single and co‐infections and with the genetic identity of the co‐infecting parasites. This can result in variation in parasite fitness and consequently impact evolutionary dynamics of host–parasite interactions.  相似文献   

11.
Studies of genotype × environment interactions (G × E) and local adaptation provide critical tests of natural selection’s ability to counter opposing forces such as gene flow. Such studies may be greatly facilitated in asexual species, given the possibility for experimental replication at the level of true genotypes (rather than populations) and the possibility of using molecular markers to assess genotype–environment associations in the field (neither of which is possible for most sexual species). Here, we tested for G × E in asexual dandelions (Taraxacum officinale) by subjecting six genotypes to experimental drought, mown and benign (control) conditions and subsequently using microsatellites to assess genotype–environment associations in the field. We found strong G × E, with genotypes that performed poorly under benign conditions showing the highest performance under stressful conditions (drought or mown). Our six focal genotypes comprise > 80% of plants in local populations. The most common genotype in the field showed its highest relative performance under mown conditions (the most common habitat in our study area), and almost all plants of this genotype in the field were found growing in mowed lawns. Genotypes performing best under benign experimental conditions were found most frequently in unmown conditions in the field. These results are strongly indicative of local adaptation at a very small scale, with unmown microsites of only a few square metres typically embedded within larger mown lawns. By studying an asexual species, we were able to map genotypes with known ecological characteristics to environments with high spatial precision.  相似文献   

12.
The dynamics and consequences of host–parasite coevolution depend on the nature of host genotype‐by‐parasite genotype interactions (G × G) for host and parasite fitness. G × G with crossing reaction norms can yield cyclic dynamics of allele frequencies (“Red Queen” dynamics) while G × G where the variance among host genotypes differs between parasite genotypes results in selective sweeps (“arms race” dynamics). Here, we investigate the relative potential for arms race and Red Queen coevolution in a protist host–parasite system, the dinoflagellate Alexandrium minutum and its parasite Parvilucifera sinerae. We challenged nine different clones of A. minutum with 10 clones of P. sinerae in a fully factorial design and measured infection success and host and parasite fitness. Each host genotype was successfully infected by four to ten of the parasite genotypes. There were strong G × Gs for infection success, as well as both host and parasite fitness. About three quarters of the G × G variance components for host and parasite fitness were due to crossing reaction norms. There were no general costs of resistance or infectivity. We conclude that there is high potential for Red Queen dynamics in this host–parasite system.  相似文献   

13.
Circadian clocks have evolved independently in all three domains of life, and fitness benefits of a functional clock have been demonstrated in experimental genotypes in controlled conditions. Still, little is known about genetic variation in the clock and its fitness consequences in natural populations from heterogeneous environments. Using Wyoming populations of the Arabidopsis relative Boechera stricta as our study system, we demonstrate that genetic variation in the clock can occur at multiple levels: means of circadian period among populations sampled at different elevations differed by less than 1 h, but means among families sampled within populations varied by as much as 3.5 h. Growth traits also varied among and within populations. Within the population with the most circadian variation, we observed evidence for a positive correlation between period and growth and a negative correlation between period and root‐to‐shoot ratio. We then tested whether performance tradeoffs existed among families of this population across simulated seasonal settings. Growth rankings of families were similar across seasonal environments, but for root‐to‐shoot ratio, genotype × environment interactions contributed significantly to total variation. Therefore, further experiments are needed to identify evolutionary mechanisms that preserve substantial quantitative genetic diversity in the clock in this and other species.  相似文献   

14.
The genetic basis of seed dormancy, a key life history trait important for adaptive evolution in plant populations, has yet been studied only using seeds produced under controlled conditions in greenhouse environments. However, dormancy is strongly affected by maternal environmental conditions, and interactions between seed genotype and maternal environment have been reported. Consequently, the genetic basis of dormancy of seeds produced under natural field conditions remains unclear. We examined the effect of maternal environment on the genetic architecture of seed dormancy using a recombinant inbred line (RIL) population derived from a cross between two locally adapted populations of Arabidopsis thaliana from Italy and Sweden. We mapped quantitative trait loci (QTL) for dormancy of seeds produced in the greenhouse and at the native field sites of the parental genotypes. The Italian genotype produced seeds with stronger dormancy at fruit maturation than did the Swedish genotype in all three environments, and the maternal field environments induced higher dormancy levels compared to the greenhouse environment in both genotypes. Across the three maternal environments, a total of nine dormancy QTL were detected, three of which were only detected among seeds matured in the field, and six of which showed significant QTL × maternal environment interactions. One QTL had a large effect on dormancy across all three environments and colocalized with the candidate gene DOG1. Our results demonstrate the importance of studying the genetic basis of putatively adaptive traits under relevant conditions.  相似文献   

