首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《The Journal of cell biology》1996,135(5):1291-1308
The actin bundles in Drosophila bristles run the length of the bristle cell and are accordingly 65 microns (microchaetes) or 400 microns (macrochaetes) in length, depending on the bristle type. Shortly after completion of bristle elongation in pupae, the actin bundles break down as the bristle surface becomes chitinized. The bundles break down in a bizarre way; it is as if each bundle is sawed transversely into pieces that average 3 microns in length. Disassembly of the actin filaments proceeds at the "sawed" surfaces. In all cases, the cuts in adjacent bundles appear in transverse register. From these images, we suspected that each actin bundle is made up of a series of shorter bundles or modules that are attached end-to-end. With fluorescent phalloidin staining and serial thin sections, we show that the modular design is present in nondegenerating bundles. Decoration of the actin filaments in adjacent bundles in the same bristle with subfragment 1 of myosin reveals that the actin filaments in every module have the same polarity. To study how modules form developmentally, we sectioned newly formed and elongating bristles. At the bristle tip are numerous tiny clusters of 6-10 filaments. These clusters become connected together more basally to form filament bundles that are poorly organized, initially, but with time become maximally cross-linked. Additional filaments are then added to the periphery of these organized bundle modules. All these observations make us aware of a new mechanism for the formation and elongation of actin filament bundles, one in which short bundles are assembled and attached end-to-end to other short bundles, as are the vertical girders between the floors of a skyscraper.  相似文献   

2.
Transverse sections though Drosophila bristles reveal 7-11 nearly round, plasma membrane-associated bundles of actin filaments. These filaments are hexagonally packed and in a longitudinal section they show a 12-nm periodicity in both the 1.1 and 1.0 views. From earlier studies this periodicity is attributable to cross-links and indicates that the filaments are maximally cross-linked, singed mutants also have 7-11 bundles, but the bundles are smaller, flattened, and the filaments within the bundles are randomly packed (not hexagonal); no periodicity can be detected in longitudinal sections. Another mutant, forked (f36a), also has 7-11 bundles but even though the bundles are very small, the filaments within them are hexagonally packed and display a 12-nm periodicity in longitudinal section. The singed-forked double mutant lacks filament bundles. Thus there are at least two species of cross-links between adjacent actin filaments. Hints of why two species of cross-links are necessary can be gleaned by studying bristle formation. Bristles sprout with only microtubules within them. A little later in development actin filaments appear. At early stages the filaments in the bundles are randomly packed. Later the filaments in the bundles become hexagonally packed and maximally cross-linked. We consider that the forked proteins may be necessary early in development to tie the filaments together in a bundle so that they can be subsequently zippered together by fascin (the singed gene product).  相似文献   

3.
Previous studies demonstrate that in developing Drosophila bristles, two cross-linking proteins are required sequentially to bundle the actin filaments that support elongating bristle cells. The forked protein initiates the process and facilitates subsequent cross-linking by fascin. Using cross-linker-specific antibodies, mutants, and drugs we show that fascin and actin are present in excessive amounts throughout bundle elongation. In contrast, the forked cross-linker is limited throughout bundle formation, and accordingly, regulates bundle size and shape. We also show that regulation of cross-linking by phosphorylation can affect bundle size. Specifically, inhibition of phosphorylation by staurosporine results in a failure to form large bundles if added during bundle formation, and leads to a loss of cross-linking by fascin if added after the bundles form. Interestingly, inhibition of dephosphorylation by okadaic acid results in the separation of the actin bundles from the plasma membrane. We further show by thin section electron microscopy analysis of mutant and wild-type bristles that the amount of material that connects the actin bundles to the plasma membrane is also limited throughout bristle elongation. Therefore, overall bundle shape is determined by the number of actin filaments assembled onto the limited area provided by the connector material. We conclude that assembly of actin bundles in Drosophila bristles is controlled in part by the controlled availability of a single cross-linking protein, forked, and in part by controlled phosphorylation of cross-links and membrane actin connector proteins.  相似文献   

