首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Species of amoebae belonging to the genera Platyamoeba Page, 1969, Vannella Bovee, 1965 and Flabellula Schaeffer, 1926 were found to accompany Paramoeba sp., the agent of amoebic gill disease (AGD), in clinically diseased turbots. The same community of epizoic gymnamoebae was found on the gills of turbots which revealed no gill abnormalities but slight behavioral signs indicative of suboptimal health status. The assemblage of the above-mentioned free-living amoebae capable of colonizing gill tissue of turbots was supplemented with species recognized in samples fixed from primary isolates for transmission electron microscopy. The pathogenic potential of epizoic gill amoebae in turbots is discussed.  相似文献   

2.
Neoparamoeba perurans is the aetiological agent of amoebic gill disease (AGD) in salmonids, however multiple other amoeba species colonise the gills and their role in AGD is unknown. Taxonomic assessments of these accompanying amoebae on AGD-affected salmon have previously been based on gross morphology alone. The aim of the present study was to document the diversity of amoebae colonising the gills of AGD-affected farmed Atlantic salmon using a combination of morphological and sequence-based taxonomic methods. Amoebae were characterised morphologically via light microscopy and transmission electron microscopy, and by phylogenetic analyses based on the 18S rRNA gene and cytochrome oxidase subunit I (COI) gene. In addition to N. perurans, 11 other amoebozoans were isolated from the gills, and were classified within the genera Neoparamoeba, Paramoeba, Vexillifera, Pseudoparamoeba, Vannella and Nolandella. In some cases, such as Paramoeba eilhardi, this is the first time this species has been isolated from the gills of teleost fish. Furthermore, sequencing of both the 18S rRNA and COI gene revealed significant genetic variation within genera. We highlight that there is a far greater diversity of amoebae colonising AGD-affected gills than previously established.  相似文献   

3.
ABSTRACT: We characterised 9 strains selected from primary isolates referable to Paramoeba/Neoparamoeba spp. Based on ultrastructural study, 5 strains isolated from fish (amoebic gill disease [AGD]-affected Atlantic salmon and dead southern bluefin tuna), 1 strain from netting of a floating sea cage and 3 strains isolated from invertebrates (sea urchins and crab) were assigned to the genus Neoparamoeba Page, 1987. Phylogenetic analyses based on SSU rDNA sequences revealed affiliations of newly introduced and previously analysed Neoparamoeba strains. Three strains from the invertebrates and 2 out of 3 strains from gills of southern bluefin tunas were members of the N. branchiphila clade, while the remaining, fish-isolated strains, as well as the fish cage strain, clustered within the clade of N. pemaquidensis. These findings and previous reports point to the possibility that N. pemaquidensis and N. branchiphila can affect both fish and invertebrates. A new potential fish host, southern bluefin tuna, was included in the list of farmed fish endangered by N. branchiphila. The sequence of P. eilhardi (Culture Collection of Algae and Protozoa [CCAP] strain 1560/2) appeared in all analyses among sequences of strain representatives of Neoparamoeba species, in a position well supported by bootstrap value, Bremer index and Bayesian posterior probability. Our research shows that isolation of additional strains from invertebrates and further analyses of relations between molecular data and morphological characters of the genera Paramoeba and Neoparamoeba are required. This complexity needs to be considered when attempting to define molecular markers for identification of Paramoeba/Neoparamoeba species in tissues of fish and invertebrates.  相似文献   

4.
Amoebic gill disease (AGD) is a potentially fatal disease of some marine fish. Two amphizoic amoebae Neoparamoeba pemaquidensis and Neoparamoeba branchiphila have been cultured from AGD-affected fish, yet it is not known if one or both are aetiological agents. Here, we PCR amplified the 18S rRNA gene of non-cultured, gill-derived (NCGD) amoebae from AGD-affected Atlantic salmon (Salmo salar) using N. pemaquidensis and N. branchiphila-specific oligonucleotides. Variability in PCR amplification led to comparisons of 18S rRNA and 28S rRNA gene sequences from NCGD and clonal cultured, gill-derived (CCGD) N. pemaquidensis and N. branchiphila. Phylogenetic analyses inferred from either 18S or 28S rRNA gene sequences unambiguously segregated a lineage consisting of NCGD amoebae from other members of the genus Neoparamoeba. Species-specific oligonucleotide probes that hybridise 18S rRNA were designed, validated and used to probe gill tissue from AGD-affected Atlantic salmon. The NCGD amoebae-specific probe bound AGD-associated amoebae while neither N. pemaquidensis nor N. branchiphila were associated with AGD-lesions. Together, these data indicate that NCGD amoebae are a new species, designated Neoparamoeba perurans n.sp. and this is the predominant aetiological agent of AGD of Atlantic salmon cultured in Tasmania, Australia.  相似文献   

