首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
No evidence to date suggests the possibility of subunit exchange between tetramers of mammalian fructose-1,6-bisphosphatase. An engineered fructose-1,6-bisphosphatase, with subunits of altered electrostatic charge, exhibits spontaneous subunit exchange with wild-type enzyme in the absence of ligands. The exchange process reaches equilibrium in approximately 5 h at 4 degrees C, as monitored by non-denaturing gel electrophoresis and anion exchange chromatography. Active site ligands, such as fructose 6-phosphate, abolish subunit exchange at the level of the monomer, but permit dimer-dimer exchanges. AMP, alone or in the presence of active site ligands, abolishes all exchange processes. Exchange phenomena may play a role in the kinetic mechanism of allosteric regulation of fructose-1,6-bisphosphatase.  相似文献   

2.
Hsp16.5, isolated from the hyperthermophilic Archaea Methanococcus jannaschii, is a member of the small heat-shock protein family. Small Hsps have 12- to 42-kDa subunit sizes and have sequences that are conserved among all organisms. The recently determined crystal structure of Hsp16.5 indicates that it consists discretely of 24 identical subunits. Using fluorescence resonance energy transfer, we show that at temperatures above 60 degrees C, the subunits of MjHsp16.5 freely and reversibly exchange with a rate constant of exchange at 68 degrees C of 0.067 min(-1). The subunit exchange reactions were strongly temperature-dependent, similar to the exchange reactions of the alpha-crystallins. The exchange reaction was specific to MjHsp16.5 subunits, as other sHsps such as alpha-crystallin were not structurally compatible and could not integrate into the MjHsp16.5 oligomer. In addition, we demonstrate that at temperatures as high as 70 degrees C, MjHsp16.5 retains its multimeric structure and subunit organization. Using insulin and alpha-lactalbumin as model target proteins, we also show that MjHsp16.5 at 37 degrees C is a markedly inefficient chaperone compared with other sHsps with these substrates. The results of this study support the hypothesis that MjHsp16.5 has a dynamic quaternary structure at temperatures that are physiologically relevant to M. jannaschii.  相似文献   

3.
Wiseman RL  Green NS  Kelly JW 《Biochemistry》2005,44(25):9265-9274
Kinetic stabilization of transthyretin (TTR) is established to prevent human neurodegeneration. Therefore, small molecule-mediated kinetic stabilization of the native state is an attractive strategy to prevent the misfolding and misassembly associated with TTR amyloid disease. Since the physiological microenvironment resulting in human TTR amyloidogenesis remains unclear, the conservative approach is to identify inhibitors that function under a variety of conditions. Small molecule kinetic stabilization of TTR has been established by concentration-dependent inhibition of acid-mediated amyloidogenesis and urea-induced tetramer dissociation. Since denaturing conditions reduce the binding affinity of inhibitors making it difficult to predict inhibitor efficacy under physiological conditions, we introduce a method for quantifying kinetic stabilization under physiological conditions. The rate of subunit exchange between wild-type TTR homotetramers and wild-type TTR homotetramers tagged with an N-terminal acidic flag tag is dictated by the rate of tetramer dissociation to its monomeric subunits prior to reassembly, rendering this method ideally suited for assessing the kinetic stabilization of TTR imparted by small molecule binding and evaluating small molecule binding constants. Addition of amyloidogenesis inhibitors to this exchange reaction slows tetramer dissociation in a concentration-dependent manner, stopping dissociation at concentrations where at least one inhibitor is bound to each tetramer in solution. Subunit exchange enables the rate of tetramer dissociation and the kinetic stabilization imparted by small molecule binding to be evaluated under physiological conditions in which the TTR concentration is not reduced by aggregation or irreversible dissociation.  相似文献   

