首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The electrophysiological technique of patch-clamp was used to characterize the pore properties of site-directed mutants in the Vibrio cholerae general diffusion porin OmpU. Changes in conductance and selectivity were observed, thus confirming the predicted pore location of these residues, based on homology with the Escherichia coli porins OmpF and OmpC. Some mutants acquire a weak selectivity for cations, which mirrors the properties of the homologous, deoxycholic acid sensitive, OmpT porin of V. cholerae. However, the mutants remain insensitive to deoxycholic acid, like wildtype OmpU. This result suggests that channel selectivity is not an important determinant in the sensitivity to this drug, and is in agreement with our finding that the neutral deoxycholic acid, and not deoxycholate, is the actual active form in channel block. Modifications in the kinetics of spontaneous closures were also noted, and are similar to those found for the E. coli channels. In addition, mutants at the D116 residue on the L3 loop display marked transitions to sub-conductance states. The results reported here are compared to a phenotypical characterization of the mutants in terms of permeability to maltodextrins and beta-lactam antibiotic sensitivity. No strict correlations are observed, suggesting that distinct, but somewhat overlapping, molecular determinants control electrophysiological properties and substrate permeability.  相似文献   

2.
The electrophysiological technique of patch-clamp was used to characterize the pore properties of site-directed mutants in the Vibrio cholerae general diffusion porin OmpU. Changes in conductance and selectivity were observed, thus confirming the predicted pore location of these residues, based on homology with the Escherichia coli porins OmpF and OmpC. Some mutants acquire a weak selectivity for cations, which mirrors the properties of the homologous, deoxycholic acid sensitive, OmpT porin of V. cholerae. However, the mutants remain insensitive to deoxycholic acid, like wildtype OmpU. This result suggests that channel selectivity is not an important determinant in the sensitivity to this drug, and is in agreement with our finding that the neutral deoxycholic acid, and not deoxycholate, is the actual active form in channel block. Modifications in the kinetics of spontaneous closures were also noted, and are similar to those found for the E. coli channels. In addition, mutants at the D116 residue on the L3 loop display marked transitions to sub-conductance states. The results reported here are compared to a phenotypical characterization of the mutants in terms of permeability to maltodextrins and β-lactam antibiotic sensitivity. No strict correlations are observed, suggesting that distinct, but somewhat overlapping, molecular determinants control electrophysiological properties and substrate permeability.  相似文献   

3.
Three outer membrane proteins with molecular masses of 40, 38, and 27 kDa of the hypertoxinogenic strain 569B of Vibrio cholerae have been purified to homogeneity. The synthesis of all the three proteins is regulated by the osmolarity of the growth medium. The pore-forming ability of the 40-kDa protein, OmpT, and the 38-kDa protein, OmpU, has been demonstrated by using liposomes, in which these proteins were embedded. The 27-kDa protein, OmpX, though osmoregulated, is not a porin. OmpU constitutes 30% of the total outer membrane protein when grown in the presence of 1.0% NaCl in the growth medium and 60% in the absence of NaCl. OmpU is an acidic protein and is a homotrimer of 38-kDa monomeric units. Its secondary structure contains predominantly a beta-sheet, and three to four Ca2+ ions are associated with each monomeric unit. Removal of Ca2+ irreversibly disrupts the structure and pore-forming ability of the protein. The pore size of OmpU is 1.6 nm, and the specific activity of the OmpU channel is two- to threefold higher than that of Escherichia coli porin OmpF, synthesis of which resembles that of OmpU with respect to the osmolarity of the growth medium. The pore size of OmpT, which is analogous to OmpC of E. coli, is smaller than that of OmpU. Southern blot hybridization of V. cholerae genomic DNA digested with several restriction endonucleases with nick-translated E. coli ompF as the probe revealed no nucleotide sequence homology between the ompU and ompF genes. OmpU is also not antigenically related to OmpF. Anti-OmpF antiserum, however, cross-reacted with the 45-kDa V. cholerae outer membrane protein, OmpS, the synthesis of which is regulated by the presence of maltose in the growth medium. OmpU hemagglutinated with rabbit and human blood. This toxR-regulated protein is one of the possible virulence determinants in V. cholerae (V. L. Miller and J. J. Mekalanos, J. Bacteriol. 170:2575-2583, 1988).  相似文献   

