首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Two plasmids that overproduce the colicin A lysis protein, Cal, are described. Plasmid AT1 was constructed by a deletion in the colicin A operon, which placed thecal gene near a truncatedcaa gene in such a way that both gene products were synthesized at high levels following induction. Plasmid Ck4 was constructed by insertion of thecal gene downstream from thetac promoter of an expression vector. Overproduction of Cal was obtained after mitomycin C induction of pAT1 cells and after IPTG induction of pCK4 cells. The kinetics of Cal synthesis were examined with [35S] methionine and [2-3H] glycerol inlpp orlpp + host strains. Each of the steps of the lipid modification and maturation pathway of Cal was demonstrated. The modified precursor form of overproduced Cal was not chased as efficiently as when it is produced in pColA cells. After treatment with globomycin, a significant amount of this modified precursor form accumulated and was degraded with time into smaller acylated proteins, but without release of the signal peptide. Release of cellular proteins and quasi-lysis were observed after about 1 hour of induction for cells containing either plasmid. In addition, in Cal-overproducing cells, the rate of quasi-lysis was increased but not its extent. InpldA cells, quasi-lysis was reduced but not abolished. Lethality of the Cal induction in the overproducing cells was in the same range as that in wild-type cells.  相似文献   

2.
The colicin A lysis protein (Cal) is required for the release of colicin A to the medium by producing bacteria. This protein is produced in a precursor form that contains a cysteine at the cleavage site (-Leu-Ala-Ala-Cys). The precursor must be modified by the addition of lipid before it can be processed. The maturation is prevented by globomycin, an inhibitor of signal peptidase II. Using oligonucleotide-directed mutagenesis, the alanine and cystein residues in the -1 and +1 positions of the cleavage site were replaced by proline and threonine residues, respectively, in two different constructs. Both substitutions prevented the normal modification and cleavage of the protein. The marked activation of the outer membrane detergent-resistant phospholipase A observed with wild-type Cal was not observed with the Cal mutants. Both Cal mutants were also defective for the secretion of colicin A. In one mutant, the signal peptide appeared to be cleaved off by an alternative pathway involving signal peptidase I. Electron microscope studies with immunogold labeling of colicin A on cryosections of pldA and cal mutant cells indicated that the colicin remains in the cytoplasm and is not transferred to the periplasmic space. These results demonstrate that Cal must be modified and processed to activate the detergent-resistant phospholipase A and to promote release of colicin A.  相似文献   

3.
The acylated precursor form of the colicin A lysis protein (pCalm) is specifically cleaved by the DegP protease into two acylated fragments of 6 and 4.5 kilodaltons (kDa). This cleavage was observed after globomycin treatment, which inhibits the processing of pCalm into mature colicin A lysis protein (Cal) and the signal peptide. The cleavage took place in lpp, pldA, and wild-type strans carrying plasmids which express the lysis protein following SOS induction and also in cells containing a plasmid which expresses it under the control of the tac promoter. Furthermore, the DegP protease was responsible for the production of two acylated Cal fragments of 3 and 2.5 kDa in cells carrying plasmids which overproduce the Cal protein, without treatment with globomycin. DegP could also cleave the acylated precursor form of a mutant Cal protein containing a substitution in he amino-terminal portion of the protein, but not that of a mutant Cal containing a frameshift mutation in its carboxyl-terminal end. The functions of Cal in causing protein release, quasi-lysis, and lethality were increased in degP41 cells, suggesting that mature Cal was produced in higher amounts in the mutant than in the wild type. These effects were limited in cells deficient in phospholipase A. Interactions between the DegP protease and phospholipase A were suggested by the characteristics of degP pldA double mutants.  相似文献   

4.
The roles of the various parts of the mature colicin A lysis protein (Cal) in its assembly into the envelope and its function in causing "quasi-lysis," the release of colicin A, and the activation of phospholipase A were investigated. By using cassette mutagenesis, many missense mutations were introduced into the highly conserved portion of the lysis protein. In vitro mutagenesis was also used to introduce stop codons after amino acids 16 and 18 and a frameshift mutation at amino acid 17 of the mature Cal sequence. The processing and modification of the mutants were identical to those of the wild type, except for the truncated Cal proteins, which were neither acylated nor processed. Thus, the carboxy-terminal half of Cal must be present (or replaced by another peptide) for the proper processing and assembly of the protein. However, the specific sequence of this region is not required for the membrane-damaging function of the protein. Furthermore, the sequence specificity for even the conserved amino acids of the amino-terminal half of the protein is apparently exceedingly relaxed, since only those mutant Cal proteins in which a highly conserved amino acid has been replaced by a glutamate were impaired in their function.  相似文献   