4.
Transthyretin (TTR) amyloidosis is associated with tissue deposition of TTR aggregates. TTR aggregation is initiated by dissociation of the native tetramer to form a monomeric intermediate, which locally unfolds and assembles into soluble oligomers and higher-order aggregates. However, a detailed mechanistic understanding requires kinetic and structural characterization of the low population intermediates formed. Here, we show that the monomeric intermediate exchanges with an ensemble of oligomers on the millisecond timescale. This transient and reversible exchange causes broadening of the 19F resonance of a trifluoromethyl probe coupled to the monomeric intermediate at S85C. We show the 19F linewidth and R2 relaxation rate increase with increasing concentration of the oligomer. Furthermore, introduction of 19F probes at additional TTR sites yielded distinct 19F chemical shifts for the TTR tetramer and monomer when the trifluoromethyl probe was attached at S100C, located near the same subunit interface as S85C, but not with probes attached at S46C or E63C, which are distant from any interfaces. The 19F probe at E63C shows that part of the DE loop, which is solvent accessible in the tetramer, becomes more buried in the NMR-visible oligomers. Finally, using backbone amides as probes, we show that parts of the EF helix and H-strand become highly flexible in the otherwise structured monomeric intermediate at acidic pH. We further find that TTR aggregation can be reversed by increasing pH. Taken together, this work provides insights into location-dependent conformational changes in the reversible early steps of a kinetically concerted TTR aggregation pathway.  相似文献   

5.
Monoclonal antibodies (MAbs) directed against the E2 glycoprotein of mouse hepatitis virus (MHV) have been classified according to their ability to bind to either of the two purified 90,000-molecular-weight subunits (90K subunits) of the 180K peplomeric glycoprotein E2. Correlation with previously reported information about these MAbs suggest that both of the subunits of E2 are important for viral infectivity and cell fusion. Incubation of trypsin-treated virions at pH 8.0 and 37 degrees C released only the E2N subunit from virions. The pattern of MAb reactions suggested that a conformational change occurred in the E2N subunit in association with its release from virions under mildly alkaline conditions at 37 degrees C, the same conditions which are optimal for coronavirus-induced cell fusion.  相似文献   

6.
The formation of amyloid aggregates is the hallmark of the amyloidogenic diseases. Transthyretin (TTR) is involved in senile systemic amyloidosis (wild-type protein) and familial amyloidotic polyneuropathy (point mutants). Through the use of high hydrostatic pressure (HHP), we compare the stability among wild-type (wt) TTR, two disease-associated mutations (V30M and L55P) and a trans-suppressor mutation (T119M). Our data show that the amyloidogenic conformation, easily populated in the disease-associated mutant L55P, can be induced by a cycle of compression-decompression with the wt protein rendering the latter highly amyloidogenic. After decompression, the recovered wt structure has weaker subunit interactions (loosened tetramer, T(4)(*)) and presents a stability similar to L55P, suggesting that HHP induces a defective fold in the wt protein, converting it to an altered conformation already present in the aggressive mutant, L55P. On the other hand, glucose, a chemical chaperone, can mimic the trans-suppression mutation by stabilizing the native state and by decreasing the amyloidogenic potential of the wt TTR at pH 5.0. The sequence of pressure stability observed was: L55P相似文献   

7.
The stability of the interaction of A1 in myosin and subfragment 1 isolated from fast-twitch mammalian and avian muscles with respect to temperature and ionic strength has been examined. This was done by determining the extent of exchange of the endogenous free A1 light chain into these proteins from the two species. Whereas the extent of exchange at 37 degrees C into mammalian S1, occurring after 60 min, is about 80% of the theoretically expected amount at physiological ionic conditions, the level of exchange observed with the avian S1 is significantly lower. However, close to the theoretical limit is observed for the avian S1 when exchange is done at 43 degrees C which is close to average avian body temperature. A similar dependence with temperature is observed in the case of exchanges into avian myosin. In the case of mammalian myosin, 50% of the theoretical exchange is observed at 37 degrees C under physiological ionic strength, whereas the level of exchange observed under these conditions with the avian protein is much lower in agreement with recent observations (Waller, G. S., and Lowey, S. (1985) J. Biol. Chem. 260, 14368-14373; Pastra-Landis, S. C., and Lowey, S. (1986) J. Biol. Chem. 261, 14811-14816). If, however, the exchanges are done at 43 degrees C in physiological ionic strength, significant extents of exchange can be observed in avian myosin. These results suggest that at physiological ionic and temperature conditions relevant for the source of myosin and S1 being investigated, the alkali light chains are in dynamic equilibrium between free and heavy chain associated states. Therefore, the failure to observe alkali light chain exchange in avian myosin at 37 degrees C appears to be related to the higher temperature stability of its interaction with the heavy chain.  相似文献   

