首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Conditions are defined which permit analysis of estrogen receptors from the mammalian uterus by polyacrylamide gel electrophoresis, thereby solving a longstanding problem encountered in previous attempts at such analysis, namely the failure of a large portion of the receptor population to enter such gels. A paramount requirement for entry of the estrogen-receptor complex into polyacrylamide gels is its maintenance in an untransformed state which does not form aggregates that are excluded from these gels. Of the multiple estrogen-binding proteins separated, only one (relative mobility of 0.5-0.6) possessed the definitive characteristics of the classical estrogen receptor. The inclusion of molybdate in extraction buffers selectively enhanced receptor recovery and facilitated its separation. Moreover, the estrogen-receptor complex so resolved is separated from other types of estrogen-binding proteins present in the uterine cytosol. These findings show that the molybdate-stabilized estrogen receptor exists in a single discrete form, but otherwise exhibits multiple forms that are probably artifactual. Electrophoresis in discontinuous buffers, but not in a continuous buffer system, promoted aggregate formation. This finding has implications concerning the subunit structure of the untransformed receptor.  相似文献   

2.
A magnesium-dependent protein kinase activity was copurified with both the molybdate-stabilized 8S form of the chick oviduct progesterone receptor (PR) and its B subunit. In each case, purification was performed by hormonal affinity chromatography followed by ion-exchange chromatography. The Km(app) values of the phosphorylation reaction for [gamma-32P]ATP and calf thymus histones were approximately 1.3 X 10(-5) M and approximately 1.6 X 10(-5) M, respectively, and only phosphorylated serine residues were found in protein substrates, including PR B subunit. Physicochemical parameters of the enzyme [pI approximately 5.3, Stokes radius approximately 7.2 nm, sedimentation coefficient (S20,w) approximately 5.6 S, and Mr approximately 200,000] were compared to those of purified forms of PR (B subunit, pI approximately 5.3, Stokes radius approximately 6.1 nm, and Mr approximately 110,000; 8S form, Stokes radius approximately 7.7 nm and Mr approximately 240,000). The results suggest that most of the protein kinase activity copurified with both oligomeric and monomeric forms of PR belongs to an enzyme distinct from currently known receptor components. Its physiological significance remains unknown.  相似文献   

3.
The molecular properties of the receptor for 2,3,7,8-tetrachlorodibenzo-p-dioxin in the mouse hepatoma cell line Hepa 1c1c7 were investigated. The receptor was found to represent a highly asymmetrical molecule with a sedimentation coefficient, s20,w, of approximately 8 S, a Stokes radius of 7-8 nm, and a calculated Mr approximately equal to 260,000-300,000. In comparison, the Hepa 1c1c7 glucocorticoid receptor in analogy to the glucocorticoid receptor in general as well as the C57BL/6 mouse and rat hepatic dioxin receptors are molecules with an s20,w value of 4-5 S, a Stokes radius of approximately 6 nm, and a calculated Mr approximately equal to 100,000. In the presence of 20 mM sodium molybdate, a large Mr approximately equal to 270,000-310,000 form of the Hepa 1c1c7 glucocorticoid receptor is stabilized which is hydrodynamically indistinguishable from the Mr approximately equal to 260,000-300,000 Hepa 1c1c7 dioxin receptor. Sodium molybdate does not have any effect on the molecular properties of the Hepa 1c1c7 dioxin receptor. In conclusion, the large form of dioxin receptor present in Hepa 1c1c7 mouse hepatoma cells in the absence of sodium molybdate is strikingly similar to molybdate-stabilized steroid hormone receptors as well as the molybdate-stabilized form of the dioxin receptor previously demonstrated in rat hepatic cytosol. Therefore, the Hepa 1c1c7 dioxin receptor might offer an interesting model for studies on the structure and function of Mr approximately equal to 300,000 forms of soluble receptors.  相似文献   

4.
Acidic glutathione S-transferases of rat testis.   总被引:1,自引:1,他引:0       下载免费PDF全文
In most organs of the rat the predominant forms of glutathione S-transferase have alkaline (greater than 7.0) pI values. In contrast, in the cytosol from rat testes almost 50% of the transferase activity is due to isoenzymes with acidic (less than 7.0) pI values. We have purified three acidic forms of glutathione S-transferase from rat testis cytosol. One form accounted for more than 90% of the enzymic activity in the acidic fraction. This major form was a homodimer of a new subunit, termed Yt. This subunit had an electrophoretic mobility that was different from the subunits that form the alkaline transferases. In addition, functional and immunological studies were consistent with the unique nature of the Yt subunit. The two minor acidic enzymes of rat testis appeared to be heterodimers of the Yt subunit and a subunit with an electrophoretic mobility identical with that of the Yb subunit present in some alkaline enzymes.  相似文献   