5.
The requirement for the activation of phospholipase A by the colicin A lysis protein (Cal) in the efficient release of colicin A by Escherichia coli cells containing colicin A plasmids was studied. In particular, we wished to determine if this activation is the primary effect of Cal or whether it reflects more generalized damage to the envelope caused by the presence of large quantities of this small acylated protein. E. coli tolQ cells, which were shown to be leaky for periplasmic proteins, were transduced to pldA and then transformed with the recombinant colicin A plasmid pKA. Both the pldA and pldA+ strains released large quantities of colicin A following induction, indicating that in these cells phospholipase A activation is not required for colicin release. This release was, however, still dependent on a functioning Cal protein. The assembly and processing of Cal in situ in the cell envelope was studied by combining pulse-chase labelling with isopycnic sucrose density gradient centrifugation of the cell membranes. Precursor Cal and lipid-modified precursor Cal were found in the inner membrane at early times of chase, and gave rise to mature Cal which accumulated in both the inner and outer membrane after further chase. The signal peptide was also visible on these gradients, and its distribution too was restricted to the inner membrane. Gradient centrifugation of envelopes of cells which were overproducing Cal resulted in very poor separation of the membranes. The results of these studies provide evidence that the colicin A lysis protein causes phospholipase A-independent alterations in the integrity of the E. coli envelope.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The colicin A lysis protein, Cal, is synthesized at the same time as colicin A by Escherichia coli harbouring plasmid pColA after induction by mitomycin C. Its function in the induced bacteria involves the release of colicin A, quasi-lysis, the death of the producing cells and the activation of the outer membrane phospholipase A. We have found that these various functions are affected differently by treatment of the induced cells with Triton X-100, divalent cations or EDTA. Triton X-100 and EDTA caused increased quasi-lysis and a higher level of mortality of the producing cells, but while Triton X-100 enhanced the release of colicin A, EDTA reduced it. Divalent cations protected the cells against both killing and quasi-lysis without greatly affecting colicin release. The effects of these agents were similar for both wild-type and phospholipase A mutants and depended only on the presence of a functional cal gene.  相似文献   

7.
Plasmid ColE3 specifies a lysis protein.   总被引:15,自引:6,他引:9       下载免费PDF全文
Tn5 insertion mutations in plasmid ColE3 were isolated and characterized. Several of the mutants synthesized normal amounts of active colicin E3 but, unlike wild-type colicinogenic cells, did not release measurable amounts of colicin into the culture medium. Cells bearing the mutant plasmids were immune to exogenous colicin E3 at about the same level as wild-type colicinogenic cells. All of these lysis mutants mapped near, but outside of, the structural genes for colicin E3 and immunity protein. Cells carrying the insertion mutations which did not release colicin E3 into the medium were not killed by UV exposure at levels that killed cells bearing wild-type plasmids. The protein specified by the lysis gene was identified in minicells and in mitomycin C-induced cells. A small protein, with a molecular weight between 6,000 and 7,000, was found in cells which released colicin into the medium, but not in mutant cells that did not release colicin. Two mutants with insertions within the structural gene for colicin E3 were also characterized. They produced no colicin activity, but both synthesized a peptide consistent with their map position near the middle of the colicin gene. These two insertion mutants were also phenotypically lysis mutants--they were not killed by UV doses lethal to wild-type colicinogenic cells and they did not synthesize the small putative lysis protein. Therefore, the lysis gene is probably in the same operon as the structural gene for colicin E3.  相似文献   

