首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
2.
3.
4.
5.
Interaction between commensal bacteria and intestinal epithelial cells (i-ECs) via TLRs is important for intestinal homeostasis. In this study, we found that the numbers of CD8alphaalpha TCRalphabeta and TCRgammadelta intestinal intraepithelial lymphocytes (i-IELs) were significantly decreased in MyD88-deficient (-/-) mice. The expression of IL-15 by i-ECs was severely reduced in MyD88(-/-) mice. Introduction of IL-15 transgene into MyD88(-/-) mice (MyD88(-/-) IL-15 transgenic mice) partly restored the numbers of CD8alphaalpha TCRalphabeta and TCRgammadelta i-IELs. The i-IEL in irradiated wild-type (WT) mice transferred with MyD88(-/-) bone marrow (BM) cells had the same proportions of i-IEL as WT mice, whereas those in irradiated MyD88(-/-) mice transferred with WT BM cells showed significantly reduced proportions of CD8alphaalpha TCRalphabeta and TCRgammadelta i-IELs, as was similar to the proportions found in MyD88(-/-) mice. However, irradiated MyD88(-/-) IL-15 transgenic mice transferred with WT BM cells had increased numbers of CD8alphaalpha TCRalphabeta and TCRgammadelta subsets in the i-IEL. These results suggest that parenchymal cells such as i-ECs contribute to the maintenance of CD8alphaalpha TCRalphabeta and gammadelta i-IELs at least partly via MyD88-dependent IL-15 production.  相似文献   

6.
Signals from the IL-7R are uniquely required for T cell development and maintenance, despite the resemblance of IL-7R to other cytokine receptors and the apparent sharing of common signaling pathways. This unique requirement could either reflect unique expression of IL-7R or IL-7, or it could indicate that the IL-7R delivers unique signals. To determine whether the IL-7R provided unique signals, we exchanged its intracellular domain with that of other cytokine receptors: IL-4R, IL-9R, and prolactin receptor (PRLR). Chimeric receptors were used to reconstitute development of IL-7R(-/-) hemopoietic progenitors by transducing the receptors in retroviral vectors. Whereas IL-7R(-/-) thymocytes are arrested at the double-negative stage, IL-4R, IL-9R, or PRLR all imparted some progression to the double-positive stage. IL-4R and PRLR gave only small numbers of thymocytes, whereas IL-9R gave robust alphabeta T cell development and reconstitution of peripheral CD4 and CD8 cells, indicating that it can duplicate many of the functions of IL-7R. However, IL-9R failed to reconstitute rearrangement of the TCRgamma locus or development of gammadelta T cells. Thus, the IL-7R signals required in the alphabeta T cell lineage (such as survival and proliferation) are not unique to this receptor, whereas rearrangement of the TCRgamma locus may require a signal that is not shared by other receptors.  相似文献   

7.
Mice devoid of the IL-15 system lose over 90% of CD8alphaalpha(+) TCRalphabeta and TCRgammadelta intestinal intraepithelial lymphocytes (iIELs). Previous work revealed that IL-15Ralpha and IL-15 expressed by parenchymal cells, but not by bone marrow-derived cells, are required for normal CD8alphaalpha(+) iIEL homeostasis. However, it remains unclear when and how the IL-15 system affects CD8alphaalpha(+) iIELs through their development. This study found that IL-15Ralpha is dispensable for the thymic stage of CD8alphaalpha(+) TCRalphabeta and TCRgammadelta iIEL development but is required for the maintenance and/or differentiation of the putative lineage marker negative precursors in the intestinal epithelium, especially for the most mature CD8 single positive subset. Moreover, the IL-15 system directly supports the survival of mature CD8alphaalpha(+) iIEL in vivo. Taken together, this study suggests that regulation of CD8alphaalpha(+) iIEL homeostasis by the IL-15 system does not occur in the thymus but involves mature cells and putative precursors in the intestine.  相似文献   