5.
Non-denaturing polyacrylamide gel electrophoresis and non-denaturing agarose gel electrophoresis have been used to resolve [3H]R5020-binding components from chick oviduct cytosol. From both gel systems 2 peaks of bound radioactivity are resolved which display these properties of authentic progesterone receptor: binding of R5020: steroid specificity, saturability, and restriction to target tissues. The two peaks are approximately equal in magnitude, and there is no evidence for interconversion of the 2 peaks. The presence or absence of 10-20 mM sodium molybdate during cytosol preparation had no effect on the magnitude or mobility of either peak. Neither peak contains salt-dissociable components which affect its electrophoretic properties, suggesting a possible alteration of native receptor forms during electrophoresis.  相似文献   

6.
The untransformed glucocorticoid receptor of rat thymus cytosol was characterized in the form of its complex with [1,2,4-3H]triamcinolone acetonide by ion-exchange chromatography and by gel filtration and sucrose-density-gradient ultracentrifugation at different ionic strengths. Molybdate (10 mM) was present throughout all experimental procedures and prevented receptor inactivation and degradation as well as transformation. At low ionic strength the molybdate-stabilized steroid-receptor complex was detected as a single highly asymmetric entity with a Stokes radius of 5.85 nm, a sedimentation coefficient of 9.6 S and an apparent molecular weight of 236 000. This form was converted into a smaller, even more asymmetric, form in increasing proportion as the ionic strength was increased. In the presence of 0.4 M-KCl, the smaller form had a Stokes radius of 4.95 nm, a sedimentation coefficient of 4.6 S and an apparent molecular weight of 95 500. It is concluded that the glucocorticoid-receptor complex exists at low ionic strengths as a homodimer or as a heterodimer in which only one subunit possesses a steroid-binding site, and that the process of dissociation into subunits brought about by increasing the ionic strength is a process distinct from, but possibly preceding, the transformation phenomenon responsible for conferring DNA-binding properties on the complex.  相似文献   

7.
A 110kDa component of the chick oviduct progesterone receptor (PR) has been purified to homogeneity according to electrophoretic criteria and specific activity (assuming one progestagen-binding site/110kDa). The procedure involved affinity chromatography of 0.3 M-KCl-prepared cytosol, followed by DEAE-Sephacel chromatography (elution at 0.2 M-KCl). The final yield was about 12% in terms of binding activity. Properties of the 110kDa component indicate that it is identical with the 'B' subunit described previously [Stokes radius approximately 6.1 nm; sedimentation coefficient, (S20, w) approximately 4S; frictional ratio approximately 1.77]. It reacted with the IgG-G3 polyclonal antibody, but not with BF4 monoclonal antibody raised against the 8S molybdate-stabilized chick oviduct PR and reacting with its 90kDa component. Another progesterone-binding component, corresponding to the 'A' subunit, also previously described, was eluted from the DEAE-Sephacel column at approximately 0.08 M-KCl, and contained a peptide of molecular mass approx. 75-80kDa, which had S20, w approximately 4S in a sucrose gradient. This component was also recognized by IgG-G3, but not by BF4; it was very unstable in terms of hormone-binding activity.  相似文献   

8.
Rapid purification of calf uterine estrogen receptor (ER) to near homogeneity has been accomplished by use of sequence-specific DNA affinity resin. Very high selectivity for the estrogen receptor is achieved through the use of DNA-Sepharose containing eight tandem copies of a consensus estrogen response element (ERE) DNA sequence. The highly purified ER prepared by this new scheme may be labeled economically with ligands of high specific activity. This purification scheme selects for intact receptors retaining function in both estrogen-binding and DNA-binding domains. Purified receptor has an electrophoretic mobility consistent with a molecular weight of 68,000, sediments as a 5S species on sucrose gradients, and reacts with antibody specific to the human estrogen receptor.  相似文献   