8.
Cobb BA  Petrash JM 《Biochemistry》2000,39(51):15791-15798
alpha-Crystallin, the major protein component of vertebrate lenses, forms a large complex comprised of two homologous subunits, alphaA- and alphaB-crystallin. It has the ability to suppress stress-induced protein aggregation in vitro, bind saturably to lens plasma membranes, and aid in light refraction through short-range ordering. Recently, a missense mutation in alphaA-crystallin that changes arginine 116 to a cysteine residue (R116C) was genetically linked to one form of autosomal dominant congenital cataracts. This point mutation is reported to cause structural alterations at many levels as well as a 4-fold reduction in chaperone-like activity. To extend these findings, we examined the quaternary stability of the alphaA R116C mutant protein and its effect on chaperone-like activity, subunit exchange, and membrane association. Homocomplexes of mutant subunits become highly polydisperse following incubation at 37 degrees C, reflecting the likely in vivo distribution of the complexes. Chaperone-like activity of the alphaA R116C mutant is approximately 4-fold lower than wild type, whether measured before or after conversion to a polydisperse population with incubation. alphaA R116C complexes also have a 4-fold reduced ability to exchange subunits with wild-type complexes. Finally, membrane binding capacity measurements of mutant subunits showed a 10-fold increase over wild type. Our results, in conjunction with previous reports, suggest that the changes in complex polydispersity, the reduction of subunit exchange, and increased membrane binding capacity are all potential factors in the pathogenesis of alphaA R116C associated congenital cataracts.  相似文献   

9.
The chaperone activity of native alpha-crystallins toward beta(LOW)- and various gamma-crystallins at the onset of their denaturation, 60 and 66 degrees C, respectively, was studied at high and low crystallin concentrations using small angle x-ray scattering (SAXS) and fluorescence energy transfer (FRET). The crystallins were from calf lenses except for one recombinant human gamma S. SAXS data demonstrated an irreversible doubling in molecular weight and a corresponding increase in size of alpha-crystallins at temperatures above 60 degrees C. Further increase is observed at 66 degrees C. More subtle conformational changes accompanied the increase in size as shown by changes in environments around tryptophan and cysteine residues. These alpha-crystallin temperature-induced modifications were found necessary to allow for the association with beta(LOW)- and gamma-crystallins to occur. FRET experiments using IAEDANS (iodoacetylaminoethylaminonaphthalene sulfonic acid)- and IAF (iodoacetamidofluorescein)-labeled subunits showed that the heat-modified alpha-crystallins retained their ability to exchange subunits and that, at 37 degrees C, the rate of exchange was increased depending upon the temperature of incubation, 60 or 66 degrees C. Association with beta(LOW)- (60 degrees C) or various gamma-crystallins (66 degrees C) resulted at 37 degrees C in decreased subunit exchange in proportion to bound ligands. Therefore, beta(LOW)- and gamma-crystallins were compared for their capacity to associate with alpha-crystallins and inhibit subunit exchange. Quite unexpectedly for a highly conserved protein family, differences were observed between the individual gamma-crystallin family members. The strongest effect was observed for gamma S, followed by h gamma Srec, gamma E, gamma A-F, gamma D, gamma B. Moreover, fluorescence properties of alpha-crystallins in the presence of bound beta(LOW)-and gamma-crystallins indicated that the formation of beta(LOW)/alpha- or gamma/alpha-crystallin complexes involved various binding sites. The changes in subunit exchange associated with the chaperone properties of alpha-crystallins toward the other lens crystallins demonstrate the dynamic character of the heat-activated alpha-crystallin structure.  相似文献   