8.
9.
Development of alphabeta and gammadelta T cells depends on productive rearrangement of the appropriate TCR genes and their subsequent expression as proteins. TCRbeta and TCRgammadelta proteins first appear in DN3 and DN4 thymocytes, respectively. So far, it is not clear whether this is due to a delayed expression of TCRgammadelta proteins or to a more rapid progression to DN4 of thymocytes expressing TCRgammadelta. The answer to this question bears on the distinction between instructive and stochastic models of alphabeta/gammadelta lineage decision. To study this question, we first monitored initial TCR protein expression in wild-type and TCR transgenic mice in reaggregate thymic organ cultures. A TCRbeta transgene was expressed in nearly all DN3 and DN4 cells, accelerated DN3 to DN4 transition, and strongly diminished the number of cells that express TCRgammadelta proteins. In contrast, TCRgammadelta transgenes were expressed only in a fraction of DN4 cells, did not accelerate DN3 to DN4 transition, and did not reduce the number of DN4 cells expressing TCRbeta proteins. The TCRbeta transgene partially inhibited endogenous TCRgamma rearrangements, whereas the TCRgammadelta transgenes did not inhibit endogenous TCRbeta rearrangements. Second, we analyzed frequencies of productive TCRbeta and TCRgammadelta V(D)J junctions in DN3 and DN4 subsets. Most importantly, frequencies of productive TCRgammadelta rearrangements (Vdelta5, Vgamma1.1, and Vgamma2) appeared unselected in DN3. The results suggest a late and restricted expression of the corresponding gammadeltaTCR, severely limiting their putative instructional opportunities in alphabeta/gammadelta divergence.  相似文献   

10.
11.
12.
To investigate the consequences of the simultaneous expression in progenitor cells of a TCRgammadelta and a pre-TCR on alphabeta/gammadelta lineage commitment, we have forced expression of functionally rearranged TCRbeta, TCRgamma, and TCRdelta chains by means of transgenes. Mice transgenic for the three TCR chains contain numbers of gammadelta thymocytes comparable to those of mice transgenic for both TCRgamma and TCRdelta chains, and numbers of alphabeta thymocytes similar to those found in mice solely transgenic for a rearranged TCRbeta chain gene. gammadelta T cells from the triple transgenic mice express the transgenic TCRbeta chain, but do not express a TCRalpha chain, and, by a number of phenotypic and molecular parameters, appear to be bona fide gammadelta thymocytes. Our results reveal a remarkable degree of independence in the generation of alphabeta and gammadelta lineage cells from progenitor cells that, in theory, could simultaneously express a TCRgammadelta and a pre-TCR.  相似文献   

13.
There is growing evidence that the differentiation processes in the fetal and adult thymus are not identical. However, there is little information on whether these developmental differences influence the properties of mature cells that exit the thymus and seed peripheral lymphoid organs. We have addressed this issue by comparing the development of Ag-specific Th1/Th2 function by fetal vs adult thymic derived CD4(+) cells in the same adoptive adult hosts. Host mice were irradiated and transplanted with 14- to 15-day fetal thymic lobes from Thy-1 congenic mice. Ag (keyhole limpet hemocyanin)-specific Th1/Th2 responses of fetal-derived (donor) or adult-derived (host) CD4(+) cells were analyzed by ELISA following primary or secondary immunization. Fetal-derived cells produced up to 10-fold more of both Th1 (IFN-gamma) and Th2 (IL-4) cytokines than did adult-derived cells. Comparisons of the IL-4:IFN-gamma ratios showed that the responses of fetal-derived cells were Th2-skewed in an Ag dose-dependent manner. At low doses of Ag, the fetal-derived ratio was approximately 5 times higher than the adult-derived ratio. As the Ag dose was increased, the differences between the ratios of the fetal- and adult-derived responses were minimized. These relative responses were established initially during the primary effector phase but were maintained for weeks, into the memory phase of the immune response. Importantly, fetal-derived CD4(+) cells showed these properties whether the fetal thymic precursors matured within the fetal or adult thymic microenvironment. These results demonstrate that cells arising from fetal thymic precursors are functionally different both qualitatively and quantitatively from adult-derived cells.  相似文献   

14.
Notch family receptors control critical events in the production and replenishment of specialized cells in the immune system. However, it is unclear whether Notch signaling regulates abrupt binary lineage choices in homogeneous progenitors or has more gradual influence over multiple aspects of the process. A recently developed coculture system with Delta 1-transduced stromal cells is being extensively used to address such fundamental questions. Different from fetal progenitors, multiple types of adult marrow cells expanded indefinitely in murine Delta-like 1-transduced OP9 cell cocultures, progressed to a DN2/DN3 thymocyte stage, and slowly produced TCR(+) and NK cells. Long-term cultured cells of this kind retained some potential for T lymphopoiesis in vivo. Adult marrow progressed through double-positive and single-positive stages only when IL-7 concentrations were low and passages were infrequent. Lin(-)c-Kit(low)GFP(+)IL-7Ralpha(+/-) prolymphocytes were the most efficient of adult bone marrow cells in short-term cultures, but the assay does not necessarily reflect cells normally responsible for replenishing the adult thymus. Although marrow-derived progenitors with Ig D(H)-J(H) rearrangements acquired T lineage characteristics in this model, that was not the case for more B committed cells with V(H)-D(H)J(H) rearrangement products.  相似文献   