9.
The rate of the 4 to 5 S estrogen-binding protein (EBP) in vitro transformation was measured by sucrose gradient centrifugation analysis. The temperature-activated 4 to 5 S EBP transformation is found to be highly reproducible without loss of [3H]estradiol-binding activity in a buffer containing an excess of [3H]estradiol, 40 mM Tris, 1 mM dithiothreitol, and 1 M urea at pH 7.4. The presence of [3H]estradiol is necessary for the 4 to 5 EBP transformation. A kinetic analysis of the 4 to 5 EBP transformation shows that it is a bimolecular reaction, the dimerization of the 4 S EBP with a second (similar or dissimilar) monomer or subunit. In buffers containing 0.4 M KCl the apparent second order rate constant is 2.3 plus or minus 0-2 times 10-7 M minus 1 min minus 1 at 28 degrees. The reaction is independent of the initial receptor concentration, suggesting that the 4 S EBP is dissociated into monomeric units in buffers of high ionic strength. In buffers without KCl or with 0.1 M KCl the apparent second order rate constant of receptor transformation increases with decreasing receptor concentration. This suggests that the 4 S EBP is associated weakly with another macromolecule (or macromolecules) in buffers of low ionic strength. The rate of 4 to 5 S EBP transformation shows a 200-fold increase between 0 and 35 degrees. The Arrhenius energy of activation is 21.3 kcal mol minus 1 in buffer without KCl and 19.1 kcal mol minus 1 in buffer with 0.4 M KCl. Following the temperature-activated dimerization, the avidity of binding between the 4 S EBP and its complementary subunit is increased, 0.4 M KCl can no longer cause dissociation, and the 5 S EBP dimer appears. This kinetic analysis indicates that the avidity of binding between the subunits of the estrogen receptor is modulated by estradiol, temperature, and ionic strength. We propose that these interactions of the estrogen receptor's subunits reflect conformational changes involved in receptor activation.  相似文献   

10.
11.
The glycoprotein nature of the binding subunit of the dopamine D2 receptor in rat striatum has been examined by photoaffinity labeling receptor preparations with N-(p-azido-m-[125I]iodophenethyl)spiperone followed by treatment of crude membrane receptor or receptor fractions isolated from sodium dodecyl sulfate (SDS) polyacrylamide gels with endo- and exoglycosidases. The major photoaffinity labeled protein migrates as a heterogeneous species on 10% SDS polyacrylamide gels and ranges from 130,000 to 75,000 relative molecular mass (Mr). This heterogeneity can be explained by glycosylation of the receptor by complex-type N-linked oligosaccharides. Three fractions of labeled receptor were isolated from SDS polyacrylamide gels over a range of 130,000 to 75,000 Mr; after digestion with peptide-N4-[N-acetyl-beta-glucosaminyl] asparagine amidase, all fractions yielded a single peptide approximately 40,000 Mr. Treatment of photoaffinity labeled membranes with alpha-mannosidase was without effect. The dopamine D2 receptor appears to contain substantial amounts of sialic acid as treatment of photoaffinity labeled membranes with neuraminidase increased the receptor mobility on SDS polyacrylamide gels to a species of 50,000-54,000 Mr. Treatment of the receptor with neuraminidase followed by endo-alpha-N-acetylgalactosaminidase did not change the electrophoretic migration pattern from that seen after neuraminidase treatment alone, suggesting that the binding peptide contains no serine- or threonine-linked oligosaccharides. A smaller binding peptide of approximately 31,000 Mr is also apparent in crude photoaffinity labeled membranes. This material also contains N-linked oligosaccharide. Complete removal of N-linked oligosaccharide from the dopamine D2 receptor did not change the rank order potency of agonist and antagonist compounds to compete for [3H]spiperone binding to crude membrane fractions. The dopamine D2 receptor represents a highly glycosylated neural receptor.  相似文献   