10.
Evidence is presented that under physiological conditions of ionic strength and temperature, where myosin Subfragment 1 is hydrolyzing MgATP, the interaction between its subunits is extremely labile. Incubation of [3H]N-ethylmaleimide-SF1(A1) with N-ethylmaleimide-SF1(A2) in the presence of 10 mM MgATP at 37 degrees C resulted in the exchange of subunits between these isozymes. This is readily discernible from the subunit composition and distribution of the 3H label after separation of the isozymes by ion exchange chromatography. Moreover, incubation of unmodified SF1(A1) or SF1(A2) with the free Alkali light chains A2 and A1, respectively, under the same conditions led to the formation of significant amounts of the hybrid species. These findings suggest that in vivo the Alkali light chain-heavy chain interaction of Subfragment 1 is in a state of dynamic equilibrium between associated and dissociated states.  相似文献   

11.
The predominant nicotinic acetylcholine receptor (nAChR) expressed in vertebrate brain is a pentamer containing alpha4 and beta2 subunits. In this study we have examined how temperature and the expression of subunit chimeras can influence the efficiency of cell-surface expression of the rat alpha4beta2 nAChR. Functional recombinant alpha4beta2 nAChRs, showing high affinity binding of nicotinic radioligands (K(d) = 41 +/- 22 pM for [(3)H]epibatidine), are expressed in both stably and transiently transfected mammalian cell lines. Despite this, only very low levels of alpha4beta2 nAChRs can be detected on the cell surface of transfected mammalian cells maintained at 37 degrees C. At 30 degrees C, however, cells expressing alpha4beta2 nAChRs show a 12-fold increase in radioligand binding (with no change in affinity), and a 5-fold up-regulation in cell-surface receptors with no increase in total subunit protein. In contrast to "wild-type" alpha4 and beta2 subunits, chimeric nicotinic/serotonergic subunits ("alpha4chi" and "beta2chi") are expressed very efficiently on the cell surface (at 30 degrees C or 37 degrees C), either as hetero-oligomeric complexes (e.g. alpha4chi+beta2 or alpha4chi+beta2chi) or when expressed alone. Compared with alpha4beta2 nAChRs, expression of complexes containing chimeric subunits typically results in up to 20-fold increase in nicotinic radioligand binding sites (with no change in affinity) and a similar increase in cell-surface receptor, despite a similar level of total chimeric and wild-type protein.  相似文献   

12.
13.
Complexes between Bacillus subtilus RNA polymerase and 32P-labeled DNA were irradiated with UV light and digested with nuclease; electrophoresis and autoradiography were used to identify the polymerase subunits cross-linked to DNA. These experiments showed: 1) that cross-linkage of promoter complexes yielded predominantly the beta and sigma subunits; 2) that beta, beta', and sigma were detected in non-promoter complexes; 3) that addition of the delta subunit or high concentrations of NaCl decreased cross-linkage of all subunits, especially the cross-linkage of the sigma subunit in non-promoter complexes and the binding of polymerase at DNA ends; 4) that different patterns of cross-linkage were obtained at 0 degrees C (conditions favoring the formation of closed complexes) and 37 degrees C (conditions favoring the formation of open complexes); and 5) predominantly beta and possibly alpha were cross-linked by irradiation of core-DNA complexes whereas similar experiments with core-delta complexed to DNA showed the efficient cross-linkage of beta' and beta.  相似文献   