4.
Drosophila singed mutants were named for their gnarled bristle phenotype but severe alleles are also female sterile. Recently, singed protein was shown to have 35% peptide identity with echinoderm fascin. Fascin is found in actin filament bundles in microvilli of sea urchin eggs and in filopodial extensions in coelomocytes. We show that Drosophila singed is required for actin filament bundle formation in the cytoplasm of nurse cells during oogenesis; in severe mutants, the absence of cytoplasmic actin filament bundles allows nurse cell nuclei to lodge in ring canals and block nurse cell cytoplasm transport. Singed is also required for organized actin filament bundle formation in the cellular extension that forms a bristle; in severe mutants, the small disorganized actin filament bundles lack structural integrity and allow bristles to bend and branch during extension. Singed protein is also expressed in migratory cells of the developing egg chamber and in the socket cell of the developing bristle, but no defect is observed in these cells in singed mutants. Purified, bacterially expressed singed protein bundles actin filaments in vitro with the same stoichiometry reported for purified sea urchin fascin. Singed-saturated actin bundles have a molar ratio of singed/actin of approximately 1:4.3 and a transverse cross-banding pattern of 12 nm seen using electron microscopy. Our results suggest that singed protein is required for actin filament bundle formation and is a Drosophila homolog of echinoderm fascin.  相似文献   

5.
Actin filament bundles can shape cellular extensions into dramatically different forms. We examined cytoskeleton formation during wing hair morphogenesis using both confocal and electron microscopy. Hairs elongate with linear kinetics (approximately 1 microm/h) over the course of approximately 18 h. The resulting structure is vividly asymmetric and shaped like a rose thorn--elongated in the distal direction, curved in two dimensions with an oval base and a round tip. High-resolution analysis shows that the cytoskeleton forms from microvilli-like pimples that project actin filaments into the cytoplasm. These filaments become cross-linked into bundles by the sequential use of three cross-bridges: villin, forked and fascin. Genetic loss of each cross-bridge affects cell shape. Filament bundles associate together, with no lateral membrane attachments, into a cone of overlapping bundles that matures into an oval base by the asymmetric addition of bundles on the distal side. In contrast, the long bristle cell extension is supported by equally long (up to 400 microm) filament bundles assembled together by end-to-end grafting of shorter modules. Thus, bristle and hair cells use microvilli and cross-bridges to generate the common raw material of actin filament bundles but employ different strategies to assemble these into vastly different shapes.  相似文献   

6.
The actin bundles essential for Drosophila bristle elongation are hundreds of microns long and composed of cross-linked unipolar filaments. These long bundles are built from much shorter modules that graft together. Using both confocal and electron microscopy, we demonstrate that newly synthesized modules are short (1-2 microm in length); modules elongate to approximately 3 microm by growing over the surface of longitudinally adjacent modules to form a graft; the grafted regions are initially secured by the forked protein cross-bridge and later by the fascin cross-bridge; actin bundles are smoothed by filament addition and appear continuous and without swellings; and in the absence of grafting, dramatic alterations in cell shape occur that substitutes cell width expansion for elongation. Thus, bundle morphogenesis has several components: module formation, elongation, grafting, and bundle smoothing. These actin bundles are much like a rope or cable, made by overlapping elements that run a small fraction of the overall length, and stiffened by cross-linking.  相似文献   

7.
Drosophila melanogaster bristle development is dependent on actin assembly, and prominent actin bundles form against the elongating cell membrane, giving the adult bristle its characteristic grooved pattern. Previous work has demonstrated that several actin-regulating proteins are required to generate normal actin bundles. Here we have addressed how two actin regulators, capping protein, a barbed end binding protein, and the Arp2/3 complex, a potent actin assembly nucleator, function to generate properly organized bundles. As predicted from studies in motile cells, we find that capping protein and the Arp2/3 complex act antagonistically to one another during bristle development. However, these proteins do not primarily act directly on bundles, but rather on a dynamic population of actin filaments that are not part of the bundles. These nonbundle filaments, termed snarls, play an important role in determining the number and spacing of the actin bundles. Reduction of capping protein leads to an increase in snarls, which prevents actin bundles from properly attaching to the membrane. Conversely, loss of an Arp2/3 complex component leads to a loss of snarls and accumulation of excess membrane-attached bundles. These results indicate that in nonmotile cells dynamic actin filaments can function to regulate the positioning of stable actin structures. In addition, our results suggest that the Arpc1 subunit may have an additional function, independent of the rest of the Arp2/3 complex.  相似文献   