15.
The thymus and parathyroid glands in mice develop from a thymus/parathyroid primordium that forms from the endoderm of the third pharyngeal pouch. We investigated the molecular mechanisms that promote this unique process in which two distinct organs form from a single primordium, using mice mutant for Hoxa3 and Pax1. Thymic ectopia in Hoxa3(+/-)Pax1(-/-) compound mutants is due to delayed separation of the thymus/parathyroid primordium from the pharynx. The primordium is hypoplastic at its formation, and has increased levels of apoptosis. The developing third pouch in Hoxa3(+/-)Pax1(-/-) compound mutants initiates normal expression of the parathyroid-specific Gcm2 and thymus-specific Foxn1 genes. However, Gcm2 expression is reduced at E11.5 in Pax1(-/-) single mutants, and further reduced or absent in Hoxa3(+/-)Pax1(-/-) compound mutants. Subsequent to organ-specific differentiation from the shared primordium, both the parathyroids and thymus developed defects. Parathyroids in compound mutants were smaller at their formation, and absent at later stages. Parathyroids were also reduced in Pax1(-/-) mutants, revealing a new function for Pax1 in parathyroid organogenesis. Thymic hypoplasia at later fetal stages in compound mutants was associated with increased death and decreased proliferation of thymic epithelial cells. Our results suggest that a Hoxa3-Pax1 genetic pathway is required for both epithelial cell growth and differentiation throughout thymus and parathyroid organogenesis.  相似文献   

16.
IL-7Ralpha-chain-deficient (IL-7Ralpha-/-) and common gamma chain-deficient (gammac-/-) mice both exhibit abnormal thymic and intestinal intraepithelial lymphocyte (IEL) development, but the developmental inhibition is not equivalent. In this report, we assessed whether the defects in T cell development associated with gammac-/- mice were due to currently defined gammac-dependent cytokines by cross-breeding IL-7Ralpha-/- mice to mice lacking either IL-2, IL-4, or IL-2Rbeta. IL-2/IL-7Ralpha and IL-4/IL-7Ralpha double knockout (DKO) mice demonstrated equivalent thymic development to IL-7Ralpha-/- mice, whereas IL-2Rbeta/IL-7Ralpha DKO mice, which lack IL-2, IL-7, and IL-15 signaling, displayed thymic T cell defects identical to gammac-/- mice. Collectively, these data indicate that of the gammac-dependent cytokines, only IL-7 and IL-15 contribute to the progression and production of thymic T cells. In the IEL, IL-7Ralpha-/- mice selectively lack CD8alphaalpha TCRgammadelta cells, whereas IL-2Rbeta-/- mice show a significant reduction in all CD8alphaalpha cells. IL-2-/- and IL-2/IL-7Ralpha DKO mice demonstrated a reduction in CD8alphaalpha IELs to nearly the same extent as IL-2Rbeta-/- mice, indicating that IL-2 functions in CD8alphaalpha IEL development. Moreover, IL-2Rbeta/IL-7Ralpha DKO mice lacked nearly all TCR-bearing IEL, again recapitulating the phenotype of gammac-/- mice. Thus, these data point to the importance of IL-2, IL-7, and IL-15 as the gammac-dependent cytokines essential for IEL development.  相似文献   