15.
The lek paradox arises when choosy females deplete the genetic variance for male display traits from a population, yet substantial additive genetic variation (VA) in male traits persists. Thus, the lek paradox can be more generally stated as one of the most fundamental evolutionary questions: What maintains genetic variation in natural populations? One solution to this problem may be found in the condition‐dependent nature of many sexually selected traits. Genotype × environment (G × E) interactions can maintain VA under conditions of environmental heterogeneity provided certain restrictions are met, although antagonistic pleiotropy has also been proposed as a mechanism. Here, we provide evidence for G × E interactions and against the role of antagonistic pleiotropy in the maintenance of VA for sexually selected traits. Using inbred lines of the lesser waxmoth Achroia grisella, we measured VA for song attractiveness, condition and development rate under different competitive environments and found that genotypes differed in their plasticity. We argue that variation persists in natural populations because G × E interactions prevent any one variant from producing the optimal phenotype across all environments.  相似文献   

16.
The role of plant intraspecific variation in plant–soil linkages is poorly understood, especially in the context of natural environmental variation, but has important implications in evolutionary ecology. We utilized three 18‐ to 21‐year‐old common gardens across an elevational gradient, planted with replicates of five Populus angustifolia genotypes each, to address the hypothesis that tree genotype (G), environment (E), and G × E interactions would affect soil carbon and nitrogen dynamics beneath individual trees. We found that soil nitrogen and carbon varied by over 50% and 62%, respectively, across all common garden environments. We found that plant leaf litter (but not root) traits vary by genotype and environment while soil nutrient pools demonstrated genotype, environment, and sometimes G × E interactions, while process rates (net N mineralization and net nitrification) demonstrated G × E interactions. Plasticity in tree growth and litter chemistry was significantly related to the variation in soil nutrient pools and processes across environments, reflecting tight plant–soil linkages. These data overall suggest that plant genetic variation can have differential affects on carbon storage and nitrogen cycling, with implications for understanding the role of genetic variation in plant–soil feedback as well as management plans for conservation and restoration of forest habitats with a changing climate.  相似文献   

17.

Background

Aedes aegypti is the primary vector of the four serotypes of dengue virus (DENV1-4), Chikungunya and yellow fever virus to humans. Previous population genetic studies have revealed a particular genetic structure among the vector populations in the Americas that suggests differences in the ability to transmit DENV. In Colombia, despite its high epidemiologic importance, the genetic population structure and the phylogeographic depiction of Ae. aegypti, as well as its relationship with the epidemiologic landscapes in cities with heterogeneous incidence levels, remains unknown. We conducted a spatiotemporal analysis with the aim of determining the genetic structure and phylogeography of Colombian populations of Ae. aegypti among cities with different eco-epidemiologic characteristics with regard to DENV.

Methods/Findings

Mitochondrial cytochrome oxidase C subunit 1 (COI) - NADH dehydrogenase subunit 4 (ND4) genes were sequenced and analyzed from 341 adult mosquitoes collected during 2012 and 2013 in the Colombian cities of Bello, Riohacha and Villavicencio, which exhibit low, medium and high levels of incidence of DENV, respectively. The results demonstrated a low genetic differentiation over time and a high genetic structure between the cities due to changes in the frequency of two highly supported genetic groups. The phylogeographic analyses indicated that one group (associated with West African populations) was found in all the cities throughout the sampling while the second group (associated with East African populations) was found in all the samples from Bello and in only one sampling from Riohacha. Environmental factors such as the use of chemical insecticides showed a significant correlation with decreasing genetic diversity, indicating that environmental factors affect the population structure of Ae. aegypti across time and space in these cities.