8.
We have used a positively charged lipid monolayer to form two-dimensional bundles of F-actin cross-linked by alpha-actinin to investigate the relative orientation of the actin filaments within them. This method prevents growth of the bundles perpendicular to the monolayer plane, thereby facilitating interpretation of the electron micrographs. Using alpha-actinin isoforms isolated from the three types of vertebrate muscle, i.e., cardiac, skeletal, and smooth, we have observed almost exclusively cross-linking between polar arrays of filaments, i.e., actin filaments with their plus ends oriented in the same direction. One type of bundle can be classified as an Archimedian spiral consisting of a single actin filament that spirals inward as the filament grows and the bundle is formed. These spirals have a consistent hand and grow to a limiting internal diameter of 0.4-0.7 microm, where the filaments appear to break and spiral formation ceases. These results, using isoforms usually characterized as cross-linkers of bipolar actin filament bundles, suggest that alpha-actinin is capable of cross-linking actin filaments in any orientation. Formation of specifically bipolar or polar filament arrays cross-linked by alpha-actinin may require additional factors that either determine the filament orientation or restrict the cross-linking capabilities of alpha-actinin.  相似文献   

9.
The Drosophila melanogaster bristle is a highly polarized cell that builds specialized cytoskeletal structures. Whereas actin is required for increasing bristle length, microtubules are essential for bristle axial growth. To identify new proteins involved in cytoskeleton organization during bristle development, we focused on identifying and characterizing the javelin (jv) locus. We found that in a jv mutant, the bristle tip is swollen and abnormal organization of bristle grooves is seen over the entire bristle. Using confocal and electron microscopy, we found that in jv mutant bristles, actin bundles do not form properly due to a loss of actin filaments within the bundle. We show that jv is an allele of the predicted CG32397 gene that encodes a protein with no homologs outside insects. Expression of the Jv protein fused to a green fluorescent protein (GFP) shows that the protein is colocalized with actin bundles in the bristle. Moreover, expression of Jv-GFP within the germ line led to the formation of ectopic actin bundles that surround the nucleus of nurse cells. Thus, we report that Jv is a novel actin-associated protein required for actin assembly during Drosophila bristle development.  相似文献   

10.
Drosophila bristles display a precise orientation and curvature. An asymmetric extension of the socket cell overlies the newly emerging bristle rudiment to provide direction for bristle elongation, a process thought to be orchestrated by the nerve dendrite lying between these cells. Scanning electron microscopic analysis of individual bristles showed that curvature is planar and far greater near the bristle base. Correlated with this, as development proceeds the pupa gradually recedes from the inner pupal case (an extracellular layer that encloses the pupa) leading to less bristle curvature along the shaft. We propose that the inner pupal case induces elongating bristles to bend when they contact this barrier. During elongation the actin cytoskeleton locks in this curvature by grafting together the overlapping modules that comprise the long filament bundles. Because the bristle is curved, the actin bundles on the superior side must be longer than those on the inferior side. This is accomplished during grafting by greater elongation of superior side modules. Poor actin cross-bridging in mutant bristles results in altered curvature. Thus, the pattern of bristle curvature is a product of both extrinsic factors-the socket cell and the inner pupal case--and intrinsic factors--actin cytoskeleton assembly.  相似文献   