14.
The pathway by which the tetrameric protein transthyretin dissociates   总被引:1,自引:0,他引:1  
Foss TR  Wiseman RL  Kelly JW 《Biochemistry》2005,44(47):15525-15533
The homotetrameric protein transthyretin (TTR) must undergo rate-limiting dissociation to its constituent monomers in order to enable partial denaturation that allows the process of amyloidogenesis associated with human pathology to ensue. The TTR quaternary structure contains two distinct dimer interfaces, one of which creates the two binding sites for the natural ligand thyroxine. Tetramer dissociation could proceed through three distinct pathways; scission into dimers along either of the two unique quaternary interfaces followed by dimer dissociation represents two possibilities. Alternatively, the tetramer could lose monomers sequentially. To elucidate the TTR dissociation pathway, we employed two different TTR constructs, each featuring covalent attachment of proximal subunits. We demonstrate that tethering the A and B subunits of TTR with a disulfide bond (as well as the symmetrically disposed C and D subunits) allows urea-mediated dissociation of the resulting (TTR-S-S-TTR)(2) construct, affording (TTR-S-S-TTR)(1) retaining a stable 16-stranded beta-sheet structure that is equivalent to the dimer not possessing a thyroid binding site. In contrast, linking the A and C subunits employing a peptide tether (TTR-L-TTR)(2) affords a kinetically stable quaternary structure that does not dissociate or denature in urea. Both tethered constructs and wild-type TTR exhibit analogous stability based on guanidine hydrochloride denaturation curves. The latter denaturant can denature the tetramer, unlike urea, which can only denature monomeric TTR; hence urea requires dissociation to monomers to function. Under native conditions, the (TTR-S-S-TTR)(2) construct is able to dissociate and incorporate subunits from labeled WT TTR homotetramers at a rate equivalent to that exhibited by WT TTR. In contrast, the (TTR-L-TTR)(2) construct is unable to exchange any subunits, even after 180 h. All of the data presented herein and elsewhere demonstrate that the pathway of TTR tetramer dissociation occurs by scission of the tetramer along the crystallographic C(2) axis affording AB and CD dimers that rapidly dissociate into monomers. Determination of the mechanism of dissociation provides an explanation for why small molecules that bind at the AB/CD dimer-dimer interface impose kinetic stabilization upon TTR and disease-associated variants thereof.  相似文献   

15.
A method is described for the preparation of active "run-off" 80S ribosomes and 40S and 60S subunits of mouse liver. A polysome preparation was incubated at 37 degrees C for 10 min under the condition for protein synthesis (4 mM Mg2+, 100 mM KCL). Puromycin (10 mM)and 2 M KCL were added to a final concentration of 0.1 mM and 500 mM, respectively, and the reaction mixture was further incubated at 37 degrees C for 10 min. This latter treatment destabilized small polysomes and "stuck" 80S particles, which were remaining after the first incubation, leading to complete release of 40S and 60S particles. Thus, the present method minimized variations in yield of subunits due to polysome preparations and preincubation conditions. The subunits were separated by sucrose density-gradient centrifugation or recovered by precipitation following reassociation into 80S particles (run-off 80S). The reformation of 80S particles from the subunits occurred spontaneously at 5 mM Mg2+ and 100mM KCL. The isolated 40S and 60S subunits, separately, showed low phenylalanine-incorporating activity in the presence of poly(U), but when recombined, polymerized up to 10 phenylalanine residues per couple.  相似文献   