4.
OmpU is one of the major outer membrane porins of Vibrio cholerae. OmpU has been biochemically characterized previously for its 'porin'-property. However, previous studies have used the OmpU protein extracted from the bacterial outer membrane envelope fractions. Such method of isolation imposes limitations on the availability of the protein reagent, and also enhances the possibility of the OmpU preparation being contaminated with lipid molecules of bacterial outer membrane origin, especially lipopolysaccharides (LPS). Here we report a strategy of purifying the V. cholerae OmpU protein recombinantly overexpressed in heterologous protein expression system in Escherichia coli, without its being incorporated into the bacterial membrane fraction. In our strategy, the majority of the protein was expressed as insoluble inclusion body in the E. coli cytoplasm, the protein was dissolved by denaturation in 8M urea, refolded, and purified to homogeneity in presence of detergent. Our strategy allowed isolation of the recombinant OmpU protein with significantly enhanced yield as compared to that of the wild type protein extracted from the V. cholerae membrane fraction. The recombinant V. cholerae OmpU protein generated in our study displayed functional channel-forming property in the synthetic liposome membrane, thus confirming its 'porin'-property. To the best of our knowledge, this is the first report showing an efficient refolding and functional assembly of the V. cholerae OmpU porin recombinantly expressed as inclusion body in the cytoplasm of a heterologous host E. coli.  相似文献   

5.
OmpT and OmpU are general diffusion porins of the human intestinal pathogen Vibrio cholerae. The sole presence of OmpT in the outer membrane sensitizes cells to the bile component deoxycholic acid, and the repression of OmpT in the intestine may play an important role in the adaptation of cells to the host environment. Here we report a novel important functional difference between the two porins, namely the sensitivity to deoxycholic acid. Single channel recordings show that submicellar concentrations of sodium deoxycholate induce time-resolved blocking events of OmpT but are devoid of any effect on OmpU. The effects are dose-, voltage-, and pH-dependent. They are elicited by deoxycholate applied to either side of the membrane, with some asymmetry in the sensitivity. The voltage dependence remains even when deoxycholate is applied symmetrically, indicating that it is intrinsic to the binding site. The pH dependence suggests that the active form is the neutral deoxycholic acid and not the negatively charged species. The results are interpreted as deoxycholic acid acting as an open-channel blocker, which may relate to deoxycholic acid permeation.  相似文献   

6.
The LamB protein is normally required for the uptake of maltodextrins. Starting with a LamB- OmpF- strain, we have isolated mutants that will grow on maltodextrins. The mutation conferring the Dex+ phenotype in the majority of these mutants has been mapped to the ompC locus. These mutants, unlike LamB- OmpF- strains, grew on maltotriose and maltotetraose, but not on maltopentaose, and showed a significantly higher rate of [14C]maltose uptake than the parent strain did. In addition, these mutants showed increased sensitivity to certain beta-lactam antibiotics and sodium dodecyl sulfate, but did not exhibit an increase in sensitivity to other antibiotics and detergents. The nucleotide sequence of these mutants has been determined. In all cases, residue 74 (arginine) of the mature OmpC protein was affected. The results suggest that this region of the OmpC protein is involved in the pore domain and that the alterations lead to an increased pore size.  相似文献   

7.
8.
Numerous environmental signals regulate the production of virulence factors and the composition of the outer membrane of Vibrio cholerae. In particular, bile promotes the ToxR-dependent expression of the porin OmpU. Strains expressing solely OmpU are more resistant to bile, are better able to colonize the intestine, and produce more cholera toxin than strains expressing solely the OmpT porin. To gain some understanding in the physiological relevance and the molecular mechanism underlying these porin-dependent phenotypes, we have undertaken a thorough electrophysiological characterization of the channel properties of the two porins. Purified OmpU or OmpT was reconstituted in liposomes suitable for patch clamp and in planar lipid bilayers. The high resolution of the patch clamp technique allowed us to analyze in detail the behavior of single OmpU and OmpT channels. Both channels exhibit closing transitions to various conductance states. OmpT is a much more dynamic channel than OmpU, displaying frequent and prolonged closures, even at low transmembrane potentials. With a critical voltage for closure V(c) of approximately +/-90 mV, OmpT is much more voltage-sensitive than OmpU (with a V(c) of approximately +/-160 mV), a feature that is also readily apparent in the voltage dependence of closing probability observed in patch clamp in the +/-100 mV range. OmpT has low ionic selectivity (P(K)/P(Cl) = approximately 4), whereas OmpU is more cation-selective (P(K)/P(Cl) = approximately 14). The distinct functional properties of the two porins are likely to play an integrated role with environmental regulation of their expression. For example, the higher selectivity of OmpU for cations provides a possible explanation for the protective role played by this porin in a bile-containing environment, because this type of selectivity would restrict the flux of anionic bile salts through the outer membrane and thus would reduce the exposure of the cytoplasmic membrane to this natural detergent.  相似文献   