11.
An actin filament bundle approximately 2-5 microns in length is present in the sperm of the blue mussel, Mytilus. In unfired sperm this bundle extends from the midpiece through a canal in the center of the nucleus to terminate on the membrane limiting the inside of the cone-shaped acrosomal vacuole. The bundle is composed of 45-65 actin filaments which are hexagonally packed and regularly cross-bridged together to form an actin paracrystal so well ordered that it has six nearly equal faces. Upon induction of the acrosomal reaction, a needle-like process is formed in a few seconds. Within this process is the actin filament bundle which appears unchanged in filament number and packing as determined by optical diffraction methods. Using fluorescein-conjugated phalloidin we were able to establish that the bundle does not change length but instead is projected anteriorly out of the midpiece and nuclear canal like an arrow. Existing mechanisms to explain this extension cannot apply. Specifically, the bundle does not increase in length (no polymerization), does not change its organization (no change in actin twist), does not change filament number (no filament sliding), and cannot move by myosin (wrong polarity). Thus we are forced to look elsewhere for a mechanism and have postulated that at least a component of this movement, or cell elongation, is the interaction of the actin filament bundle with the plasma membrane.  相似文献   

12.
Through the coordinated action of diverse actin-binding proteins, cells simultaneously assemble actin filaments with distinct architectures and dynamics to drive different processes. Actin filament cross-linking proteins organize filaments into higher order networks, although the requirement of cross-linking activity in cells has largely been assumed rather than directly tested. Fission yeast Schizosaccharomyces pombe assembles actin into three discrete structures: endocytic actin patches, polarizing actin cables, and the cytokinetic contractile ring. The fission yeast filament cross-linker fimbrin Fim1 primarily localizes to Arp2/3 complex-nucleated branched filaments of the actin patch and by a lesser amount to bundles of linear antiparallel filaments in the contractile ring. It is unclear whether Fim1 associates with bundles of parallel filaments in actin cables. We previously discovered that a principal role of Fim1 is to control localization of tropomyosin Cdc8, thereby facilitating cofilin-mediated filament turnover. Therefore, we hypothesized that the bundling ability of Fim1 is dispensable for actin patches but is important for the contractile ring and possibly actin cables. By directly visualizing actin filament assembly using total internal reflection fluorescence microscopy, we determined that Fim1 bundles filaments in both parallel and antiparallel orientations and efficiently bundles Arp2/3 complex-branched filaments in the absence but not the presence of actin capping protein. Examination of cells exclusively expressing a truncated version of Fim1 that can bind but not bundle actin filaments revealed that bundling activity of Fim1 is in fact important for all three actin structures. Therefore, fimbrin Fim1 has diverse roles as both a filament "gatekeeper" and as a filament cross-linker.  相似文献   

13.
Actin filaments elongate from their membrane-associated ends   总被引:22,自引:19,他引:3       下载免费PDF全文
In limulus sperm an actin filament bundle 55 mum in length extends from the acrosomal vacuole membrane through a canal in the nucleus and then coils in a regular fashion around the base of the nucleus. The bundle expands systematically from 15 filaments near the acrosomal vacuole to 85 filaments at the basal end. Thin sections of sperm fixed during stages in spermatid maturation reveal that the filament bundle begins to assemble on dense material attached to the acrosomal vacuole membrane. In micrographs fo these early stages in maturation, short bundles are seen extending posteriorly from the dense material. The significance is that these short, developing bundles have about 85 filaments, suggesting that the 85-filament end of the bundle is assembled first. By using filament bundles isolated and incubated in vitro with G actin from muscle, we can determine the end “preferred” for addition of actin monomers during polymerization. The end that would be associated with the acrosomal vacuole membrane, a membrane destined to be continuous with the plasma membrane, is preferred about 10 times over the other, thicker end. Decoration of the newly polymerized portions of the filament bundle with subfragment 1 of myosin reveals that the arrowheads point away from the acrosomal vacuole membrane, as is true of other actin filament bundles attached to membranes. From these observations we conclude that the bundle is nucleated from the dense material associated with the acrosomal vacuole and that monomers are added to the membrane-associated end. As monomers are added at the dense material, the thick first-made end of the filament bundle is pushed down through the nucleus where, upon reaching the base of the nucleus, it coils up. Tapering is brought about by the capping of the peripheral filaments in the bundle.  相似文献   