8.
Summary The DNA sequence of the entire colicin E2 operon was determined. The operon comprises the colicin activity gene, ceaB, the colicin immunity gene, ceiB, and the lysis gene, celB, which is essential for colicin release from producing cells. A potential LexA binding site is located immediately upstream from ceaB, and a rho-independent terminator structure is located immediately downstream from celB. A comparison of the predicted amino acid sequences of colicin E2 and cloacin DF13 revealed extensive stretches of homology. These colicins have different modes of action and recognise different cell surface receptors; the two major regions of heterology at the carboxy terminus, and in the carboxy-terminal end of the central region probably correspond to the catalytic and receptor-recognition domains, respectively. Sequence homologies between colicins E2, A and E1 were less striking, and the colicin E2 immunity protein was not found to share extensive homology with the colicin E3 or cloacin DF13 immunity proteins. The lysis proteins of the ColE2, ColE1 and CloDF13 plasmids are almost identical except in the aminoterminal regions, which themselves have overall similarity with lipoprotein signal peptides. Processing of the ColE2 prolysis protein to the mature form was prevented by globomycin, a specific inhibitor of the lipoprotein signal peptidase. The mature ColE2 lysis protein was located in the cell envelope. The results are discussed in terms of the functional organisation of the colicin operons and the colicin proteins, and the way in which colicins are released from producing cells.  相似文献   

9.
D Cavard 《Journal of bacteriology》1995,177(17):5189-5192
At low temperature, the synthesis of the colicin A lysis protein in Escherichia coli was slowed down, and consequently its functioning was retarded. The rates were restored when the bacteria were shifted for 10 min to 42 degrees C, except in an rpoH mutant, suggesting that one or more proteins regulated by sigma 32 is necessary for expression of colicin A lysis protein.  相似文献   

10.
Summary A plasmid (pColAF1), derived from pColA, and lacking the region encoding Cai (colicin A immunity protein) and Cal (colicin A lysis protein) has been constructed. The strains carrying pColAF1 produce normal amounts of colicin A which remains in the cell cytoplasm and does not result in loss of viability. Similar results have also been obtained for transposon insertion mutants lacking Cai. Structure prediction analysis indicates that four peptide regions of Cai might span the cytoplasmic membrane. Since the NH2-and COOH-terminal regions are charged, this analysis suggests a topology of the 178 residues polypeptide chain in which regions 38 to 70 and 124 to 143 might be exposed at the outer side of the cytoplasmic membrane. With mutants constructed using recombinant DNA techniques, we could demonstrate that the removal of a 30 residue COOH-terminal region, and mutations altering the surface exposed loop comprised of aminoacid residues 124–143 abolish the protecting function of Cai.  相似文献   

11.
In vivo radiolabeling of Halobacterium halobium phototaxis mutants and revertants with L-[methyl-3H] methionine implicated seven methyl-accepting protein bands with apparent molecular masses from 65 to 150 kilodaltons (kDa) in adaptation of the organism to chemo and photo stimuli, and one of these (94 kDa) was specifically implicated in phototaxis. The lability of the radiolabeled bands to mild base treatment indicated that the methyl linkages are carboxylmethylesters, as is the case in the eubacterial chemotaxis receptor-transducers. The 94-kDa protein was present in increased amounts in an overproducer of the apoprotein of sensory rhodopsin I, one of two retinal-containing phototaxis receptors in H. halobium. It was absent in a strain that contained sensory rhodopsin II and that lacked sensory rhodopsin I and was also absent in a mutant that lacked both photoreceptors. Based on the role of methyl-accepting proteins in chemotaxis in other bacteria, we suggest that the 94-kDa protein is the signal transducer for sensory rhodopsin I. By [3H]retinal labeling studies, we previously identified a 25-kDa retinal-binding polypeptide that was derived from photochemically reactive sensory rhodopsin I. When H. halobium membranes containing sensory rhodopsin I were treated by a procedure that stably reduced [3H]retinal onto the 25-kDa apoprotein, a 94-kDa protein was also found to be radiolabeled. Protease digestion confirmed that the 94-kDa retinal-labeled protein was the same as the methyl-accepting protein that was suggested above to be the signal transducer for sensory rhodopsin I. Possible models are that the 25- and 94-kDa proteins are tightly interacting components of the photosensory signaling machinery or that both are forms of sensory rhodopsin I.  相似文献   

12.
Site-directed mutagenesis was used to replace the codon for the N-terminal cysteine residue of pColE2-P9-encoded mature lysis protein (CelB) by an arginine codon. In contrast to the wild-type CelB protein, the product of the mutated gene, which has an altered signal peptidase cleavage site, was neither processed nor acylated. However, the mutant protein retained sufficient residual activity to cause partial, Mg2+-suppressible lysis and could activate envelope phospholipase A1-A2 and promote colicin release, albeit with reduced efficiency compared to the wild-type protein. We propose that the uncleaved signal peptide of the mutant protein acts as the functional equivalent of the fatty acyl groups normally linked to the N-terminal cysteine residue of the wild-type protein, thereby anchoring the protein in the cell envelope where it exerts its various effects.  相似文献   

