首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vesicle-associated membrane protein-2 (VAMP-2) and cellubrevin are associated with the membrane of insulin-containing secretory granules and of gamma-aminobutyric acid (GABA)-containing synaptic-like vesicles of pancreatic beta-cells. We found that a point mutation in VAMP-2 preventing targeting to synaptic vesicles also impairs the localization on insulin-containing secretory granules, suggesting a similar requirement for vesicular targeting. Tetanus toxin (TeTx) treatment of permeabilized HIT-T15 cells leads to the proteolytic cleavage of VAMP-2 and cellubrevin and causes the inhibition of Ca2+-triggered insulin exocytosis. Transient transfection of HIT-T15 cells with VAMP-1, VAMP-2 or cellubrevin made resistant to the proteolytic action of TeTx by amino acid replacements in the cleavage site restored Ca2+-stimulated secretion. Wild-type VAMP-2, wild-type cellubrevin or a mutant of VAMP-2 resistant to TeTx but not targeted to secretory granules were unable to rescue Ca2+-evoked insulin release. The transmembrane domain and the N-terminal region of VAMP-2 were not essential for the recovery of stimulated exocytosis, but deletions preventing the binding to SNAP-25 and/or to syntaxin I rendered the protein inactive in the reconstitution assay. Mutations of putative phosphorylation sites or of negatively charged amino acids in the SNARE motif recognized by clostridial toxins had no effect on the ability of VAMP-2 to mediate Ca2+-triggered secretion. We conclude that: (i) both VAMP-2 and cellubrevin can participate in the exocytosis of insulin; (ii) the interaction of VAMP-2 with syntaxin and SNAP-25 is required for docking and/or fusion of secretory granules with the plasma membrane; and (iii) the phosphorylation of VAMP-2 is not essential for Ca2+-stimulated insulin exocytosis.  相似文献   

2.
In order to better understand the molecular mechanisms of platelet granule secretion, we evaluated the effect of activation-induced degranulation on three functional platelet SNARE proteins, SNAP-23, VAMP-3, and syntaxin 4. Initial studies showed that SNAP-23 is lost upon SFLLRN-induced platelet activation. Experiments with permeabilized platelets demonstrated that proteolysis of SNAP-23 was Ca(2+)-dependent. Ca(2+)-dependent proteolysis of SNAP-23 was inhibited by the cell-permeable calpain inhibitors, calpeptin and E-64d, as well as by the naturally occurring calpain inhibitor, calpastatin. In addition, purified calpain cleaved SNAP-23 in permeabilized platelets in a dose-dependent manner. In intact platelets, calpeptin prevented SFLLRN-induced degradation of SNAP-23. In contrast, calpeptin did not prevent SFLLRN-induced degradation of VAMP-3 and syntaxin 4 did not undergo substantial proteolysis following platelet activation. Calpain-induced cleavage of SNAP-23 was a late event occurring between 2.5 and 5 min following exposure of permeabilized platelets to Ca(2+). Experiments evaluating platelet alpha-granule secretion demonstrated that incubation of permeabilized platelets with 10 microM Ca(2+) prior to exposure to ATP inhibited ATP-dependent alpha-granule secretion from permeabilized platelets. SNAP-23 was cleaved under these conditions. Incubation of permeabilized platelets with either calpeptin or calpastatin prevented Ca(2+)-mediated degradation of SNAP-23 and reversed Ca(2+)-mediated inhibition of ATP-dependent alpha-granule secretion. Thus, activation of calpain prior to secretion results in loss of SNAP-23 and inhibits alpha-granule secretion. These studies suggest a mechanism whereby calpain activation serves to localize platelet secretion to areas of thrombus formation.  相似文献   