17.
To ascertain whether p53 deficiency in vivo leads to the deregulation of DNA methylation machinery prior to tumor development, we investigated the expression profile of DNA methyltransferases in the thymus and the liver of p53(+/+), p53(+/-), and p53(-/-) mice at 7 weeks of age before tumor development. The expression of DNA methyltransferases was examined in the thymus at 7 weeks of age, since the malignant T-cell lymphoma develops most frequently in p53(-/-) mice around 20 weeks of age. Both mRNA and protein levels of Dnmt1 and Dnmt3b were increased in the thymus and the liver of p53-deficient mice. The expression of Dnmt3a was also increased in the liver but not in the thymus of p53-deficient mice. Dnmt3L expression was reduced in the thymus of p53(+/-) and p53(-/-) mice. The total 5-methylcytosine (5-MeC) in the genomic DNA of p53(+/+), p53(+/-), and p53(-/-) mice was quantitated by dot-blot using antibody against 5-MeC. Global methylation was increased in the thymus and the liver of p53-deficient mice. To correlate the deregulated expression of DNA methyltransferases with the disturbance of the epigenetic integrity, we examined the DNA methylation of the imprinting control region (ICR) at the insulin-like growth factor II (Igf2)/H19 loci in the thymus and the liver of p53(+/+), p53(+/-), and p53(-/-) mice. The region containing two CCCTC binding factor (CTCF) binding sites in the 5'-ICR tended to be hypomethylated in the thymus of p53(-/-) mice, but not in the liver. The expression profile of Igf2 and H19 indicated that the thymus-specific changes of Igf2 and H19 expression were coherent to the hypomethylation of the ICR in the thymus. Our results suggest that p53 is required for the maintenance of DNA methylation patterns in vivo.  相似文献   

18.
Successive colonization of the thymus by waves of thymocyte progenitors has been described in chicken-quail chimeras and suggested from studies in mice. In swine, we show that the first CD3epsilon-bearing thymocytes appear on day 40 of gestation (DG40). These early thymocytes were CD3epsilonhigh and belonged to the gammadelta T cell lineage. Mature CD3epsilonhigh alphabeta thymocytes were observed 15 days later (DG55), and their occurrence was preceded by the appearance of CD3epsilonlow thymocytes (DG45). Thereafter, we observed transient changes in thymocyte subset composition (DG56-DG74), which can be explained by a gap in pro-T cell delivery to the thymus. This delivery gap corresponds with the expression of the pan-leukocyte CD45 and pan-myelomonocytic SWC3a markers in fetal liver and bone marrow and is probably caused by shifting of primary lymphopoiesis between these organs. Therefore, we conclude that the embryonic thymus is colonized by at least two successive waves of hemopoietic progenitors during embryogenesis and that the influx of thymocyte progenitors is discontinuous. Surface immunophenotyping and cell cycle analysis of thymocyte subsets allowed us to compare thymocyte differentiation in pigs with that described for rodents and humans and to propose a model for T cell lymphopoiesis in swine. We also observed that the porcine IL-2Ralpha (CD25), a typical differentiation marker of pre-T cells in mice and humans, was not expressed on thymocyte precursors in pigs and could only be found on mature thymocytes. Finally, we observed a subset of TCRgammadelta+ thymocytes that were cycling late during their development in the thymus.  相似文献   

19.
A fibroblastoid cell line TSt-4 was established from fetal thymus tissue of C57BL/6 mice. When fetal thymus (FT) cells or CD4-8- (DN) cells of adult thymuses were cultured on the monolayer of TSt-4, a considerable proportion of lymphocytes expressed CD4 or both CD4 and CD8 within 1 day, and the CD4+CD8- cells were maintained further while the CD4+8+ cells disappeared by Day 5. A large proportion of cells generated from DN cells but not FT cells was shown to express CD3 and T cell receptor alpha beta. Addition of recombinant interleukin (IL)-7 into the cultures resulted in a marked increase of cell recovery without virtual change in differentiation process of alpha beta lineage. The present work strongly suggests that thymic fibroblasts play an important role in T cell differentiation and IL-7 contributes to supporting proliferation of differentiated cells.  相似文献   

20.
T lymphocytes of fetal origin found in maternal circulation after gestation have been reported as a possible cause for autoimmune diseases. During gestation, mothers acquire CD34+CD38+ cells of fetal origin that persist decades. In this study, we asked whether fetal T and B cells could develop from these progenitors in the maternal thymus and bone marrow during and after gestation. RAG-/--deficient female mice (Ly5.2) were mated to congenic wild-type Ly5.1 mice (RAG+/+). Fetal double-positive T cells (CD4+CD8+) with characteristic TCR and IL-7R expression patterns could be recovered in maternal thymus during the resulting pregnancies. We made similar observations in the thymus of immunocompetent mothers. Such phenomenon was observed overall in 12 of 68 tested mice compared with 0 of 51 controls (p=0.001). T cells could also be found in maternal spleen and produced IFN-gamma in the presence of an allogenic or an Ag-specific stimulus. Similarly, CD19+IgM+ fetal B cells as well as plasma Igs could be found in maternal RAG-/- bone marrow and spleen after similar matings. Our results suggest that during gestation mothers acquire fetal lymphoid progenitors that develop into functional T cells. This fetal cell microchimerism may have a direct impact on maternal health.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号