14.
《Biophysical journal》2022,121(7):1230-1245
Morphology changes in cross-linked actin networks are important in cell motility, division, and cargo transport. Here, we study the transition from a weakly cross-linked network of actin filaments to a heavily cross-linked network of actin bundles through microscopic Brownian dynamics simulations. We show that this transition occurs in two stages: first, a composite bundle network of small and highly aligned bundles evolves from cross-linking of individual filaments and, second, small bundles coalesce into the clustered bundle state. We demonstrate that Brownian motion speeds up the first stage of this process at a faster rate than the second. We quantify the time to reach the composite bundle state and show that it strongly increases as the mesh size increases only when the concentration of cross-links is small and that it remains roughly constant if we decrease the relative ratio of cross-linkers as we increase the actin concentration. Finally, we examine the dependence of the bundling timescale on filament length, finding that shorter filaments bundle faster because they diffuse faster.  相似文献   

15.
Bending stiffness of a crystalline actin bundle   总被引:1,自引:0,他引:1  
The acrosomal process of the sperm of the horseshoe crab (Limulus polyphemus) is a unique crystalline actin bundle, consisting of multiple actin filaments cross-linked by the actin-bundling protein, scruin. For successful fertilization, the acrosomal bundle must penetrate through a 30 microm thick jelly coat surrounding the egg and thus it must be sufficiently stiff. Here, we present two measurements of the bending stiffness of a single crystalline bundle of actin. Results from these measurements indicate that the actin:scruin composite bundle has an average elastic modulus of 2 GPa, which is similar to that of a single actin filament, and a bending stiffness that is more than two orders of magnitude larger than that of a bundle of uncross-linked actin filaments due to stiffening by the scruin matrix.  相似文献   

16.
The morphogenesis of Drosophila sensory bristles is dependent on the function of their actin and microtubule cytoskeleton. Actin filaments are important for bristle shape and elongation, while microtubules are thought to mediate protein and membrane trafficking to promote growth. We have identified an essential role for the bristle cuticle in the maintenance of bristle structure and shape at late stages of bristle development. We show that the small GTPase Rab11 mediates the organized deposition of chitin, a major cuticle component in bristles, and disrupting Rab11 function leads to phenotypes that result from bristle collapse rather than a failure to elongate. We further establish that Rab11 is required for the plasma membrane localization of the ZP domain-containing Dusky-like (Dyl) protein and that Dyl is also required for cuticle formation in bristles. Our data argue that Dyl functions as a Rab11 effector for mediating the attachment of the bristle cell membrane to chitin to establish a stable cuticle. Our studies also implicate the exocyst as a Rab11 effector in this process and that Rab11 trafficking along the bristle shaft is mediated by microtubules.  相似文献   

17.
Tropomyosin, cross-linked at cysteine 190, was found to bind more weakly to actin filaments than uncross-linked tropomyosin. Cross-linking of tropomyosin can cause actin filaments nearly completely covered with tropomyosin to be uncovered almost completely. The critical monomer concentration of actin is not significantly changed by binding of cross-linked or uncross-linked tropomyosin to actin filaments. The binding curves were analyzed quantitatively, thereby taking into account the polar end-to-end contact of tropomyosin molecules bound by actin and the overlap of the seven subunit binding sites along the actin filament. Under the conditions of the experiment (80 mM KCl, 1 mM MgCl2, pH 7.5, 38-42 degrees C), the equilibrium constant for isolated binding of tropomyosin to actin filaments is in the range 1 x 10(3)-3 x 10(3) M-1. The equilibrium constants for binding of tropomyosin to binding sites along the actin filament with one or two neighbouring tropomyosin molecules are in the range of 10(6) or 10(8) to 10(9) M-1, respectively. The equilibrium constants for binding of tropomyosin to binding sites along the actin filament with one or two neighbouring tropomyosin molecules are in the range of 10(6) or 10(8) to 10(9) M-1, respectively. The equilibrium constants for cross-linked and uncross-linked tropomyosin differ by a factor of only about two. Owing to the highly cooperative binding, these differences are sufficient so that actin filaments nearly completely covered with uncross-linked tropomyosin are uncovered almost completely by cross-linking tropomyosin at cysteine 190.  相似文献   