12.
The glucocorticosteroid receptor (GR) has been studied in oviduct cytosol prepared from estrogen-primed, 4-week-withdrawn chicken. The equilibrium dissociation constant was 6 nM for dexamethasone, and 18 300 receptor sites/cell were measured assuming that all cells contain identical concentrations of GR. Dexamethasone, used in most studies investigating glucocorticosteroid action, was found not to be the best GR ligand. The affinities of several natural and synthetic glucocorticosteroids for GR increased in the following order: cortisol less than deoxycorticosterone less than dexamethasone less than corticosterone less than triamcinolone acetonide. The synthetic steroid RU 486 was the most specific ligand of GR (its affinity was approximately equal to 10-fold higher than that of triamcinolone acetonide), while it did not bind either to plasma transcortin (which binds dexamethasone nor, surprisingly, to progesterone receptor (PR), contrary to what occurs in mammalian species. The molybdate-stabilized, 8-S form of GR was prepared from withdrawn chick oviduct, whole chick embryo or cultured chick embryo fibroblasts (which do not contain PR), and was labeled with either [3H]dexamethasone or [3H]RU 486. The sedimentation coefficient of radioactive ligand--8-S GR complexes was shifted towards heavier forms after incubation with polyclonal (IgG-G3) or monoclonal (BF4) antibodies generated against the molybdate-stabilized, 8-S form of the chick oviduct PR. Since neither IgG-G3 nor BF4 interacted with the steroid binding 4-S form of GR, it is suggested that these antibodies recognized a non-steroid binding protein common to molybdate-stabilized, 8-S forms of GR and PR.  相似文献   

13.
A group of proteins migrating to the anode at pH 8.6 under polyacrylamide gel electrophoresis was revealed in the total protein of non-dissociated KCl-washed pea seed ribosomes. No proteins with an isoelectric point below pH 4.2 Were found. The presence of acidic proteins in 80 S ribosomes is due to the presence of a specific set of relatively acidic proteins in the total protein of large (5 major and 10 minor components) and small (2 major and 4 minor components) subunits. The mostly acidic proteins are located in the large subunit. The acidic proteins of 60S and 40S subunits are represented by the polypeptide chains with molecular weights from 48 000 to 13 000. The acidic proteins are present in the ribosomes studied in considerably less number than the basic proteins, and the former produce a very weak staining under electrophoretic analysis as compared with the latter. The data obtained suggest that 80S ribosomes of higher plants differ from animal ribosomes by a higher content of relatively acidic proteins.  相似文献   

14.
Proteins were extracted from ribosomes and (for the first time) from ribosomal subunits of Drosophila melanogaster embryos. The ribosomal proteins were analyzed by two-dimensional polyacrylamide gel electrophoresis. The electrophoretograms displayed 78 spots for the 80S monomers, 35 spots for the 60S subunits, and 31 spots for the 40S subunits. On the basis of present information, we propose what we believe to be a reliable and convenient nomenclature for the proteins of the ribosomes and each of the subunits. A pair of acidic proteins from D. melanogaster appears to be very similar in electrophoretic mobility to the acidic proteins L7/L12 from Escherichia coli and L40/L41 from rat liver. The electrophoretogram of proteins from embryonic ribosomes shows both qualitative and quantitative differences from those of larvae, pupae, and adults previously reported by others. The proteins of the 40S subunit range in molecular weight from approximately 10,000 to 50,000, and those from the 60S subunit range from approximately 11,000 to 50,000.  相似文献   

15.
Previous studies have shown that the exposure of molybdate-stabilized nontransformed glucocorticoid receptor (GR) of the chick embryonic neural retina to 0.4 M KCl dissociated the 9.5 S complex to a 5 S GR complex, which is an intermediate state in GR transformation. The present study was designed to characterize the 5 S GR complex. It shows that molybdate-stabilized nontransformed 9.5 S GR complex and 5 S GR interact with monoclonal antibodies (MAb) directed against 90 kDa heat shock protein (hsp90), as evidenced by the increase in the sedimentation velocity of these GR-complexes. Electrofocusing of the partially purified molybdate-stabilized nontransformed GR, prepared from [32P]-labeled neural retinas, and of the 5 S GR (derived from molybdate-stabilized preparation) showed that nontransformed GR complex, which has an apparent pI (pI') value of 5.0 +/- 0.2, and 5 S GR, which was resolved in a major peak with a pI' value of 5.8, are phosphorylated. Partially purified 5 S GR, cleared of molybdate and exposed to 25 degrees C, was resolved by electrofocusing into two phosphorylated fractions, one with a pI' value of 6.5, representing the monomeric GR form and the other with a pI' value of 5.1, apparently representing the acidic hsp90. The dissociation of hsp90 from the molybdate-cleared 5 S heterodimer seems to account for the decrease in the negative net charge of 5 S GR from pI' 6.5. Monomeric GR, derived from a molybdate-cleared, partially purified GR preparation, by the exposure to 25 degrees C, did not retain glucocorticoid-binding activity. Molybdate-stabilized 5 S GR was apparently re-assembled into the oligomeric nontransformed state when the salt concentration was reduced. This phenomenon was evident under the low-salt conditions of electrofocusing, by the shift in pI' value of GR from 5.8 to 5.0; and in glycerol density gradients containing 0.15 M KCl, by the shift in the sedimentation of the GR complex from 5 S to 9.5 S.  相似文献   