5.
Amoebic gill disease (AGD) affects the culture of Atlantic salmon Salmo salar in the southeast of Tasmania. The disease is characterised by the presence of epizoic Neoparamoeba spp. in association with hyperplastic gill tissue. Gill-associated amoebae trophozoites were positively selected by plastic adherence for culture in seawater, where they proliferated using heat-killed E. coli as a nutrient source. One isolate of gill-harvested amoebae designated NP251002 was morphologically consistent to N. pemaquidensis under light, fluorescence and transmission electron microscopy. Rabbit anti-N. pemaquidensis antiserum bound to NP251002, and N. pemaquidensis small subunit (SSU) ribosomal DNA (18S rDNA) was detected in NP251002 genomic DNA preparations using PCR. A high degree of similarity in the alignment of the NP251002 18S rDNA PCR amplicon sequence with reference isolates of N. pemaquidensis suggested conspecificity. While short-term culture (72 h) of gill-harvested amoebae does not affect the capacity of amoebae to induce AGD, Atlantic salmon challenged with NP251002 after the trophozoites had been 34 and 98 d in culture exhibited neither gross nor histological evidence of AGD. It is not known if NP251002 were avirulent at the time of isolation, had down-regulated putative virulence factors or virulence was inhibited by the culture conditions. Therefore, the time in culture could be a limiting factor in maintaining virulence using the culture technique described here.  相似文献   

6.
Two brackish water amoebae have been isolated and studied from the benthic biotopes of the Chupa Inlet (Kandalaksha Bay, northwestern Russia). Both strains can be identified as new species of the genus Paramoeba (Amoebozoa, Dactylopodida, Paramoebidae) based on light microscopical characters, structure of microscales on the cell surface and molecular evidence based on the analyses of two genes, nuclear SSU rRNA and mitochondrial cytochrome c oxidase subunit 1 (COI). Paramoeba aparasomata n. sp. is of particular interest because this amoeba is permanently lacking a symbiotic Perkinsela-like organism (PLO) present in other species of Paramoeba and Neoparamoeba. The results obtained show that scaly dactylopodial amoebae lacking PLO are not necessarily members of Korotnevella. In particular, we suggest that Korotnevella nivo Smirnov, 1997, with microscales very similar to those of Paramoeba eilhardi and the species studied here in structure, may be in fact a member of Paramoeba. Molecular data on K. nivo have to be obtained and analysed to test this hypothesis. Based on our new results we emend the diagnosis of the genus Paramoeba to make it more fit to the current phylogenetic conception.  相似文献   

7.
The indirect fluorescent-antibody technique was used to assess a rapid method for identification of amoebae belonging to the genus Naegleria. Thirty-eight Naegleria and eight other limax amoeba strains were examined by using one N. gruberi and two N. fowleri antisera. All pathogenic Naegleriae, most of which originated from fatal cases of primary amoebic meningo-encephalitis, were identified as belonging to the fowleri species. Most of the N. gruberi strains showed irregular fluorescence. Other limax amoebae, such as Vahlkampfia, Acanthamoeba, Hartmannella, and Schizopyrenus sp. gave negative responses with the prepared antisera. The indirect fluorescent-antibody technique allows the identification of N. fowleri in a mixed culture of both N. fowleri and N. gruberi strains. Twenty-two Naegleria isolated from a suspected stream, other surface waters, and muddy soil could be excluded from the fowleri species with the indirect fluorescent-antibody technique. The results obtained demonstrate that this immunological technique is a valid method for the rapid identification of N. fowleri trophozoites.  相似文献   

8.
A total of 109 sea urchins from 3 species collected in 2 localities off the coast of Tenerife Island, Spain, were examined for the presence of free-living amoebae in their coelomic fluid. Amoeba trophozoites were isolated exclusively from moribund individuals of long-spined sea urchins Diadema aff. antillarum (Philippi) (Echinoidea, Echinodermata) that manifested lesions related to sea urchin bald disease on their tests (16 out of 56 examined). No amoebae were detected in Arbacia lixula (L.) and Paracentrotus lividus (Lamarck). From the former sea urchin species, 8 strains, established from 10 primary isolates, were identified as Neoparamoeba branchiphila Dyková et al., 2005 using morphological and molecular methods. Results of this study (limited to the screening for free-living amoebae) together with data on agents of sea urchin mortalities reported to date justify the hypothesis that free-living amoebae play an opportunistic role in D. aff. antillarum mortality. The enlargement of the dataset of SSU rDNA sequences brought new insight into the phylogeny of Neoparamoeba species.  相似文献   