13.
The 61-kDa colicin E9 protein toxin enters the cytoplasm of susceptible cells by interacting with outer membrane and periplasmic helper proteins and kills them by hydrolyzing their DNA. The membrane translocation function is located in the N-terminal domain of the colicin, with a key signal sequence being a pentapeptide region that governs the interaction with the helper protein TolB (the TolB box). Previous NMR studies [Collins et al. (2002) J. Mol. Biol. 318, 787-904; MacDonald et al. (2004), J. Biomol. NMR 30, 81-96] have shown that the N-terminal 83 residues of colicin E9, which includes the TolB box, is intrinsically disordered and contains clusters of interacting side chains. To further define the properties of this region of colicin E9, we have investigated the effects on the dynamical and TolB-binding properties of three mutations of colicin E9 that inactivate it as a toxin. The mutations were contained in a fusion protein consisting of residues 1-61 of colicin E9 connected to the N terminus of the E9 DNase by an eight-residue linking sequence. The NMR data reveals that the mutations cause major alterations to the properties of some of the clusters, consistent with some form of association between them and other more distant parts of the amino acid sequence, particularly toward the N terminus of the protein. However, (15)N T(2) measurements indicates that residues 5-13 of the fusion protein bound to the 43-kDa TolB remain as flexible as they are in the free protein. The NMR data point to considerable dynamic ordering within the intrinsically disordered translocation domain of the colicin that is important for creating the TolB-binding site. Furthermore, amino acid sequence considerations suggest that the clusters of amino acids occur because of the size and polarities of the side chains forming them influenced by the propensities of the residues within the clusters and those immediately surrounding them in sequence space to form beta turns.  相似文献   

14.
The lipid modification and processing of a number of colicin lysis proteins take place exceedingly slowly and result in the release of a stable signal peptide. It is possible that this peptide or the presence of lipid-modified precursors which result from the slow processing plays a role in the release of colicins and in the quasilysis that occurs in induced colicinogenic cultures. We used in vitro mutagenesis and pulse-chase radiolabeling and immunoprecipitation to examine the reasons for the slow processing and signal peptide degradation reactions for the colicin A lysis protein (Cal). In one mutant, isoleucine 13 was replaced with serine, and in another, alanine 18, the last residue of the signal peptide, was replaced with glycine. In each case, the mutation caused a striking increase in the rate of maturation of the precursor, and in the case of the serine 13 derivative, the mutation also destabilized the signal peptide. A precursor containing both of these mutations was completely matured and its signal sequence degraded within seconds of its synthesis. The release of colicin A and the quasilysis of producing cultures were unchanged for each of these mutants, indicating that neither the stable signal peptide nor lipid-modified processing intermediates of Cal are required for either of these events in wild-type cells.  相似文献   

15.
The lysis protein of the colicinogenic operon is essential for colicin release and its main function is to activate the outer membrane phospholipase A (OMPLA) for the traverse of colicin across the cell envelope. However, little is known about the involvement of the lysis protein in the translocation of colicin across the inner membrane into the periplasm. The introduction of specific point mutations into the lipobox or sorting signal sequence of the lysE7 gene resulted in the production of various forms of lysis proteins. Our experimental results indicated that cells with wild-type mature LysE7 protein exhibited higher efficiency of colicin E7 translocation across the inner membrane into the periplasm than those with premature LysE7 protein. Moreover, the degree of permeability of the inner membrane induced by the mature LysE7 protein was significantly increased as compared to the unmodified LysE7 precursor. These results suggest that the efficiency of colicin movement into the periplasm is correlated with the increase in inner membrane permeability induced by the LysE7 protein. Thus, we propose that mature LysE7 protein has two critical roles: firstly mediating the translocation of colicin E7 across the inner membrane into the periplasm, and secondly activating the OMPLA to allow colicin release.  相似文献   