9.
The outer membrane of Gram-negative bacteria contains porins, large pore-forming proteins which allow the traffic of hydrophilic compounds between the external medium and the periplasm. The oral mode of infection of Vibrio cholerae, the agent of cholera, implies that the bacteria must adapt to severe changes in the environment, such as acidic pH and the presence of bile. Because of their localization and the regulation of their expression in response to these external factors, the OmpU and OmpT porins of V. cholerae are thought to be involved in the adaptation of the bacteria to the host environment. Using patch clamp and planar lipid bilayer electrophysiology, we assessed the effect of pH on the channel properties of OmpU and OmpT. OmpT does not show any major modification in its activity between pH 4 and pH 7.2. In the case of OmpU, the effect of acidic pH is manifested by promoting single-step closures, whose duration, frequency and current size increase as pH is lowered, thereby producing a pH-dependent decrease in the channel open probability. Surprisingly, the increase in current size of this single-step closure is not coupled with an increase of the total current through the porin, indicating that the trimeric conductance remains unchanged. This observation suggests that coordinated events take place at the level of the trimer, and various explanations for this peculiar effect of acidic pH on porin gating and conductance are provided.  相似文献   

10.
Transposon-induced non-motile mutants of Vibrio cholerae   总被引:2,自引:0,他引:2  
Non-motile mutants of Vibrio cholerae were isolated after transposon insertion mutagenesis with either Tn5 on a plasmid or Tn10ptac mini-kan in bacteriophage lambda. The physical location and number of transposon insertions was determined. Eighteen Tn5 insertion mutants and 11 Tn10ptac mini-kan insertion mutants had single unique insertion sites. The 18 Tn5 insertions were contained within six different EcoRI fragments and the 11 Tn10ptac mini-kan insertions were contained within eight different fragments of V. cholerae chromosomal DNA. These data suggest that multiple genes are involved in motility. Immunoblot analysis of non-motile mutants with antibody to wild-type flagellar core protein indicated that two of the non-motile mutants made flagellar core protein. Three additional mutants reacted weakly with the antibodies. However, these mutants with immunopositive reactions did not produce any structures which resembled flagella by transmission electron microscopy. In addition, none of the other non-motile mutants produced wild-type flagella. However, five mutants which did not react in the immunoblot produced a structure which resembled a flagellar sheath without the internal flagellar core. In addition to having no filamentous core, the sheaths often extended from the sides of the bacteria, rather than from the poles where the flagellum is normally located. The data suggest that sheath formation is independent of flagellar filament formation, but that proper positioning of the sheath may require the flagellar filament.  相似文献   

11.
12.
13.
Porins, a major class of outer membrane proteins in Gram-negative bacteria, primarily act as transport channels. OmpU is one of the major porins of human pathogen, Vibrio cholerae. In the present study, we show that V. cholerae OmpU has the ability to induce target cell death. Although OmpU-mediated cell death shows some characteristics of apoptosis, such as flipping of phosphatidylserine in the membrane as well as cell size shrinkage and increased cell granularity, it does not show the caspase-3 activation and DNA laddering pattern typical of apoptotic cells. Increased release of lactate dehydrogenase in OmpU-treated cells indicates that the OmpU-mediated cell death also has characteristics of necrosis. Further, we show that the mechanism of OmpU-mediated cell death involves major mitochondrial changes in the target cells. We observe that OmpU treatment leads to the disruption of mitochondrial membrane potential, resulting in the release of cytochrome c and apoptosis-inducing factor (AIF). AIF translocates to the host cell nucleus, implying that it has a crucial role in OmpU-mediated cell death. Finally, we observe that OmpU translocates to the target cell mitochondria, where it directly initiates mitochondrial changes leading to mitochondrial membrane permeability transition and AIF release. Partial blocking of AIF release by cyclosporine A in OmpU-treated cells further suggests that OmpU may be inducing the opening of the mitochondrial permeability transition pore. All of these results lead us to the conclusion that OmpU induces cell death in target cells in a programmed manner in which mitochondria play a central role.  相似文献   

