首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The adult human cochlea contains various types of peripheral glial cells that envelop or myelinate the three different domains of the spiral ganglion neurons: the central processes in the cochlear nerve, the cell bodies in the spiral ganglia, and the peripheral processes in the osseous spiral lamina. Little is known about the distribution, lineage separation and maturation of these peripheral glial cells in the human fetal cochlea. In the current study, we observed peripheral glial cells expressing SOX10, SOX9 and S100B as early as 9 weeks of gestation (W9) in all three neuronal domains. We propose that these cells are the common precursor to both mature Schwann cells and satellite glial cells. Additionally, the peripheral glial cells located along the peripheral processes expressed NGFR, indicating a phenotype distinct from the peripheral glial cells located along the central processes. From W12, the spiral ganglion was gradually populated by satellite glial cells in a spatiotemporal gradient. In the cochlear nerve, radial sorting was accomplished by W22 and myelination started prior to myelination of the peripheral processes. The developmental dynamics of the peripheral glial cells in the human fetal cochlea is in support of a neural crest origin. Our study provides the first overview of the distribution and maturation of peripheral glial cells in the human fetal cochlea from W9 to W22.  相似文献   

2.
3.
Five types of cell contacts and other membrane specializations were found in the ocellus of the adult wasp, Paravespula germanica L. (Hymenoptera : Vespidae), based on freeze-fracture replicas and thin sections.Septate junctions alongside small gap junctions are present between iris cells and between corneagenous cells. Gap junctions are sometimes observed between glial cell processes. Photoreceptor cells and glial cells are frequently connected by scalariform junctions. Tight junction-like structures are found on receptor-cell membranes near rhabdomeric microvilli. Desmosomes are widespread in the ocellus, connecting iris cells, corneagenous cells, receptor cells, and glial cell processes. Desmosomes are found next to septate junctions.Glial membranes connected to receptor cells have a non-junctional type of membrane specializations, consisting of intramembraneous particles arranged in a rhombic pattern. Interestingly, both particle arrays and scalariform junctions are often adjacent to each other. Furthermore, a conspicuous modification of the cell surface in freeze cleaved cells is seen between adjacent glial cells intermediating two receptor cells.  相似文献   

4.
Gill epithelia from adult and juvenile Aplysia were examined by conventional thin section and freeze-fracture methods. Freeze-fracture replicas of adult gill epithelium revealed septate and gap junctions, which served as membrane markers for the epithelial cells. In these same cell membranes, non-junctional rhombic arrays of intramembranous particles were observed on prominent ridges on the membrane P fracture face of some epithelial cells. In thin sections of adult epithelium, nerve terminals were observed abutting the lateral plasma membranes near the basal lamina of some epithelial cells. Correlative areas of plasma membrane in freeze-fracture replicas showed a close association between rhombic particle arrays and abutting nerve terminals. In thin sections of juvenile Aplysia, nerve terminals abutting the epithelial cells were not recognizable, and rhombic arrays were not observed in freeze-fracture replicas. This suggested that a developmental association existed between the appearance of rhombic arrays in adult epithelia and their innervation. It is not known with certainty if, in invertebrates, rhombic arrays are an essential structural entity of all innervated cell membranes; however, in the cells thus far studied, there appears to be an associative condition. In the case of the gill epithelium of Aplysia, rhombic arrays are located in the same vicinity as the abutting nerve terminals. Similar arrays of intramembranous particles have been observed in myoneural postjunctional complexes of other invertebrates and have been interpreted to be the morphological expression of neurotransmitter receptors. An analogous explanation is put forth, namely that rhombic arrays may represent the structural correlates of neurotransmitter receptors and/or ionic channels in innervated membranes of invertebrates.  相似文献   

5.
Rau C  Hwang M  Lee WK  Richter CP 《PloS one》2012,7(4):e33568
Imaging with hard X-rays allows visualizing cochlear structures while maintaining intrinsic qualities of the tissue, including structure and size. With coherent X-rays, soft tissues, including membranes, can be imaged as well as cells making use of the so-called in-line phase contrast. In the present experiments, partially coherent synchrotron radiation has been used for micro-tomography. Three-dimensional reconstructions of the mouse cochlea have been created using the EM3D software and the volume has been segmented in the Amira Software Suite. The structures that have been reconstructed include scala tympani, scala media, scala vestibuli, Reissner's membrane, basilar membrane, tectorial membrane, organ of Corti, spiral limbus, spiral ganglion and cochlear nerve. Cross-sectional areas of the scalae were measured. The results provide a realistic and quantitative reconstruction of the cochlea.  相似文献   