3.
VAMP proteins are important components of the machinery controlling docking and/or fusion of secretory vesicles with their target membrane. We investigated the expression of VAMP proteins in pancreatic beta-cells and their implication in the exocytosis of insulin. cDNA cloning revealed that VAMP-2 and cellubrevin, but not VAMP-1, are expressed in rat pancreatic islets and that their sequence is identical to that isolated from rat brain. Pancreatic beta-cells contain secretory granules that store and secrete insulin as well as synaptic-like microvesicles carrying gamma-aminobutyric acid. After subcellular fractionation on continuous sucrose gradients, VAMP-2 and cellubrevin were found to be associated with both types of secretory vesicle. The association of VAMP-2 with insulin-containing granules was confirmed by confocal microscopy of primary cultures of rat pancreatic beta-cells. Pretreatment of streptolysin-O permeabilized insulin-secreting cells with tetanus and botulinum B neurotoxins selectively cleaved VAMP-2 and cellubrevin and abolished Ca(2+)-induced insulin release (IC50 approximately 15 nM). By contrast, the pretreatment with tetanus and botulinum B neurotoxins did not prevent GTP gamma S-stimulated insulin secretion. Taken together, our results show that pancreatic beta-cells express VAMP-2 and cellubrevin and that one or both of these proteins selectively control Ca(2+)-mediated insulin secretion.  相似文献   

4.
Incubation of rabbit platelets with thrombin resulted in rapid accumulations of inositol trisphosphate (IP3) in [3H]inositol-labeled platelets, increases of [3H]arachidonic acid [( 3H]AA) release, and [3H]serotonin secretion from the platelets prelabeled with these labeled compounds. The experiments using phospholipase A2 or C inhibitor suggested that not only phospholipase C but also phospholipase A2 activity plays an important role in serotonin secretion. We then studied the regulatory mechanisms of phospholipase A2 activity. Guanosine 5'-(3-O-thio)triphosphate (GTP gamma S), guanyl-5'-(beta,gamma-iminio)triphosphate), or AlF4- caused a significant liberation of AA in digitonin-permeabilized platelets but not in intact platelets. Thrombin-stimulated AA release was not observed in permeabilized platelets, whereas thrombin acted synergistically with GTP or GTP analogs to stimulate AA release. GTP analog-stimulated AA release was inhibited by guanosine 5'-(2-O-thio)diphosphate) and was also inhibited by decreased Mg2+ concentrations. Thrombin-induced, GTP-dependent AA release, but not IP3 formation, was diminished by 100 ng/ml of pertussis toxin, associated with ADP-ribosylation of membrane 41-kDa protein(s). Thrombin-stimulated AA release from intact platelets and GTP gamma S-stimulated release from permeabilized platelets were both markedly dependent on Ca2+. However, Ca2+ addition could not enhance AA release without GTP gamma S even when Ca2+ was increased up to 10(-4) M in permeabilized platelets. The results show that thrombin-stimulated AA release from rabbit platelets is mainly mediated by phospholipase A2 activity, not by phospholipase C activity, and that Ca2+ is an important factor to the activation of phospholipase A2 but is not the sole factor to the regulation. GTP-binding protein(s) is involved in receptor-mediated activation of phospholipase A2.  相似文献   

5.
Platelets store self-agonists such as ADP and serotonin in dense core granules. Although exocytosis of these granules is crucial for hemostasis and thrombosis, the underlying mechanism is not fully understood. Here, we show that incubation of permeabilized platelets with unprenylated active mutant Rab27A-Q78L, wild type Rab27A, and Rab27B inhibited the secretion, whereas inactive mutant Rab27A-T23N and other GTPases had no effects. Furthermore, we affinity-purified a GTP-Rab27A-binding protein in platelets and identified it as Munc13-4, a homologue of Munc13-1 known as a priming factor for neurotransmitter release. Recombinant Munc13-4 directly bound to GTP-Rab27A and -Rab27B in vitro, but not other GTPases, and enhanced secretion in an in vitro assay. The inhibition of secretion by unprenylated Rab27A was rescued by the addition of Munc13-4, suggesting that Munc13-4 mediates the function of GTP-Rab27. Thus, Rab27 regulates the dense core granule secretion in platelets by employing its binding protein, Munc13-4.  相似文献   

