首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
OmpC-like porin was isolated from the outer membrane (OM) of Yersinia enterocolitica cultured at 37°C (the “warm” variant) and its physicochemical and functional properties were studied. The amino acid sequence of OmpC porin was established, and the primary structure and transmembrane topology of this protein were analyzed in comparison with the OmpF porin isolated from Y. enterocolitica cultured at 6°C (the “cold” variant). Both porins of Y. enterocolitica had a high homology degree (65%) between themselves and with OmpC and OmpF porins from OM of Escherichia coli (58 and 76% homology, respectively). The secondary structure of OmpC and OmpF porins from OM of Y. enterocolitica consists of 16 β-strands connected by short “periplasmic” and longer “extracellular” loops with disordered structure, according to the topological model developed for porins of E. coli. The molecular structures of OmpC and OmpF porins of Y. enterocolitica have significant differences in the structure of the “extracellular” loops and in the position of one of three tryptophan residues. Using the bilayer lipid membrane (BLM) technique, pores formed by OmpC porin of Y. enterocolitica were shown to differ in electrophysiological characteristics from channels of OmpF protein of this microorganism. The isolated OmpC porin reconstructed into BLM displayed functional plasticity similarly to OmpF protein and nonspecific porins of other enterobacteria. The conductivity level of the channels formed by this protein in the BLM was regulated by value of the applied potential.  相似文献   

2.
The electrophysiological technique of patch-clamp was used to characterize the pore properties of site-directed mutants in the Vibrio cholerae general diffusion porin OmpU. Changes in conductance and selectivity were observed, thus confirming the predicted pore location of these residues, based on homology with the Escherichia coli porins OmpF and OmpC. Some mutants acquire a weak selectivity for cations, which mirrors the properties of the homologous, deoxycholic acid sensitive, OmpT porin of V. cholerae. However, the mutants remain insensitive to deoxycholic acid, like wildtype OmpU. This result suggests that channel selectivity is not an important determinant in the sensitivity to this drug, and is in agreement with our finding that the neutral deoxycholic acid, and not deoxycholate, is the actual active form in channel block. Modifications in the kinetics of spontaneous closures were also noted, and are similar to those found for the E. coli channels. In addition, mutants at the D116 residue on the L3 loop display marked transitions to sub-conductance states. The results reported here are compared to a phenotypical characterization of the mutants in terms of permeability to maltodextrins and β-lactam antibiotic sensitivity. No strict correlations are observed, suggesting that distinct, but somewhat overlapping, molecular determinants control electrophysiological properties and substrate permeability.  相似文献   

3.
A novel porin, OmpG, is produced in response to a chromosomal mutation termed cog-192. Molecular characterization of cog-192 revealed that it is a large chromosomal deletion extending from the 3′ end of pspA through to the 5′ end of an open reading frame located immediately upstream of ompG. As a result of this 13.1-kb deletion, the expression of ompG was placed under the control of the pspA promoter. Characterization of OmpG revealed that it is quite different from other porins. Proteoliposome swelling assays showed that OmpG channels were much larger than those of the OmpF and OmpC porins, with an estimated limited diameter of about 2 nm. The channel lacked any obvious solute specificity. The folding model of OmpG suggests that it is the first 16-stranded β-barrel porin that lacks the large external loop, L3, which constricts the channels of other nonspecific and specific porins. Consistent with the folding model, circular dichroism showed that OmpG contains largely a β-sheet structure. In contrast to other Escherichia coli porins, there is no evidence that OmpG exists as stable oligomers. Although ompG DNA was present in all E. coli strains examined so far, its expression under laboratory conditions was seen only due to rare chromosomal mutations. Curiously, OmpG was constitutively expressed, albeit at low levels, in Salmonella, Shigella, and Pseudomonas species.  相似文献   

4.
The permeability of the outer membrane of Escherichia coli to hydrophilic compounds is controlled by porin channels. Electrophysiological experiments showed that polyamines inhibit ionic flux through cationic porins when applied to either side of the membrane. Externally added polyamines, such as cadaverine, decrease porin-mediated fluxes of β-lactam antibiotics in live cells. Here we tested the effects of endogenously expressed cadaverine on the rate of permeation of cephaloridine through porins, by manipulating in a pH-independent way the expression of the cadBA operon, which encodes proteins involved in the decarboxylation of lysine to cadaverine and in cadaverine excretion. We report that increased levels of excreted cadaverine correlate with a decreased outer membrane permeability to cephaloridine, without any change in porin expression. Cadaverine appears to promote a sustained inhibition of porins, since the effect remains even after removal of the exogenously added or excreted polyamine. The cadaverine-induced inhibition is sufficient to provide cells with some resistance to ampicillin but not to hydrophobic antibiotics. Finally, the mere expression of cadC, in the absence of cadaverine production, leads to a reduction in the amounts of OmpF and OmpC proteins, which suggests a novel mechanism for the environmental control of porin expression. The results presented here support the notion that polyamines can act as endogenous modulators of outer membrane permeability, possibly as part of an adaptive response to acidic conditions.  相似文献   