16.
The molybdate-stabilized nontransformed form of the glucocorticoid receptor from rabbit liver has been purified approximately 8,000-fold by a three-step procedure. The first step involved protamine sulfate precipitation which allowed a 5-6-fold purification with 85% yield. The second step, affinity chromatography using a N-(12-dodecyl-amino) 9 alpha-fluoro-16 alpha-methyl-11 beta, 17 alpha-dihydroxy-3-oxo-1,4-androstadiene-17 beta-carboxamide substituted Sepharose gel, purified the receptor 1,500-2,000-fold as calculated by specific radioactivity. The third step involved high performance liquid chromatography resulting in overall purification near 8,000-fold. The final glucocorticoid receptor appeared about 60% pure. The purified nontransformed glucocorticoid receptor had a sedimentation coefficient of 9 S in 0.16 M phosphate containing 5-20% sucrose gradients and the Stokes radius was 6.1-6.3 nm as determined by low pressure gel filtration and HPLC. Binding specificity of the purified receptor was identical to that previously reported in crude rabbit liver cytosol. Isoelectricfocusing and ion-exchange chromatography showed that the purification procedure affected the net charge of the receptor protein. This phenomenon could be related to interactions between the glucocorticoid receptor and cytosolic factors. SDS polyacrylamide gel electrophoresis showed a major Mr = 94,000 protein band which is in good agreement with previously reported values for glucocorticoid receptors. Transformation of the purified receptor was achieved after removal of molybdate by exposure at 25 degrees C to 0.4 M KCl. Characterization of the molecular forms was performed by means of incorporation into isolated nuclei, affinity towards polyanionic exchangers and high pressure size exclusion chromatography. Results show that about 40% of the receptor is in the transformed state.  相似文献   

17.
In previous work, we identified two insulin receptor species, RI (KAV = 0.31) and RII (KAV = 0.53), that could be separated by gel filtration on Sepharose 6B. In the present study, we sought to establish that these two receptor species do represent larger (RI) and smaller (RII) oligomeric forms of the receptor, rather than representing receptor species separated from each other by differential adsorption to the Sepharose matrix. Receptor solubilized from isolated human placenta membranes was purified by lectin- and insulin-agarose chromatography and was radiolabeled with carrier-free 125I. The labeled receptor was separated by Sepharose 6B gel filtration into two fractions (peak I, KAV = 0.31; peak II, KAV = 0.53), was immunoprecipitated by anti-insulin receptor antibody, and was analysed by electrophoresis in nonreducing polyacrylamide slab gels. The autoradiograms of the gels indicated that peak I (KAV = 0.31, RI receptor form) contained a number of receptor species of 240 000 daltons or greater, whereas peak II (KAV = 0.53, RII receptor form) contained mainly receptor species of 210 000 daltons or smaller. In particular, large amounts of a 90 000 dalton species (presumably free receptor beta-subunit) were present in peak II. Incubation of the material obtained from peak I with insulin resulted in a change in the electrophoretic pattern, which became identical with that observed for material recovered from peak II.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The activation in vitro of dioxin and glucocorticoid receptors from a non-DNA binding to a DNA binding state was characterized. Ligand-free dioxin and glucocorticoid receptors were partially co-purified from rat liver cytosol, and both receptors sedimented at 9 S following labeling with the respective ligand. The 9 S forms of the dioxin and glucocorticoid receptors have previously been shown to represent heteromeric complexes containing the Mr approximately equal to 90,000 heat shock protein. The 9 S ligand-free or ligand-bound glucocorticoid receptor was converted to the monomeric 4-5 S form upon exposure to 0.4 M NaCl even in the presence of the stabilizing agent molybdate. Under identical conditions, the 9 S ligand-free and ligand-bound dioxin receptor forms remained essentially intact. However, in the absence of molybdate, the dioxin receptor could be converted to a 4-5 S form upon exposure to high concentrations of salt. These results indicate that the glucocorticoid receptor readily dissociates from the 9 S to the 4-5 S form even in the absence of hormone, whereas both the ligand-free and ligand-occupied 9 S dioxin receptor forms represent more stable species. Gel mobility shift experiments revealed that the 4-5 S glucocorticoid receptor interacted with a glucocorticoid response element both in the absence and presence of ligand. On the other hand, occupation of the dioxin receptor by ligand greatly enhanced the ability of the receptor to be activated to a form that binds to its target enhancer element. Once dissociated, the monomeric form of the dioxin receptor was also able to interact with its DNA target sequences even in the absence of ligand. Thus, ligand binding efficiently facilitates subunit dissociation of the dioxin receptor but is not a prerequisite for DNA binding per se. Given the apparent stability of its non-DNA binding 9 S form, the dioxin receptor system might be a useful model for the investigation of the mechanism of activation of soluble receptor proteins.  相似文献   