6.
Sectioned dorsal giant fibers of the earthworm Eisenia foetida have been studied with the electron microscope. The giant axon is surrounded by a Schwannian sheath in which the lamellae are arranged spirally. They can be traced from the outer surface of the Schwann cell to the axon-Schwann membranes. Irregularities in the spiral arrangement are frequently observed. Desmosome-like attachment areas occur on the giant fiber nerve sheath. These structures appear to be arranged bilaterally in columns which are oriented slightly obliquely to the long axis of the giant fiber and aligned linearly from the axon to the periphery of the sheath. At these sites they bind together apposing portions of Schwann cell membrane comprising the sheath. Longitudinal or oblique sections of the nerve sheath attachment areas are reminiscent of the Schmidt-Lantermann clefts of vertebrate peripheral nerve. Septa of the giant fibers have been examined. They are symmetrical or non-polarized and consist of the two plasma membranes of adjacent nerve units. Characteristic vesicular and tubular structures are associated with both cytoplasmic surfaces of these septa.  相似文献   

7.
Sectioned dorsal giant fibers of the earthworm Eisenia foetida have been studied with the electron microscope. The giant axon is surrounded by a Schwannian sheath in which the lamellae are arranged spirally. They can be traced from the outer surface of the Schwann cell to the axon-Schwann membranes. Irregularities in the spiral arrangement are frequently observed. Desmosome-like attachment areas occur on the giant fiber nerve sheath. These structures appear to be arranged bilaterally in columns which are oriented slightly obliquely to the long axis of the giant fiber and aligned linearly from the axon to the periphery of the sheath. At these sites they bind together apposing portions of Schwann cell membrane comprising the sheath. Longitudinal or oblique sections of the nerve sheath attachment areas are reminiscent of the Schmidt-Lantermann clefts of vertebrate peripheral nerve. Septa of the giant fibers have been examined. They are symmetrical or non-polarized and consist of the two plasma membranes of adjacent nerve units. Characteristic vesicular and tubular structures are associated with both cytoplasmic surfaces of these septa.  相似文献   

8.
A polymyxin-B/bovine-serum-albumin/gold complex was used as a probe to detect the binding sites of polymyxin B on thin sections of cochlea embedded in Spurr's resin. The binding sites were found to be mainly located on the stereocilia, the cuticular plate of hair cells, the head plate of Deiters' cells, the tonofilaments in pillar cells and Deiters' cells, fibrous structures in the spiral limbus, the tectorial membrane and the basilar membrane and neural elements such as nerve endings, fibers, and the myelin sheath. The mitochondria, plasma membrane, and chromatin of the nuclei of the cells observed also exhibited binding. Our results suggest that phospholipids, glycoconjugates, cytoskeletal proteins and nucleic acids are responsible for this binding activity.  相似文献   

9.
Neomycin/bovine serum albumin/gold was used as a probe to detect the binding sites of aminoglycosides on the thin sections of the cochlea embedded in Spurr. The binding sites were mainly located on the stereocilia, the cuticular plate of hair cells, the head plates of Deiters' cells, fibrous structures in pillar cells, in the spiral limbus and tectorial membrane and basilar membrane, plasma membranes, mitochondria and the chromatin of various kinds of cells. Triphosphoinositide, acidic glycosaminoglycans, and RNA were considered to be responsible for the binding activity.  相似文献   

10.
Summary Neomycin/bovine serum albumin/gold was used as a probe to detect the binding sites of aminoglycosides on the thin sections of the cochlea embedded in Spurr. The binding sites were mainly located on the stereocilia, the cuticular plate of hair cells, the head plates of Deiters' cells, fibrous structures in pillar cells, in the spiral limbus and tectorial membrane and basilar membrane, plasma membranes, mitochondria and the chromatin of various kinds of cells. Triphosphoinositide, acidic glycosaminoglycans, and RNA were considered to be responsible for the binding activity.  相似文献   