5.
The OmpF porin from the Escherichia coli outer membrane folds into a trimer of β-barrels, each forming a wide aqueous pore allowing the passage of ions and small solutes. A long loop (L3) carrying multiple acidic residues folds into the β-barrel pore to form a narrow “constriction zone”. A strong and highly conserved charge asymmetry is observed at the constriction zone, with multiple basic residues attached to the wall of the β-barrel (Lys16, Arg42, Arg82 and Arg132) on one side, and multiple acidic residues of L3 (Asp107, Asp113, Glu117, Asp121, Asp126, Asp127) on the other side. Several computational studies have suggested that a strong transverse electric field could exist at the constriction zone as a result of such charge asymmetry, giving rise to separate permeation pathways for cations and anions. To examine this question, OmpF was expressed, purified and crystallized in the P63 space group and two different data sets were obtained at 2.6 Å and 3.0 Å resolution with K+ and Rb+, respectively. The Rb+-soaked crystals were collected at the rubidium anomalous wavelength of 0.8149 Å and cation positions were determined. A PEG molecule was observed in the pore region for both the K+ and Rb+-soaked crystals, where it interacts with loop L3. The results reveal the separate pathways of anions and cations across the constriction zone of the OmpF pore.  相似文献   

6.
7.
We describe the isolation and characterization of mutations in ompF that alter the pore properties of the OmpF porin. The selection makes use of the fact that maltodextrins larger than maltotriose are too large to diffuse through the normal OmpF pore. By demanding growth on maltodextrins (Dex+) in the absence of the LamB protein, which is normally required for the uptake of these large sugars, we are able to obtain ompF mutations. These include transversions, transitions and small deletions. We obtained almost exclusively ompF mutations in spite of the fact that analogous alterations in ompC can result in similar phenotypes. Fifteen independent point mutations identify residues R42, R82, D113 and R132 of the mature peptide as important in pore function. The alterations result in uncharged amino acids being substituted for charged amino acids. Growth tests, antibiotic sensitivities and rates of [14C]maltose uptake suggest that the alterations result in an increased pore size. Small deletions of six to 15 amino acid residues in the region between A108 and V133 of mature OmpF dramatically alter outer membrane permeability to hydrophobic antibiotics and detergents as well as conferring a Dex+ phenotype. We suggest that these mutations affect both the pore function and interactions with other outer membrane components. A model of OmpF protein structure based on general rules for folding membrane proteins and these mutations is presented.  相似文献   

8.
The spatial organization of outer-membrane porins is studied by optical spectroscopy and molecular modeling. It was found that the OmpF and OmpC porins from Yеrsiniа ruckeri are β-structured membrane proteins typical of the pore-forming proteins of other Gram-negative bacteria. The spatial structures of monomers and trimers of the OmpC and OmpF porins from Y. ruckeri are simulated using methods of structural bioinformatics. It was found that the structural stability of the more thermostable OmpF trimer is sustained by a greater number of hydrogen bonds and hydrophobic interactions. The main differences of the spatial structures of the test porins are observed in the structure of their outer loops. There are three tryptophan residues in the molecules of the OmpC and OmpF porins of Y. ruckeri. It is demonstrated by moleculardynamics methods that after thermal denaturation the solvent accessibility of the Trp212 residue in OmpF porin increased by two times, while the solvent accessibility of a Trp184 residue in OmpC porin was not increased. It is hypothesized that the red-shifted tryptophan fluorescence spectrum of OmpF porin during thermal denaturation is due to the behavior of the Trp212 residue.  相似文献   