16.
Park SY  Quezada CM  Bilwes AM  Crane BR 《Biochemistry》2004,43(8):2228-2240
Dimerization of the chemotaxis histidine kinase CheA is required for intersubunit autophosphorylation [Swanson, R. V., Bourret, R. B., and Simon, M. I. (1993) Mol. Microbiol. 8, 435-441]. Here we show that CheA dimers exchange subunits by the rate-limiting dissociation of a central four-helix bundle association domain (P3), despite the high stability of P3 versus unfolding. P3 alone determines the stability and exchange properties of the CheA dimer. For CheA proteins from the mesophile Escherichia coli and the thermophile Thermotoga maritima, subunit dissociation activates at temperatures where the respective organisms live (37 and 80 degrees C). Under destabilizing conditions, P3 dimer dissociation is cooperative with unfolding. Chemical denaturation is reversible for both EP3 and TP3. Aggregation accompanies thermal unfolding for both proteins under most conditions, but thermal unfolding is reversible and two-state for EP3 at low protein concentrations. Residue differences within interhelical loops may account for the contrasted thermodynamic properties of structurally similar EP3 and TP3 (41% sequence identity). Under stabilizing conditions, greater correlation between activation energy for dimer dissociation and P3 stability suggests more unfolding in the dissociation of EP3 than TP3. Furthermore, destabilization of extended conformations by glycerol slows relative dissociation rates more for EP3 than for TP3. Nevertheless, at physiological temperatures, neither protein likely unfolds completely during subunit exchange. EP3 and TP3 will not exchange subunits with each other. The receptor coupling protein CheW reduces the subunit dissociation rate of the T. maritima CheA dimer by interacting with the regulatory domain P5.  相似文献   

17.
H A Lashuel  C Wurth  L Woo  J W Kelly 《Biochemistry》1999,38(41):13560-13573
The L55P transthyretin (TTR) familial amyloid polyneuropathy-associated variant is distinct from the other TTR variants studied to date and the wild-type protein in that the L55P tetramer can dissociate to the monomeric amyloidogenic intermediate and form fibril precursors under physiological conditions (pH 7.0, 37 degrees C). The activation barrier associated with L55P-TTR tetramer dissociation is lower than the barrier for wild-type transthyretin dissociation, which does not form fibrils under physiological conditions. The L55P-TTR tetramer is also very sensitive to acidic conditions, readily dissociating to form the monomeric amyloidogenic intermediate between pH 5.5-5.0 where the wild-type TTR adopts a nonamyloidogenic tetrameric structure. The formation of the L55P monomeric amyloidogenic intermediate involves subtle tertiary structural changes within the beta-sheet rich subunit as discerned from Trp fluorescence, circular dichroism analysis, and ANS binding studies. The assembly of the L55P-TTR amyloidogenic intermediate at physiological pH (pH 7.5) affords protofilaments that elongate with time. TEM studies suggest that the entropic barrier associated with filament assembly (amyloid fibril formation) is high in vitro, amyloid being defined by the laterally assembled four filament structure observed by Blake upon isolation of "fibrils" from the eye of a FAP patient. The L55P-TTR protofilaments formed in vitro bind Congo red and thioflavin T (albeit more weakly than the fibrils produced at acidic pH), suggesting that the structure observed probably represents an amyloid precursor. The structural continuum from misfolded monomer through protofilaments, filaments, and ultimately fibrils must be considered as a possible source of pathology associated with these diseases.  相似文献   