11.
Using transmission electron microscopy of thin sections we have examined neuronal concentrations at hypostome-tentacle junctions in Hydra littoralis. A total of 194 ganglion cells were counted in 587 serial thin sections of a single hypostome-tentacle junction. We found two distinct types of ganglion cells: those with and those lacking stereocilia. The majority of the neurons observed lacked stereocilia; in a single hypostome-tentacle junction only 37% of the ganglion cells possessed a kinocilium surrounded by rodlike stereocilia. Most of the ganglion cells (55%) were clustered together in the oral or upper epidermis of the hypostome-tentacle junction: Nineteen percent were in the lateral and 26% in the aboral or lower epidermis. The two types of ganglion cells did not differ significantly in their distribution. Both types of ganglion cell had synaptic contacts with other neurons and with epitheliomuscular cells. More than 85% of the neuroneuronal and 61% of the neuroepitheliomuscular cell synapses were located in the oral epidermis of a hypostome-tentacle junction. In addition, two-way chemical synapses and a gap junction between neurons were observed at hypostome-tentacle junctions. Our morphological evidence of synaptic connectivity in neuronal clusters at hypostome-tentacle junctions suggests that primitive ganglia are present in Hydra.  相似文献   

12.
Summary Axon profiles in thyroid glands obtained from adult male Wistar rats were studied electron-microscopically, using common and serial thin sections.Bouton profiles of nerve fibers, resembling the terminal or en passant type, often appeared closely associated with vascular smooth muscle cells via basement membranes. These structures are probably adrenergic, since they contained mainly small-core vesicles (mean diameter: 41.2 nm), in addition to a few large-core (mean diameter: 88.4 nm) and flattened vesicles.Nerve fibers containing microtubules and sometimes mitochondria and vesicles were seen lying between basement membranes and follicular cells. The incidence of nerve fiber contacts on profiles of follicular cells was 0.0177±0.0092 (S.D.). Using serial sections, follicles were seen to have up to two nerve endings, separated from the plasma membranes of the follicular cells by a gap of 22 nm. They contained mainly flattened vesicles and several large-core vesicles (mean diameter: 95.1 nm). Small-core vesicles were rarely seen in these nerve endings. Furthermore, subsurface cistern-like rough endoplasmic reticulum was found immediately under the plasma membranes of follicular cells facing membranes of nerve endings. These results suggest that the nerve fibers in contact with follicular cells are different from the adrenergic type.  相似文献   

13.
Summary A polymyxin-B/bovine-serum-albumin/gold complex was used as a probe to detect the binding sites of polymyxin B on thin sections of cochlea embedded in Spurr's resin. The binding sites were found to be mainly located on the stereocilia, the cuticular plate of hair cells, the head plate of Deiters' cells, the tonofilaments in pillar cells and Deiters' cells, fibrous structures in the spiral limbus, the tectorial membrane and the basilar membrane and neural elements such as nerve endings, fibers, and the myelin sheath. The mitochondria, plasma mimbrane, and chromatin of the nuclei of the cells observed also exhibited binding. Our results suggest that phospholipids, glycoconjugates, cytoskeletal proteins and nucleic acids are responsible for this binding activity.  相似文献   

14.
In dorsal root ganglia and peripheral nerve of the rat and other species, nucleoside phosphatase and unspecific cholinesterase reaction products are found in the plasma membranes and spaces between them at two sites: (1) Schwann cell-axon interfaces and mesaxons of unmyelinated fibers, and (2) sheath cell-perikaryon interfaces and interfaces between adjacent sheath cells. Acetylcholinesterase reaction product is found in the perikaryon (within the endoplasmic reticulum) and the axon (axoplasmic surface). Nucleoside phosphatase reaction product is also found in the numerous vacuoles at the surface of perineurium cells, ganglion sheath cells, and cells surrounding some ganglion blood vessels. Nucleoside phosphatase activities in the sections fail to respond, in the manner described for "transport ATPase," to diisopropylphosphofluoridate, sodium and potassium ions, and ouabain. Nucleoside diphosphates are hydrolyzed more slowly than triphosphates in unmyelinated fibers, and are not hydrolyzed at the perikaryon surface. Nucleoside monophosphates are either not hydrolyzed or hydrolyzed very slowly. In contrast to these localizations, which are believed to demonstrate sites of enzyme activity, it is considered likely that diffusion artifacts account for the nucleoside phosphatase reaction product frequently found along the outer surfaces of myelinated fibers and within vacuoles at the Schwann cell surfaces of these fibers. The diffuse reaction product seen in basement membranes of ganglion and nerve may also be artifact.  相似文献   