9.
Recombinant mutant OmpF porins from Yersinia pseudotuberculosis outer membrane were obtained using site-directed mutagenesis. Here we used four OmpF mutants where single extracellular loops L1, L4, L6, and L8 were deleted one at a time. The proteins were expressed in Escherichia coli at levels comparable to full-sized recombinant OmpF porin and isolated from the inclusion bodies. Purified trimers of the mutant porins were obtained after dialysis and consequent ion-exchange chromatography. Changes in molecular and spatial structure of the mutants obtained were studied using SDS–PAGE and optical spectroscopy (circular dichroism and intrinsic protein fluorescence). Secondary and tertiary structure of the mutant proteins was found to have some features in comparison with that of the full-sized recombinant OmpF. As shown by bilayer lipid membrane technique, the pore-forming activity of purified mutant porins was identical to OmpF porin isolated from the bacterial outer membrane. Lacking of the external loops mentioned above influenced significantly upon the antigenic structure of the porin as demonstrated using ELISA.  相似文献   

10.
Sialic acids are acidic sugars present mostly on vertebrate cell surfaces, which can be metabolized by bacteria and act as an inflammation signal. N-Acetylneuraminic acid, the most abundant sialic acid, can enter into Escherichia coli K12 through NanC, an N-acetylneuraminic acid-inducible outer-membrane channel. With its 215 residues, NanC belongs to the family of small monomeric KdgM-related porins. KdgM homologues are found in gammaproteobacteria, including major plant and human pathogens, and together they define a large family of putative acidic sugar/oligosaccharide transporters, which are as yet poorly characterized. Here, we present the first high-resolution structure of a KdgM family member. NanC folds into a 28-Å-high, 12-stranded β-barrel, resembling the β-domain of autotransporter NalP and defining an open pore with an average radius of 3.3 Å. The channel is lined by two strings of basic residues facing each other across the pore, a feature that appears largely conserved within the KdgM family and is likely to facilitate the diffusion of acidic oligosaccharides.  相似文献   

11.
Serratia marcescens is a nosocomial bacterium with natural resistance to a broad spectrum of antibiotics, making treatment challenging. One factor contributing to this natural antibiotic resistance is reduced outer membrane permeability, controlled in part by OmpF and OmpC porin proteins. To investigate the direct role of these porins in the diffusion of antibiotics across the outer membrane, we have created an ompF-ompC porin-deficient strain of S. marcescens. A considerable similarity between the S. marcescens porins and those from other members of Enterobacteriaceae was detected by sequence alignment, with the exception of a change in a conserved region of the third external loop (L3) of the S. marcescens OmpC protein. Serratia marcescens OmpC has aspartic acid instead of glycine in position 112, methionine instead of aspartic acid in position 114, and glutamine in position 124, while in S. marcescens OmpF this is a glycine at position 124. To investigate the role of amino acid positions 112, 114, and 124 and how the observed changes within OmpC porin may play a part in pore permeability, 2 OmpC sites were altered in the Enterobacteriaceae consensus (D112G and M114D) through site-directed mutagenesis. Also, Q124G in OmpC, G124Q in OmpF, and double mutants of these amino acid residues were constructed. Antibiotic accumulation assays and minimal inhibitory concentrations of the strains harboring the mutated porins were performed, while liposome swelling experiments were performed on purified porins. Our results demonstrate that the amino acid at position 114 is not responsible for either antibiotic size or ionic selection, the amino acid at position 112 is responsible for size selection only, and position 124 is involved in both size and ionic selection.  相似文献   

12.
Highlights? OmpF porin binds antibiotics in the extracellular and periplasmic pore vestibules ? MD simulations show that ionic current through OmpF is blocked by bound ampicillin ? Carbenicillin binding alters ion selectivity of OmpF but not total ionic current ? Disruption of binding increases the susceptibility of E. coli for antibiotics  相似文献   

13.
Rise and fall of the delta globin gene   总被引:9,自引:0,他引:9  
The complete nucleotide sequence of the gene phoE, which codes for the phosphate limitation inducible outer membrane pore protein of Escherichia coli K12 was established. The results show that PhoE protein is synthesized in a precursor form with a 21 amino acid residue amino-terminal extension. This peptide has the general characteristics of a signal sequence. The promoter region of phoE has no homlogy with the consensus sequence of E. coli promoter regions, but homologous sequences with the promoter region of phoA, the structural gene for alkaline phosphatase, were observed. The deduced amino acid sequence showed that the mature PhoE protein is composed of 330 amino acid residues with a calculated molecular weight of 36,782. A number of 81 charged amino acids was found scattered throughout the protein while no large stretches of hydrophobic amino acids were observed. Hydrophobicity and hydration profiles of PhoE protein showed five pronounced hydrophilic maxima which are all located in the region from the amino terminus to residue 212.When the deduced amino acid sequence of PhoE protein was compared with the established sequence of the OmpF pore protein, a number of 210 identical residues was found. Some aspects of the structure-function relationship of PhoE protein are discussed in view of the hydrophobicity and hydration profiles, and the homology between PhoE protein and OmpF protein.  相似文献   