16.
The immunity and lysis genes of ColN plasmid pCHAP4   总被引:4,自引:0,他引:4  
Summary Nucleotide sequencing of part of the plasmid pCHAP4, which encodes the ca. 42000 Da putative poreforming colicin N, confirmed previous results indicating that the colicin N immunity gene (cni) and the colicin release or lysis gene (cnl) are located immediately downstream from the colicin N structural gene (cna) in the order cna-cni-cnl. The cni gene is transcribed in the opposite direction to cna and probably encodes an Mr 15239 Da protein. The putative immunity protein was detected among the [35S]methionine-labelled proteins produced by minicells carrying cni cloned under lac promoter control, and when the gene was subcloned into expression vectors under the control of a bacteriophage T7 promoter. Deletion of the region immediately upstream from cni completely abolished colicin N immunity, presumably because the natural promoter had been deleted. cnl is in the same operon as cna, and encodes a typical Col plasmid pro-lysis protein comprising a signal peptide and a 34 residue mature polypeptide with high homology to all but one of the other known Col lysis proteins, including the fatty acylated amino-terminal cysteine residue which was specifically labelled with 3H-palmitate. Cell fractionation studies indicated that the cnl gene product was located predominantly in the outer membrane.  相似文献   

17.
Colicin M is only released in very low amounts by cells harbouring this plasmid encoded colicin, due to the lack of a release (lysis) protein. A fusion gene (lpp'cma) was constructed which determined two proteins: Lpp'-Cma composed of the signal sequence of the murein lipoprotein (Lpp) and colicin M (Cma), and unaltered colicin M. Cells expressing the fusion gene released 50% of the total colicin M into the culture medium, compared to 1% found in the medium of cells synthesizing only colicin M. The release resulted from partial cell lysis caused by colicin M since a colicin M tolerant strain remained unaffected. Lpp'-Cma thus mimics phenotypically the action of colicin release proteins but displays a different lysis mechanism. In strains defective in components of the colicin M uptake system, Lpp'-Cma caused lysis as effectively as in uptake proficient strains. Apparently, Lpp'-Cma renders the colicin M target site accessible from inside the cell which stands in contrast to the action of colicin M which is only bactericidal when provided from outside.Abbreviation bp base pairs  相似文献   

18.
Role of DegP protease on levels of various forms of colicin A lysis protein   总被引:2,自引:0,他引:2  
Abstract The total amount of the colicin A lysis protein produced by cells grown in rich medium was analysed by immunoblotting. The intermediate forms of synthesis of this small lipoprotein were present in the cells at any time of induction, confirming that processing and maturation of colicin A lysis protein are slow and incomplete processes. The level of these various forms varied according to the time of induction, the growth conditions, the producing strain and the plasmid carrying the cal gene. It depended mainly on the presence in the producing strain of a degP gene which encodes the DegP protease. According to growth conditions, the DegP protease hydrolysed either a part or the total amount of the acylated precursor form. In some cases, a protease(s) other than DegP seemed to act on either form(s) of the colicin A lysis protein.  相似文献   

19.
G Thumm  T Olschl?ger  V Braun 《Plasmid》1988,20(1):75-82
Colicins are usually released from producing cells by so-called lysis proteins. No sequence homologous to the structurally very similar colicin lysis genes was found in the gene cluster cmi cma cbi cba, which determines the activity and immunity proteins of colicin B and M on pColBM-Cl139. Instead, the region upstream of cmi contained sequences that showed 91% homology to the structural gene of protein D (resolvase) and 75.5% homology to the rfsF sequence of the Escherichia coli miniF plasmid. It is concluded that colicins B and M are not released via the activity of lysis proteins and that the highly homologous regions encode a resolvase and its target respectively.  相似文献   

20.
Mechanism of export of colicin E1 and colicin E3.   总被引:10,自引:5,他引:5       下载免费PDF全文
The mechanism of export of colicins E1 and E3 was examined. Neither colicin E1, colicin E3, Nor colicin E3 immunity protein appears to be synthesized as a precursor protein with an amino-terminal extension. Instead, the colicins, as well as the colicin E3 immunity protein, appear to leave the cells where they are made, long after their synthesis, by a nonspecific mechanism which results in increased permeability of the producing cells. Induction of ColE3-containing cells with mitomycin C leads to actual lysis of those cells, as some time after synthesis of the colicin E3 and its immunity protein has been completed. Induction of ColE1-containing cells results in increased permeability of the cells, but not in actual lysis, and most of the colicin E1 produced never leaves the producing cells. Intracellular proteins such as elongation factor G can be found outside of colicinogenic cells after mitomycin C induction, along with the colicin. Until substantial increases in permeability occur, most of the colicin remains cell associated, in the soluble cytosol, rather than in a membrane-associated form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号