15.
The long nonmyelinated portion of the unipolar process of spinal ganglion cells resembles in many instances the perikaryon and is characterized by the following structural pecularities: 1. The surface membrane displays numerous invaginations and evaginations, which interdigitate with folds of the investing satellite cells, resulting in a considerable increase of the area of intercellular contact. The intercellular gap frequently widens to intercellular cisternae. 2. The axolemma of the most distal part of the nonmyelinated portion is undercoated by dense material and thus resembles the "initial segment" of multipolar nerve cells. 3. The unipolar process of spinal ganglion cells shows a conspicuously high density of neurotubules. The neurotubules frequently collect into fascicles in the same manner as was described for the initial segment of multipolar nerve cells. 4. The nonmyelinated part as well as the first internodes of the myelinated part of the unipolar cell process contain a highly developed axoplasmic reticulum, many-partly huge-mitochondria, a striking number of dense bodies and clusters of ribosomes. The myelin sheath of the first internodes of the unipolar process is unusually thin in relation to their axon diameters. At successive internodes the thickness of the myelin sheath increases stepwise, the Schwann cell loops of the paranodal zones changing their appearence correspondingly. In the great number of ultrathin sections scanned in this study, not one synapse was found, neither in the unmyelinated initial segment nor in the soma.  相似文献   

16.
Adult chameleon myelinated peripheral nerve fibers have been studied with the electron microscope in thin sections. The outer lamella of the myelin sheath has been found to be connected as a double membrane to the surface of the Schwann cell. The inner lamella is connected as a similar double membrane with the double axon-Schwann membrane. The relations of these double connecting membranes suggest that the layered myelin structure is composed of a double membrane which is closely wound about the axon as a helix. These findings support the new theory of myelinogenesis proposed recently by Geren. The possible significance of these results with respect to cell surface membranes and cytoplasmic double membranes is discussed.  相似文献   

17.
18.
Ultrastructural studies have shown that during early stages of Schwann cell myelination mesaxon membranes are converted to compact myelin lamellae. The distinct changes that occur in the spacing of these Schwann cell membranes are likely to be mediated by the redistribution of (a) the myelin-associated glycoprotein, a major structural protein of mesaxon membranes; and (b) P0 protein, the major structural protein of compact myelin. To test this hypothesis, the immunocytochemical distribution of these two proteins was determined in serial 1-micron-thick Epon sections of ventral roots from quaking mice and compared to the ultrastructure of identical areas in an adjacent thin section. Ventral roots of this hypomyelinating mouse mutant were studied because many fibers have a deficit in converting mesaxon membranes to compact myelin. The results indicated that conversion of mesaxon membranes to compact myelin involves the insertion of P0 protein into and the removal of the myelin-associated glycoprotein from mesaxon membranes. The failure of some quaking mouse Schwann cells to form compact myelin appears to result from an inability to remove the myelin-associated glycoprotein from their mesaxon membranes.  相似文献   

19.
In sections of KMnO(4)-fixed, developing mouse sciatic nerves, the central gap of mesaxons in myelinating fibers is normally closed with close apposition of the outside approximately 20 A dense strata of the two approximately 75 A Schwann cell membranes. The two combined outside strata make the intraperiod line bisecting each myelin lamella. The approximately 150 A mesaxon is elaborated spirally around the axon in either a right hand or left hand spiral, and its inside (cytoplasmic) approximately 20 A strata in apposition form the major dense lines of myelin. In hypotonic solutions the lamellae of adult frog sciatic myelinated fibers split apart along the outside membrane strata apposed at the intraperiod line throughout the spiral. Under similar conditions the inside (cytoplasmic) strata of the membranes, in apposition at the major dense lines, do not separate. The approximately 150 A membranous structure resulting from this is called an "internal compound membrane." The double membranes of normal and control frog sciatic unmyelinated fibers have a central gap approximately 100 to 150 A wide. After soaking in 4 to 10 times normal strength Ringer solution or 10 N sucrose-Ringer solution, this gap closes and a membranous structure approximately 150 A wide resembling developing mouse mesaxons results. This is designated by the term "external compound membrane." The latter membranes resemble internal compound membranes, but their central dense zones, each consisting of two apposed outside membrane strata, are less dense.  相似文献   

20.
Summary A type of cells morphologically resembling fibroblasts or Schwann cells and identical with the interstitial cells as firstly described byCajal was studied electronmicroscopically.Examinations of serial sections reveal that cell membranes of these cells make close appositions (nexus) to those of all surrounding smooth muscle cells. The surfaces of these cells are also provided with nerve endings of certain axons derived from plexus myentericus.On the basis of these findings, the possible nature and function of interstitial cells are discussed.This work was supported in part by NIH Grant NB-06052.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号