9.
Paramoeba pemaquidensis Page requires attachment to a substrate in order for population growth to occur. Populations of amoebae suspended in bacterized culture media on a roller tube apparatus did not increase in size whereas amoebae maintained in stationary control tubes multiplied in number. Amoebae maintained in suspension for as long as three weeks attached and multiplied in culture when allowed to settle. This suggests that Paramoeba found suspended in the surface microlayer of the ocean may be in a “dormant” state. Implications for the survival and geographic distribution of the genus are discussed.  相似文献   

10.
Previously we described a new member of the Neoparamoeba genus, N. perurans, and showed that it is an agent of amoebic gill disease (AGD) of Atlantic salmon Salmo salar cultured in southeast Tasmania, Australia. Given the broad distribution of cases of AGD, we were interested in extending our studies to epizootics in farmed fish from other sites around the world. Oligonucleotide probes that hybridise with the 18S rRNA of N. perurans, N. branchiphila or N. pemaquidensis were used to examine archival samples of AGD in Tasmania as well as samples obtained from 4 host fish species cultured across 6 countries. In archival samples, N. perurans was the only detectable amoeba, confirming that it has been the predominant aetiological agent of AGD in Tasmania since epizootics were first reported. N. perurans was also the exclusive agent of AGD in 4 host species across 6 countries. Together, these data show that N. perurans is a cosmopolitan agent of AGD and, therefore, of significance to the global mariculture industry.  相似文献   

11.
Twenty strains of flattened amoebae including 17 isolated from fish were characterised morphologically both at light microscopical and ultrastructural levels and assigned to either the genus Vannella Bovee, 1965 or the genus Platyamoeba Page, 1969. Sequence-based phylogenetic analyses of SSU rRNA genes from a data set representing a total of 29 strains of flattened amoebae strongly indicated that morphological features discriminating between these genera do not reflect phylogenetic relationships of representative strains. Contrary to a previous study, strains of this expanded assemblage formed clusters that did not reflect their environmental origin. Monophyletic groups were of mixed origins and contained freshwater as well as marine strains of both genera isolated in geographically distant localities of various continents. These findings were supported by results of phylogenetic analyses of selected strains based on ITS sequences. However, topologies of acquired ITS trees were not congruent with results inferred from SSU rRNA analyses.  相似文献   

12.
Two new species of Korotnevella Goodkov, 1988, Korotnevella hemistylolepis n. sp. and Korotnevella monacantholepis n. sp., are described from mesohaline ecosystems. The amoebae are characterized on the basis of light and electron microscopy with special emphasis on the structure of the basket scales, which have species-specific architecture. The two new species are the second and third ones recovered from environments other than freshwater. In terms of scale morphology they most closely resemble a freshwater species, Korotnevella bulla (Schaeffer, 1926) Goodkov, 1988. Two genus names, Dactylamoeba Korotnev, 1880 and Korotnevella Goodkov, 1988, are in current use. The latter name is preferred, pending rediscovery and characterization of Dactylamoeba elongata Korotnev, 1880, the type species of the genus. Korotnevella species can be divided into three groups on the basis of scale morphology, suggesting that the genus may not be monophyletic. A key to species is provided.  相似文献   

13.
Hartmannellid amoebae are an unnatural assemblage of amoeboid organisms that are morphologically difficult to discern from one another. In molecular phylogenetic trees of the nuclear‐encoded small subunit rDNA, they occupy at least five lineages within Tubulinea, a well‐supported clade in Amoebozoa. The polyphyletic nature of the hartmannellids has led to many taxonomic problems, in particular paraphyletic genera. Recent taxonomic revisions have alleviated some of the problems. However, the genus Saccamoeba is paraphyletic and is still in need of revision as it currently occupies two distinct lineages. Here, we report a new clade on the tree of Tubulinea, which we infer represents a novel genus that we name Ptolemeba n. gen. This genus subsumes a clade of hartmannellid amoebae that were previously considered in the genus Saccamoeba, but whose mitochondrial morphology is distinct from Saccamoeba. In accordance with previous research, we formalize the clade as distinct from Saccamoeba. Transmission electron microscopy of our isolates illustrate that both molecularly discrete species can be further differentiated by their unique mitochondrial cristal morphology.  相似文献   

14.
Samples from therapeutic swimming pools and mud basins were cultured for free-living amoebae. Seven strains of pathogenic Naegleria species were isolated. Although some of the strains were as virulent as Naegleria fowleri, the etiological agent of primary amoebic meningoencephalitis, they were identified as Naegleria australiensis with the indirect fluorescent-antibody technique. The virulence of the isolates for mice corresponded with the cytopathic effect for Vero cells. The N. australiensis strains were isolated from swimming pools with water temperatures ranging from 32 to 35 degrees C and from mud with temperatures from 25 to 43 degrees C. The presence of pathogenic N. australiensis in the swimming pools did not correlate with bacterial indicators.  相似文献   