6.
In order to better understand granule release from platelets, we developed an alpha-toxin permeabilized platelet model to study alpha-granule secretion. Secretion of alpha-granules was analyzed by flow cytometry using P-selectin as a marker for alpha-granule release. P-selectin surface expression occurred when platelets were permeabilized in the presence of Ca2+. Responsiveness to Ca2+ was lost 30 min after permeabilization but could be reconstituted with MgATP. Alpha-toxin-permeabilized, MgATP-exposed platelets also degranulated within a pH range of 5.4-5.9 without exposure to and independent of Ca2+. ATP, GTP, CTP, UTP, and ITP supported Ca2+-induced alpha-granule secretion, while H+-induced alpha-granule secretion occurred only with ATP and GTP. Both Ca2+- and H+-induced alpha-granule secretion required ATP hydrolysis. Kinase inhibitors blocked both Ca2+- and H+-induced secretion. These data suggest that alpha-granule secretion in this permeabilized platelet system shares many characteristics with granule secretion studied in other permeabilized cell models. Furthermore, these results show that H+ can trigger alpha-granule release independent of Ca2+.  相似文献   

7.
In platelets activated by thrombin, the hydrolysis of phosphatidylinositol 4,5-bisphosphate by phospholipase C produces inositol 1,4,5-triphosphate (IP3) and diacylglycerol, metabolites which are known to cause Ca2+ release from the platelet dense tubular system and granule secretion. Previous studies suggest that phospholipase C activation is coupled to platelet thrombin receptors by a guanine nucleotide-binding protein or G protein. The present studies examine the contribution of this protein to thrombin-induced platelet activation and compare its properties with those of Gi, the G protein which mediates inhibition of adenylate cyclase by thrombin. In platelets permeabilized with saponin, nonhydrolyzable GTP analogs reproduced the effects of thrombin by causing diacylglycerol formation, Ca2+ release from the dense tubular system and serotonin secretion. In intact platelets, fluoride, which by-passes the thrombin receptor and directly activates G proteins, caused phosphoinositide hydrolysis and secretion. Fluoride also caused an increase in the platelet cytosolic free Ca2+ concentration that appeared to be due to a combination of Ca2+ release from the dense tubular system and increased Ca2+ influx across the platelet plasma membrane. Guanosine 5'-O-(2-thiodiphosphate) (GDP beta S), which inhibits G protein function, inhibited the ability of thrombin to cause IP3 and diacylglycerol formation, granule secretion, and Ca2+ release from the dense tubular system in saponin-treated platelets. Increasing the thrombin concentration overcame the effects of GDP beta S on secretion without restoring diacylglycerol formation. The effects of GDP beta S on platelet responses to thrombin which had been subjected to partial proteolysis (gamma-thrombin) were similar to those obtained with native alpha-thrombin despite the fact that gamma-thrombin is a less potent inhibitor of adenylate cyclase than is alpha-thrombin. Thrombin-induced diacylglycerol formation and 45Ca release were also inhibited when the saponin-treated platelets were preincubated with pertussis toxin, an event that was associated with the ADP-ribosylation of a protein with Mr = 41.7 kDa. At each concentration tested, the inhibition of thrombin-induced diacylglycerol formation by pertussis toxin paralleled the inhibition of thrombin's ability to suppress PGI2-stimulated cAMP formation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
Neutrophils kill micro-organisms using microbicidal products that they release into the phagosome or into the extracellular space. The secretory machinery utilized by neutrophils is poorly characterized. We show that the small GTPase Rab27a is an essential component of the secretory machinery of azurophilic granules in granulocytes. Rab27a-deficient mice have impaired secretion of MPO (myeloperoxidase) into the plasma in response to lipopolysaccharide. Cell fractionation analysis revealed that Rab27a and the Rab27a effector protein JFC1/Slp1 (synaptotagmin-like protein 1) are distributed principally in the low-density fraction containing a minor population of MPO-containing granules. By immunofluorescence microscopy, we detected Rab27a and JFC1/Slp1 in a minor subpopulation of MPO-containing granules. Interference with the JFC1/Slp1-Rab27a secretory machinery impaired secretion of MPO in permeabilized neutrophils. The expression of Rab27a was dramatically increased when promyelocytic HL-60 cells were differentiated into granulocytes but not when they were differentiated into monocytes. Down-regulation of Rab27a in HL-60 cells by RNA interference did not affect JFC1/Slp1 expression but significantly decreased the secretion of MPO. Neither Rab27a nor JFC1/Slp1 was integrated into the phagolysosome membrane during phagocytosis. Neutrophils from Rab27a-deficient mice efficiently phagocytose zymosan opsonized particles and deliver MPO to the phagosome. We conclude that Rab27a and JFC1/Slp1 permit MPO release into the surrounding milieu and constitute key components of the secretory machinery of azurophilic granules in granulocytes. Our results suggest that the granules implicated in cargo release towards the surrounding milieu are molecularly and mechanistically different from those involved in their release towards the phagolysosome.  相似文献   