14.
OmpF and OmpC porin channels are responsible for the passage of small hydrophilic solutes across the outer membrane of Escherichia coli. Although these channels are two of the most extensively studied porin channels, what had yet remained elusive was the reason why OmpC shows markedly lower permeability than OmpF, despite having little difference in its channel size. The OmpC channel, however, is known to contain a larger number of ionizable residues than the OmpF channel. In this study, we examined the channel property of OmpF and OmpC using the intact cell of E. coli, and we found that the permeability of several β-lactams and lactose through OmpC became increased to the level comparable with OmpF with up to 0.3 m salt that may increase the Debye-Hückel shielding or with 2% ethanol or 0.3 m urea that may perturb the short range ordering of water molecules. Replacing 10 pore-lining residues that show different ionization behavior between OmpC and OmpF led to substantial conversion of channel property with respect to their permeability and response to external salt concentration. We thus propose that the overall configuration of ionizable residues in the channel that may orient water molecules and the electrostatic profile of the channel play a decisive role in defining the channel property of the OmpC porin rather than its channel size.  相似文献   

15.
Yersinia pseudotuberculosis outer membrane (OM) recombinant mutant OmpF porins with deletions of the external loops L1, L6 and L8 were obtained using site-directed mutagenesis of the recombinant plasmid including ompF gene. Heterologeous expression of the mutant proteins was carried out in strain Rosetta of Escherichia coli (Novagen, USA), porins with the deletions were isolated from the inclusion bodies. Oligomers of mutant porins were obtained as result of dialysis and ion-exchange chromatography. Spatial structure of the mutant proteins was found to have special features in comparison with that of the full-structured OmpF porin on the level of both secondary and tertiary structure. As shown using bilayer lipid membrane (BLM) technique the absence of the loops L1, L6 and L8 didn’t affect the conductivity level of Y. pseudotuberculosis porin channel. The absence of the loops mentioned above has a significant influence on the antigenic structure of the mutant porins as demonstrated using immunoblotting technique and ELISA.  相似文献   

16.
The molecular organization and functional activity of porins isolated from the outer membrane (OM) of the Yersinia enterocolitica and three phylogenetically close nonpathogenic Yersinia species (Y. intermedia, Y. kristensenii, and Y. frederiksenii) cultured at 6–8°C were comparatively studied for the first time. The proteins were isolated in two molecular forms (trimeric and monomeric), and their spatial structures were characterized by the methods of optical spectroscopy, CD and intrinsic protein fluorescence. The studied porins were shown to belong to the β-structural proteins (they have 59–96% total β structures and 0–17% α helices). The spatial structures of the proteins were demonstrated to depend on the nature of the detergent used for solubilization. Unlike the enterobacterial pore-forming proteins, the porin trimers are less stable to sodium dodecyl sulfate (SDS). The spatial structures of the porins become more compact after the substitution of octyl β-D-glucoside for SDS: the content of β structures increases and the accessibility of Trp residues to solvent decreases. It was established with the use of the technique of bilayer lipid membranes that the functional properties of the porins are similar to those of the OmpF proteins of Gram-negative bacteria. Trimers are functionally active forms of the porins. Special features of the pore-forming activity of the Yersinia porins were revealed to depend on the microorganism species and the value of the membrane potential.  相似文献   

17.
Pore-forming protein from the outer membrane of Yersinia pseudotuberculosis cultured at 37°C has been isolated and characterized. Comparative analysis of the primary and three-dimensional structures of this protein and of OmpC porin from E. coli was carried out, functional properties of these proteins have been studied using bilayer lipid membranes (BLM) technique. The degree of homology, molecular mass and pore-forming properties of the isolated porin was found to be closer to those of OmpC porin from E. coli than OmpF porin from Y. pseudotuberculosis. The value of the most probable conductivity of OmpC porin from Y. pseudotuberculosis (0.18 pS) in BLM corresponded to the conductivity of the native trimer of this protein. Using CD spectroscopy, the porins investigated were shown to belong to the β-structured proteins. Data of the primary structure and intrinsic protein fluorescence revealed essential differences in localization and microenvironment of tryptophan residues in the porins investigated. Participation of external loops L2 and L6 in the formation of the antigenic structure of OmpC porin from Y. pseudotuberculosis was demonstrated. On the basis of crystal structure of osmoporin from Klebsiella pneumoniae, three-dimensional models of the monomer and trimer of the Y. pseudotuberculosis porin were obtained. Using Web server AGGRESCAN, the localization of protein structure sites with the increased aggregation capability (hot spots) has been deter-mined. It turned out that some of these zones localize in the region of intramonomeric contacts in the porin trimer; however, a large part of them is located on the external surface of the β-barrel. The process of thermal denaturation has been studied and the melting points of the porins were determined. It was found that significant changes in the microenvironment of the indole fluorophores (especially tryptophan residues of spectral class I) took place in the process of the thermodenaturation of the proteins. These changes preceded the irreversible conformational transition observed for the E. coli porin at 77°C and for the Y. pseudotuberculosis porin at 70°C.  相似文献   