15.
Samples from therapeutic swimming pools and mud basins were cultured for free-living amoebae. Seven strains of pathogenic Naegleria species were isolated. Although some of the strains were as virulent as Naegleria fowleri, the etiological agent of primary amoebic meningoencephalitis, they were identified as Naegleria australiensis with the indirect fluorescent-antibody technique. The virulence of the isolates for mice corresponded with the cytopathic effect for Vero cells. The N. australiensis strains were isolated from swimming pools with water temperatures ranging from 32 to 35 degrees C and from mud with temperatures from 25 to 43 degrees C. The presence of pathogenic N. australiensis in the swimming pools did not correlate with bacterial indicators.  相似文献   

16.
17.
ABSTRACT. Isoenyme electrophoresis of three different enzymes was used to compare 16 strains of vahlkampfiid amoebae and a strain identified as a slime mold. The strain designated as an Echinostelium sp. was found to be an isolate of Naegleria fowleri on the basis of zymogram type and other characters, confirming Cursons & Brown's similar conclusion drawn in 1975. The N. fowleri strains examined expressed the typical zymograms of the species. The N. gruberi strains in this study presented two distinctive groups of patterns that were different from the two previously reported types for N. gruberi. Each of the remaining species studied formed single distinctive groups by which they could be identified.  相似文献   

18.
The aim of this study was to design species-specific PCR assays for rapid and reliable identification and differentiation of Staphylococcus (S.) carnosus and S. simulans strains. Two different sets of primers, targeting the manganese-dependent superoxide dismutase (sodA) gene of S. carnosus and S. simulans, respectively, were designed. Species-specificity of both sets of primers was evaluated by using 93 strains, representing 26 different species of the genus Staphylococcus, 3 species of the genus Kocuria (K.), 1 species of the genus Micrococcus (Mic.) and 1 species of the genus Macrococcus (Mac.) as reference. By using primers simF and simR the expected PCR fragment was obtained only when purified DNA from S. simulans strains was used. Amplification performed by using primers carF and carR produced a PCR fragment of the expected length, when DNA from strains of S. carnosus and S. condimenti were used as template. Nevertheless, DraI digestion of the carF/carR PCR fragment allowed a clear differentiation of strains of these two species. Species-specific PCR assays designed during this study, overcoming many of the limitations of the traditional identification procedures, can be considered a valid strategy for detection and identification of S. carnosus and S. simulans strains. The rapidity (about 4h from DNA isolation to results), the reliability and low cost of the PCR procedures established suggests that the methods may be profitably applied for specific detection and identification of S. carnosus, S. condimenti and S. simulans strains in starter cultures and meat products.  相似文献   

19.
Hydra magnipapillata strains collected from various localities in Japan were induced to reproduce sexually.
From the survival data of the progeny, it was calculated that H. magnipapillata contained an average of between 3.5 and 4.0 lethal equivalent units of recessive deleterious genes per gamate (between 7.0 and 8.0 per animal).
Various types of developmental mutants were found among the offspring of crosses made between strains isolated from the same ponds. The mutant types isolated included mini strains, maxi strains, multi-headed strains, nematocyst-deficient strains, regeneration-deficient strains and male sterile strains. The characters of these strains were stably transmissible to the successive progeny produced by budding. These strains therefore were propagated by budding and maintained as clonal lines to be used later for developmental studies.  相似文献   

20.
The diversity of heterolobosean amoebae, important members of soil, marine and freshwater microeukaryote communities in the temperate zones, is greatly under-explored in high latitudes. To address this imbalance, we studied the diversity of this group of free-living amoebae in the Arctic and the Antarctic using culture dependent methods. Eighteen strain representatives of three heterolobosean genera, Allovahlkampfia Walochnik et Mulec, 2009 (1 strain), Vahlkampfia Chatton et Lalung-Bonnaier, 1912 (2) and Naegleria Alexeieff, 1912 (15) were isolated from 179 samples of wet soil and fresh water with sediments collected in 6 localities. The Allovahkampfia strain is the first representative of the genus from the Antarctic; 14 strains (7 from the Arctic, 7 from the Antarctic) of the highly represented genus Naegleria complete the ‘polar’ cluster of five Naegleria species previously known from the Arctic and Sub-Antarctic regions, whereas one strain enriches the ‘dobsoni’ cluster of Naegleria strains of diverse origin. Present isolations of Naegleria polaris De Jonckheere, 2006 from Svalbard, in the Arctic and Vega Island, in the Antarctic and N. neopolaris De Jonckheere, 2006 from Svalbard and Greenland in the Arctic, and James Ross Island, the Antarctic demonstrate their bipolar distribution, which in free-living amoebae has so far only been known for Vermistella Morand et Anderson, 2007.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号