9.
Mobilization of human neutrophil granules is critical for the innate immune response against infection and for the outburst of inflammation. Human neutrophil-specific and tertiary granules are readily exocytosed upon cell activation, whereas azurophilic granules are mainly mobilized to the phagosome. These cytoplasmic granules appear to be under differential secretory control. In this study, we show that combinatorial soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complexes with vesicle-associated membrane proteins (VAMPs), 23-kDa synaptosome-associated protein (SNAP-23), and syntaxin 4 underlie the differential mobilization of granules in human neutrophils. Specific and tertiary granules contained VAMP-1, VAMP-2, and SNAP-23, whereas the azurophilic granule membranes were enriched in VAMP-1 and VAMP-7. Ultrastructural, coimmunoprecipitation, and functional assays showed that SNARE complexes containing VAMP-1, VAMP-2, and SNAP-23 mediated the rapid exocytosis of specific/tertiary granules, whereas VAMP-1 and VAMP-7 mainly regulated the secretion of azurophilic granules. Plasma membrane syntaxin 4 acted as a general target SNARE for the secretion of the distinct granule populations. These data indicate that at least two SNARE complexes, made up of syntaxin 4/SNAP-23/VAMP-1 and syntaxin 4/SNAP-23/VAMP-2, are involved in the exocytosis of specific and tertiary granules, whereas interactions between syntaxin 4 and VAMP-1/VAMP-7 are involved in the exocytosis of azurophilic granules. Our data indicate that quantitative and qualitative differences in SNARE complex formation lead to the differential mobilization of the distinct cytoplasmic granules in human neutrophils, and a higher capability to form diverse SNARE complexes renders specific/tertiary granules prone to exocytosis.  相似文献   

10.
The biochemical, ultrastructural and functional aspects of digitonin-permeabilized platelets were investigated. Human platelets were permeabilized by exposure to the steroid glycoside digitonin. A 60 microM concentration of this permeabilizer produced a very substantial release of cytosolic enzymes from the platelets. Release from subcellular granules was relatively low and did not inhibit the response of platelets to a series of agonists. Although digitonin-permeabilized platelets required higher threshold concentrations of the usual stimulants, both primary and secondary aggregation as well as the release of nucleotides and enzymes from their respective granules remained intact. Transmission electron micrographs revealed discontinuities in the plasma membrane of digitonin-treated platelets, but scanning electron microscopy showed no difference between control and permeabilized platelets. No substantial loss of structural or membrane proteins could be detected by one- and two-dimensional gel electrophoresis. The pore size produced by digitonin treatment was sufficient to allow entry of 125I-labeled IgG into the platelet cytosolic space.  相似文献   