Conclusions

Our results suggest that two Ae. aegypti lineages are present in Colombia; one that is widespread and related to a West African conspecific, and a second that may have been recently introduced and is related to an East African conspecific. The first lineage can be found in cities showing a high incidence of dengue fever and the use of chemical insecticides, whereas the second is present in cities showing a low incidence of dengue fever where the use of chemical insecticides is not constant. This study helps to improve our knowledge of the population structure of Ae. aegypti involved in the diversity of dengue fever epidemiology in Colombia.  相似文献   

18.
New Guinea is a topographically and biogeographically complex region that supports unique endemic fauna. Studies describing the population connectivity of species through this region are scarce. We present a population and landscape genetic study on the endemic malaria‐transmitting mosquito, Anopheles koliensis (Owen). Using mitochondrial and nuclear sequence data, as well as microsatellites, we show the evidence of geographically discrete population structure within Papua New Guinea (PNG). We also confirm the existence of three rDNA ITS2 genotypes within this mosquito and assess reproductive isolation between individuals carrying different genotypes. Microsatellites reveal the clearest population structure and show four clear population units. Microsatellite markers also reveal probable reproductive isolation between sympatric populations in northern PNG with different ITS2 genotypes, suggesting that these populations may represent distinct cryptic species. Excluding individuals belonging to the newly identified putative cryptic species (ITS2 genotype 3), we modeled the genetic differences between A. koliensis populations through PNG as a function of terrain and find that dispersal is most likely along routes with low topographic relief. Overall, these results show that A. koliensis is made up of geographically and genetically discrete populations in Papua New Guinea with landscape topography being important in restricting dispersal.  相似文献   

19.
Studying how the fitness benefits of mutualism differ among a wide range of partner genotypes, and at multiple spatial scales, can shed light on the processes that maintain mutualism and structure coevolutionary interactions. Using legumes and rhizobia from three natural populations, I studied the symbiotic fitness benefits for both partners in 108 plant maternal family by rhizobium strain combinations. Genotype‐by‐genotype (G × G) interactions among local genotypes and among partner populations determined, in part, the benefits of mutualism for both partners; for example, the fitness effects of particular rhizobium strains ranged from uncooperative to mutualistic depending on the plant family. Correlations between plant and rhizobium fitness benefits suggest a trade off, and therefore a potential conflict, between the interests of the two partners. These results suggest that legume–rhizobium mutualisms are dynamic at multiple spatial scales, and that strictly additive models of mutualism benefits may ignore dynamics potentially important to both the maintenance of genetic variation and the generation of geographic patterns in coevolutionary interactions.  相似文献   

20.

Background

Lamivudine is an oral nucleoside analogue widely used for the treatment of chronic hepatitis B. The main limitation of lamivudine use is the selection of resistant mutations that increases with time of utilization. Hepatitis B virus (HBV) isolates have been classified into eight genotypes (A to H) with distinct geographical distributions. HBV genotypes may also influence pathogenic properties and therapeutic features. Here, we analyzed the HBV genotype distribution and the nature and frequency of lamivudine resistant mutations among 36 patients submitted to lamivudine treatment for 12 to 84 months.

Results

Half of the patients were homosexual men. Only 4/36 (11%) patients were HBV DNA negative. As expected for a Brazilian group, genotypes A (24/32 positive individuals, 75%), D (3/32, 9.3%) and F (1/32, 3%) were present. One sample was from genotype C, which is a genotype rarely found in Brazil. Three samples were from genotype G, which had not been previously detected in Brazil. Lamivudine resistance mutations were identified in 20/32 (62%) HBV DNA positive samples. Mean HBV loads of patients with and without lamivudine resistance mutations were not very different (2.7 × 107 and 6.9 × 107 copies/mL, respectively). Fifteen patients showed the L180M/M204V lamivudine resistant double mutation. The triple mutant rt173V/180M/204V, which acts as a vaccine escape mutant, was found in two individuals. The three isolates of genotype G were entirely sequenced. All three showed the double mutation L180M/M204V and displayed a large genetic divergence when compared with other full-length genotype G isolates.

Conclusion

A high (55%) proportion of patients submitted to long term lamivudine therapy displayed resistant mutations, with elevated viral load. The potential of transmission of such HBV mutants should be monitored. The identification of genotypes C and G, rarely detected in South America, seems to indicate a genotype distribution different to that observed in non treated patients. Disparities in routes of transmission (genotype G seems to be linked to homosexual behavior) and in pathogenic properties (genotype C is very aggressive) among HBV genotypes may explain the presence of rare genotypes in the present work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号