19.
A monoclonal antibody (BF4) has been used to characterize and purify the heat-shock protein of Mr approximately 90,000 (hsp 90) present in the chick oviduct. In low salt cytosol, the sedimentation coefficient of hsp 90 is approximately 6.8 S, the Stokes radius approximately 7.1 nm, and the calculated Mr approximately 204,000, thus suggesting a dimeric structure. In 0.4 M KCl cytosol, only slightly smaller values were determined (approximately 6.5 S, approximately 6.8 nm, and approximately 187,000). Following purification by ion exchange and immunoaffinity chromatography, hsp 90 migrated as a single silver-stained band at Mr approximately 90,000 in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, while the sedimentation coefficient 6.2 S, the Stokes radius approximately 6.8 nm, and the Mr approximately 178,000 confirmed the dimeric structure. However, in both antigen or antibody excess conditions, only one molecule of monoclonal antibody could be bound to the hsp 90 dimer. Whether steric hindrance in a homodimer or the presence of two different 90-kDa proteins in a heterodimer explains this result cannot yet be decided. The dimer is not dissociated by high salt (1 M KCl) or the chaotropic agent (0.5 M NaSCN), but is disrupted by 4 M urea, suggesting a stabilization of the structure by hydrogen bonds. The molybdate-stabilized progesterone receptor hetero-oligomer form of approximately 8 S sedimentation coefficient was purified, and its hsp 90 component was then released by salt treatment. It was found to sediment at approximately 5.8 S and have a Stokes radius approximately 7.1 nm, giving Mr approximately 174,000. This observation is consistent with a previous report suggesting from specific activity determination, scanning of polyacrylamide gels, and cross-linking experiments that each purified nontransformed progesterone receptor molecule includes one progesterone binding unit per two 90-kDa protein molecules (Renoir, J. M., Buchou, T., Mester, J., Radanyi, C., and Baulieu, E. E. (1984) Biochemistry 23, 6016-6023). This work brings direct evidence that both free hsp 90 and the non-hormone binding hsp 90 component released from the nontransformed steroid receptor in the cytosol are in a dimeric form.  相似文献   

20.
The cell surface cAMP receptor of Dictyostelium discoideum exists as a doublet of low (D) and high (R) electrophoretic mobility forms, both of which are phosphorylated in vivo. The R form is phosphorylated in a ligand-independent manner, while conversion of the R to D forms, induced by the chemoattractant, is accompanied by at least a 4-fold increase in the level of phosphorylation. When cells are stimulated with saturating levels of cAMP, increased phosphorylation is detectable within 5 s and reaches maximum levels by 5 min with a t1/2 of 45 s. Dephosphorylation of receptor, initiated by removal of the stimulus, is detectable within 30 s, has a half-time of 2 min, and reaches a plateau by 20 min. At half-maximal occupancy, phosphorylation occurred more slowly than at saturation, t1/2 = 1.5 min, and remained at intermediate levels until the cAMP concentration was increased. Accompanying electrophoretic mobility shifts occurred in all cases with similar, though not identical, kinetics. Both phosphorylation and mobility shift were half-maximal at 5 nM cAMP and saturated at 100 nM. Estimation of the specific activity of each receptor form indicates that not all sites are phosphorylated during the R to D transition; at least half of the sites are phosphorylated after the transition is completed. The rate of incorporation of phosphates into the receptor, held in the D form by cAMP, was less than one-third the rate of ligand-induced incorporation starting with the R form and was approximately twice the basal rate of incorporation. These results are compatible with ligand-induced receptor phosphorylation being an early event in the adaptation of other cAMP-induced responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号