14.
15.
The action of nitrosoguanidine (NG) on the culture of V. cholerae O139 P-16064 resulted in the appearance of mutant 16064 NG6, not agglutinating with commercial diagnostic serum O139. Its incapacity of agglutination was due to the sorption of the specific serum with strains V. cholerae O22 and R-variant RCA-385, which caused the loss of antibodies to common determinants. Experiments with the sorption of immune sera made it possible to suggest that one of the determinants of LPS O139, phosphate-galactose, was absent in NG mutant.  相似文献   

16.
V. cholerae multiple-labeled mutants 569B with altered toxin production have been obtained by the method of induced mutagenesis with the use of nitrosoguonidine. These mutants can be used for the genetic mapping of tox genes on the chromosome of V. cholerae.  相似文献   

17.
Isolation and characterization of the Vibrio cholerae recA gene   总被引:3,自引:1,他引:3       下载免费PDF全文
A 3.6-kilobase PstI fragment was isolated from a Vibrio cholerae chromosomal DNA library and shown to encode RecA-like activity in complementation studies with Escherichia coli recA mutants. Although DNA hybridization experiments failed to detect any homology between the E. coli and V. cholerae recA genes, hyperimmune antiserum produced against purified E. coli RecA protein recognized epitopes shared by the V. cholerae protein. The V. cholerae chromosomal fragments, when cloned and transferred to E. coli, provided the missing recA functions, including resistance to the alkylating agent methyl methanesulfonate, resistance to UV irradiation, and promotion of homologous recombination in Hfr mating experiments.  相似文献   

18.
During infection, the enteric pathogen Vibrio cholerae encounters a bile-containing environment. Previous studies have shown that bile and/or bile acids exert several effects on the virulence and physiology of the bacterial cells. These observations have led to the suggestion that bile acids may play a signaling role in infection. We have previously reported that the bile component deoxycholic acid blocks the general diffusion porin OmpT in a dose-dependent manner, presumably as it transits through the pore. V. cholerae colonizes the distal jejunum and ileum, where a mixture of various conjugated and unconjugated bile acids are found. In this work, we have used patch clamp electrophysiology to investigate the effects of six bile acids on OmpT. Two bile acids (deoxycholic and chenodeoxycholic acids) were found to block OmpT at physiological concentrations below 1 mM, while glycodeoxycholic acid was mildly effective and cholic, lithocholic and taurodeoxycholic acids were ineffective in this range. The block was also voltage-dependent. These observations suggest the presence of a specific binding site inside the OmpT pore. Since deconjugation is due to the activity of the endogenous flora, the preferential uptake of some unconjugated bile acids by OmpT may signal the presence of a hospitable environment. The results are also discussed in terms of the possible molecular interactions between the penetrating bile acid molecule and the channel wall.  相似文献   

19.
Abstract

During infection, the enteric pathogen Vibrio cholerae encounters a bile-containing environment. Previous studies have shown that bile and/or bile acids exert several effects on the virulence and physiology of the bacterial cells. These observations have led to the suggestion that bile acids may play a signaling role in infection. We have previously reported that the bile component deoxycholic acid blocks the general diffusion porin OmpT in a dose-dependent manner, presumably as it transits through the pore. V. cholerae colonizes the distal jejunum and ileum, where a mixture of various conjugated and unconjugated bile acids are found. In this work, we have used patch clamp electrophysiology to investigate the effects of six bile acids on OmpT. Two bile acids (deoxycholic and chenodeoxycholic acids) were found to block OmpT at physiological concentrations below 1 mM, while glycodeoxycholic acid was mildly effective and cholic, lithocholic and taurodeoxycholic acids were ineffective in this range. The block was also voltage-dependent. These observations suggest the presence of a specific binding site inside the OmpT pore. Since deconjugation is due to the activity of the endogenous flora, the preferential uptake of some unconjugated bile acids by OmpT may signal the presence of a hospitable environment. The results are also discussed in terms of the possible molecular interactions between the penetrating bile acid molecule and the channel wall.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号