18.
Mammalian vacuolar-type proton pumping ATPases (V-ATPases) are diverse multi-subunit proton pumps. They are formed from membrane V(o) and catalytic V(1) sectors, whose subunits have cell-specific or ubiquitous isoforms. Biochemical study of a unique V-ATPase is difficult because ones with different isoforms are present in the same cell. However, the properties of mouse isoforms can be studied using hybrid V-ATPases formed from the isoforms and other yeast subunits. As shown previously, mouse subunit E isoform E1 (testis-specific) or E2 (ubiquitous) can form active V-ATPases with other subunits of yeast, but E1/yeast hybrid V-ATPase is defective in proton transport at 37 degrees C (Sun-Wada, G.-H., Imai-Senga, Y., Yamamoto, A., Murata, Y., Hirata, T., Wada, Y., and Futai, M., 2002, J. Biol. Chem. 277, 18098-18105). In this study, we have analyzed the properties of E1/yeast hybrid V-ATPase to understand the role of the E subunit. The proton transport by the defective hybrid ATPase was reversibly recovered when incubation temperature of vacuoles or cells was shifted to 30 degrees C. Corresponding to the reversible defect of the hybrid V-ATPase, the V(o) subunit a epitope was exposed to the corresponding antibody at 37 degrees C, but became inaccessible at 30 degrees C. However, the V(1) sector was still associated with V(o) at 37 degrees C, as shown immunochemically. The control yeast V-ATPase was active at 37 degrees C, and its epitope was not accessible to the antibody. Glucose depletion, known to dissociate V(1) from V(o) in yeast, had only a slight effect on the hybrid at acidic pH. The domain between Lys26 and Val83 of E1, which contains eight residues not conserved between E1 and E2, was responsible for the unique properties of the hybrid. These results suggest that subunit E, especially its amino-terminal domain, plays a pertinent role in the assembly of V-ATPase subunits in vacuolar membranes.  相似文献   

19.
Transthyretin (TTR) is an amyloidogenic protein whose aggregation is responsible for numerous familial amyloid diseases, the exact phenotype being dependent on the sequence deposited. Many familial disease variants display decreased stability in vitro, and early onset pathology in vivo. Only subtle structural differences were observed upon crystallographic comparison of the disease-associated variants to the T119M interallelic trans-suppressor. Herein three human TTR single amino acid variant homotetramers including two familial amyloidotic polyneuropathy (FAP) causing variants (V30M and L55P), and a suppressor variant T119M (known to protect V30M carriers from disease by trans-suppression) were investigated in a residue-specific fashion by monitoring (2)H-(1)H exchange employing NMR spectroscopy. The measured protection factors for slowly exchanging amide hydrogen atoms reveal destabilization of the protein core in the FAP variants, the core consisting of strands A, B, E and G and the loop between strands A and B. The same core exhibits much slower exchange in the suppressor variant. Accelerated exchange rates were observed for residues at the subunit interfaces in L55P, but not in the T119M or V30M TTR. The correlation between destabilization of the TTR core strands and the tendency for amyloid formation supports the view that these strands are involved in amyloidogenicity, consistent with previous (2)H-(1)H exchange analysis of the WT-TTR amyloidogenic intermediate.  相似文献   

20.
Transthyretin (TTR) is a plasma homotetrameric protein that acts physiologically as a transporter of thyroxine (T(4)) and retinol, in the latter case through binding to retinol-binding protein (RBP). A fraction of plasma TTR is carried in high density lipoproteins by binding to apolipoprotein AI (apoA-I). We further investigated the nature of the TTR-apoA-I interaction and found that TTR from different sources (recombinant and plasmatic) is able to process proteolytically apoA-I, cleaving its C terminus after Phe-225. TTR-mediated proteolysis was inhibited by serine protease inhibitors (phenylmethanesulfonyl fluoride, Pefabloc, diisopropyl fluorophosphate, chymostatin, and N(alpha)-p-tosyl-l-phenylala-nine-chloromethyl ketone), suggesting a chymotrypsin-like activity. A fluorogenic substrate corresponding to an apoA-I fragment encompassing amino acid residues 223-228 (Abz-ESFKVS-EDDnp) was used to characterize the catalytic activity of TTR, including optimum reaction conditions (37 degrees C and pH 6.8) and catalytic constant (K(m) = 29 microm); when complexed with RBP, TTR activity was lost, whereas when complexed with T(4), only a slight decrease was observed. Cell lines expressing TTR were able to degrade Abz-ESFKVS-EDDnp 2-fold more efficiently than control cells lacking TTR expression; this effect was reversed by the presence of RBP in cell culture media, therefore proving a TTR-specific proteolytic activity. TTR can act as a novel plasma cryptic protease and might have a new, potentially important role under physiological and/or pathological conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号