11.
Upon activation, platelets release many active substances stored in alpha- and dense-core granules. However, the molecular mechanisms governing regulated exocytosis are not yet fully understood. Here, we have established an assay system using permeabilized platelets to analyze the Ca(2+)-induced exocytosis of both types of granules, focusing on RabGTPases. Incubation with Rab GDP dissociation inhibitor, an inhibitory regulator of RabGTPases, reduced membrane-bound RabGTPases extensively, and caused strong inhibition of the Ca(2+)-induced secretion of von Willebrand factor (vWF) stored in alpha-granules, but not that of [(3)H]5-hydroxytryptamine (5-HT) in dense-core granules. Specifically, Rab4 co-fractionated with vWF and P-selectin (an alpha-granule marker) upon separation of platelet organelles by density gradient centrifugation. Incubation of the permeabilized platelets with cell extracts expressing the dominant negative mutant of His-tagged Rab4S22N, but not with those of similar mutant His-Rab3BT36N, inhibited the vWF secretion, whereas neither of the cell extracts affected the [(3)H]5-HT secretion. Importantly, the inhibition of vWF secretion was rescued by depleting the cell extracts of the His-Rab4S22N with nickel beads. Thus, in platelets, the regulatory mechanisms governing alpha- and dense-core granule secretions are distinct, and Rab4 is an essential regulator of the Ca(2+)-induced exocytosis of alpha-granules.  相似文献   

12.
Pertussis toxin stimulates both basal and nicotine-evoked catecholamine secretion from intact bovine adrenal chromaffin cells, as well as Ca2(+)-evoked release from permeabilized cells. Tetanus toxin inhibits all these effects; it reduces the secretion of intact cells treated with pertussis toxin to the basal level, and decreases by about 50% Ca2(+)-evoked release from permeabilized cells whether or not previously stimulated by pertussis toxin.  相似文献   

13.
The ultrastructural changes in electropermeabilized bovine platelets that accompany the Ca2(+)-induced secretion of serotonin were investigated in ultra-thin sections of chemically fixed cells. Such preparations permitted us to study both the localization of and the structures associated with serotonin-containing dense granules. Localization of dense granules within cells was examined by measuring the shortest distances between the granular membranes and the plasma membrane. About 40% of total granules were located close to the plasma membrane at an average distance of 10.8 +/- 1.6 nm. 71% of the total number of granules were localized at a similar average distance of 12.5 +/- 2.7 nm in intact platelets. The percentage of granules apposed to the plasma membrane corresponded closely to the percentage of total serotonin that was maximally secreted after stimulation of the permeabilized (38 +/- 4.9%) and the intact platelets (72 +/- 3.6%). Furthermore, the percentage of granules anchored to the membrane, but not of those in other regions of permeabilized cells, decreased markedly when cells were stimulated for 30 s by extracellularly added Ca2+. The decrease in the numbers of granules in the vicinity of the plasma membrane corresponded to approximately 22% of the total number of dense granules that were used for measurements of the distances between the two membranes and corresponded roughly to the overall decrease (15%) in the average number of the granules per cell. Most dense granules were found to be associated with meshwork structures of microfilaments. Upon secretory stimulation, nonfilamentous, amorphous structures found between the plasma membrane and the apposed granules formed a bridge-like structure that connected both membranes without any obvious accompanying changes in the microfilament structures. These results suggest that the dense granules that are susceptible to secretory stimulation are anchored to the plasma membrane before stimulation, and that the formation of the bridge-like structure may participate in the Ca2(+)-regulated exocytosis.  相似文献   