18.
Actin-containing filaments in cultures of differentiating chick skeletal muscle were examined by indirect immunofluorescence and transmission electron microscopy (TEM). As early as 20 h in culture, a large proportion of the pre-fusion population appeared as elongated, bipolar cells which contained actin filaments parallel to the longitudinal axis of the cell. During fusion, most of the mononucleated cells were bipolar and contained actin filament bundles which appeared to extend the entire length of the cell body and lie in close proximity to the plasma membrane. Striations were observed within actin filament bundles only after fusion had been completed. The small number of non-myogenic cells present in the cultures were not observed to display a bipolar morphology, orientation of actin fibers parallel to the longitudinal axis of the cell, or striations in their actin filament bundles.  相似文献   

19.
Dynamic cytoplasmic streaming, organelle positioning, and nuclear migration use molecular tracks generated from actin filaments arrayed into higher-order structures like actin cables and bundles. How these arrays are formed and stabilized against cellular depolymerizing forces remains an open question. Villin and fimbrin are the best characterized actin-filament bundling or cross-linking proteins in plants and each is encoded by a multigene family of five members in Arabidopsis thaliana. The related villins and gelsolins are conserved proteins that are constructed from a core of six homologous gelsolin domains. Gelsolin is a calcium-regulated actin filament severing, nucleating and barbed end capping factor. Villin has a seventh domain at its C terminus, the villin headpiece, which can bind to an actin filament, conferring the ability to crosslink or bundle actin filaments. Many, but not all, villins retain the ability to sever, nucleate, and cap filaments. Here we have identified a putative calcium-insensitive villin isoform through comparison of sequence alignments between human gelsolin and plant villins with x-ray crystallography data for vertebrate gelsolin. VILLIN1 (VLN1) has the least well-conserved type 1 and type 2 calcium binding sites among the Arabidopsis VILLIN isoforms. Recombinant VLN1 binds to actin filaments with high affinity (K(d) approximately 1 microM) and generates bundled filament networks; both properties are independent of the free Ca(2+) concentration. Unlike human plasma gelsolin, VLN1 does not nucleate the assembly of filaments from monomer, does not block the polymerization of profilin-actin onto barbed ends, and does not stimulate depolymerization or sever preexisting filaments. In kinetic assays with ADF/cofilin, villin appears to bind first to growing filaments and protects filaments against ADF-mediated depolymerization. We propose that VLN1 is a major regulator of the formation and stability of actin filament bundles in plant cells and that it functions to maintain the cable network even in the presence of stimuli that result in depolymerization of other actin arrays.  相似文献   

20.
The actin cytoskeleton is a soft, structural material that underlies biological processes such as cell division, motility, and cargo transport. The cross-linked actin filaments self-organize into a myriad of architectures, from disordered meshworks to ordered bundles, which are hypothesized to control the actomyosin force generation that regulates cell migration, shape, and adhesion. Here, we use fluorescence microscopy and simulations to investigate how actin bundle architectures with varying polarity, spacing, and rigidity impact myosin II dynamics and force generation. Microscopy reveals that mixed-polarity bundles formed by rigid cross-linkers support slow, bidirectional myosin II filament motion, punctuated by periods of stalled motion. Simulations reveal that these locations of stalled myosin motion correspond to sustained, high forces in regions of balanced actin filament polarity. By contrast, mixed-polarity bundles formed by compliant, large cross-linkers support fast, bidirectional motion with no traps. Simulations indicate that trap duration is directly related to force magnitude and that the observed increased velocity corresponds to lower forces resulting from both the increased bundle compliance and filament spacing. Our results indicate that the microstructures of actin assemblies regulate the dynamics and magnitude of myosin II forces, highlighting the importance of architecture and mechanics in regulating forces in biological materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号