18.
Escherichia coli BL21 strains were found to excrete a large amount of outer membrane protein F (OmpF) into culture medium during high-cell-density cultivation. From this interesting phenomenon, a novel and efficient OmpF fusion system was developed for the excretion of recombinant proteins by E. coli. The ompF gene of E. coli BL21(DE3) was first knocked out by using the red operon of bacteriophage λ to construct E. coli MBEL-BL101. For the excretion of human β-endorphin as a model protein, the β-endorphin gene was fused to the C terminus of the E. coli ompF gene by using a linker containing the Factor Xa recognition site. To develop a fed-batch culture condition that allows efficient production of OmpF-β-endorphin fusion protein, three different feeding strategies, an exponential feeding strategy and two pH-stat strategies with defined and complex nutrient feeding solutions, were examined. Among these, the pH-stat feeding strategy with the complex nutrient feeding solution resulted in the highest productivity (0.33 g of protein per liter per h). Under this condition, up to 5.6 g of OmpF-β-endorphin fusion protein per liter was excreted into culture medium. The fusion protein was purified by anion-exchange chromatography and cleaved by Factor Xa to yield β-endorphin, which was finally purified by reverse-phase chromatography. From 2.7 liters of culture supernatant, 545.4 mg of β-endorphin was obtained.  相似文献   

19.
The assembly of β-barrel Outer Membrane Proteins (OMPs) in the outer membrane is essential for Gram-negative bacteria. The process requires the β-Barrel Assembly Machine (BAM), a multiprotein complex that, in E. coli, is composed of the OMP BamA and four lipoproteins BamB-E. Whereas BamA and BamD are essential, deletion of BamB, C or E produce membrane permeability defects. Here we present the high-resolution structure of BamB from Pseudomonas aeruginosa. This protein can complement the deletion of bamB in E. coli indicating that they are functionally equivalent. Conserved structural features include an eight-bladed β-propeller fold stabilized by tryptophan docking motifs with a central pore about 8 Å in diameter at the narrowest point. This pore distinguishes BamB from related β-propellers, such as quinoprotein dehydrogenases. However, a double mutation designed to block this pore was fully functional indicating that the opening is not essential. Two loops protruding from the bottom of the propeller are conserved and mediate binding to BamA. Conversely, an additional loop only present in E. coli BamB is not required for function. A cluster of highly conserved residues in a groove between blades 6 and 7 is crucial for proper BamB folding or biogenesis. It has been proposed that BamB may bind nascent OMPs by β-augmentation to its propeller outer strands, or recognize the aromatic residue signature at the C-terminus of OMPs. However, Isothermal Titration Calorimetry experiments and structural analysis do not support these proposals. The structural and mutagenesis analysis suggests that the main function of BamB is to bind and modulate BamA, rather than directly interact with nascent OMPs.  相似文献   

20.
OmpG is a general diffusion pore in the E. coli outer membrane with a molecular architecture comprising a 14-stranded β-barrel scaffold and unique structural features. In contrast to other non-specific porins, OmpG lacks a central constriction zone and has an exceptionally wide pore diameter of about 13 Å. The equatorial plane of OmpG harbors an annulus of four alternating basic and acidic patches whose function is only poorly characterized. We have investigated the role of charge distribution for ion selectivity and sugar transport with the help of OmpG variants mutated in the annulus. Substituting the glutamate residues of the annulus for histidines or alanines led to a strong reduction in cation selectivity. Replacement of the glutamates in the annulus by histidine residues also disfavored the passage of pentoses and hexoses relative to disaccharides. Our results demonstrate that despite the wide pore diameter, an annulus only consisting of two opposing basic patches confers reduced cation and monosaccharide transport compared to OmpG wild type. Furthermore, randomization of charged residues in the annulus had the potential to abolish pH-dependency of sugar transport. Our results indicate that E15, E31, R92, R111 and R211 in the annulus form electrostatic interactions with R228, E229 and D232 in loop L6 that influence pH-dependency of sugar transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号