14.
We have examined the role of the R-soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) synaptobrevin-2/vesicle-associated membrane protein (VAMP)-2 in neutrophil exocytosis. VAMP-2, localized in the membranes of specific and gelatinase-containing tertiary granules in resting human neutrophils, resulted translocated to the cell surface following neutrophil activation under experimental conditions that induced exocytosis of specific and tertiary granules. VAMP-2 was also found on the external membrane region of granules docking to the plasma membrane in activated neutrophils. Specific Abs against VAMP-2 inhibited Ca(2+) and GTP-gamma-S-induced exocytosis of CD66b-enriched specific and tertiary granules, but did not affect exocytosis of CD63-enriched azurophilic granules, in electropermeabilized neutrophils. Tetanus toxin disrupted VAMP-2 and inhibited exocytosis of tertiary and specific granules. Activation of neutrophils led to the interaction of VAMP-2 with the plasma membrane Q-SNARE syntaxin 4, and anti-syntaxin 4 Abs inhibited exocytosis of specific and tertiary granules in electropermeabilized neutrophils. Immunoelectron microscopy showed syntaxin 4 on the plasma membrane contacting with docked granules in activated neutrophils. These data indicate that VAMP-2 mediates exocytosis of specific and tertiary granules, and that Q-SNARE/R-SNARE complexes containing VAMP-2 and syntaxin 4 are involved in neutrophil exocytosis.  相似文献   

15.
Platelet secretion not only drives thrombosis and hemostasis, but also mediates a variety of other physiological and pathological processes. The ubiquitous SNARE machinery and a number of accessory proteins have been implicated in regulating secretion in platelet. Although several platelet SNAREs have been identified, further members of the SNARE family may be needed to fine-tune platelet secretion. In this study we identified expression of the t-SNARE syntaxin 8 (STX8) (Qc SNARE) in mouse and human platelets. In mouse studies, whereas STX8 was not essential for α-granule or lysosome secretion, Stx8−/− platelets showed a significant defect in dense granule secretion in response to thrombin and CRP. This was most pronounced at intermediate concentrations of agonists. They also showed an aggregation defect that could be rescued with exogenous ADP and increased embolization in Stx8−/− mice in vivo consistent with an important autocrine and paracrine role for ADP in aggregation and thrombus stabilization. STX8 therefore specifically contributes to dense granule secretion and represents another member of a growing family of genes that play distinct roles in regulating granule release from platelets and thus platelet function in thrombosis and hemostasis.  相似文献   

16.
In order to examine the role of osmotic forces in degranulation, the effects of solutes and osmolality on granule secretion were explored using both FMLP-stimulated, intact neutrophils and Ca2+-stimulated, permeabilized cells. We employed a HEPES-based buffer system which was supplemented with: a) permeant (KCl or NaCl) or impermeant (Na-isethionate or choline-Cl) ions, or b) permeant (urea) or impermeant (sucrose) uncharged solutes. Intact and permeabilized cells had significantly different solute requirements for degranulation. FMLP-stimulated release from intact cells was supported by NaCl or Na-isethionate greater than KCl greater than choline-Cl or sucrose greater than urea. In contrast, the rank order of Ca2+-stimulated release from permeabilized cells was choline-Cl greater than Na-isethionate, KCl, or NaCl greater than sucrose greater than urea. Hypo-osmotic conditions caused increased levels of background granule release from both intact and permeabilized neutrophils. However, hypo-osmolality inhibited both FMLP-stimulated degranulation from intact cells and Ca2+-induced release from permeabilized neutrophils. While hyperosmotic conditions inhibited stimulated release from intact cells, this inhibition was much less pronounced in permeabilized cells when the granules were directly exposed to these solutions. In fact, hyperosmotic sucrose greatly enhanced Ca2+-induced secretion. Although isolated specific and azurophil granules showed some lytic tendencies in hypo-osmotic buffers, the overall stability of the isolated granules did not indicate that swelling alone could effect degranulation. These results suggest that degranulation in permeabilized cells is neither due to nor driven by simple osmotic forces (under resting or stimulated conditions) and emphasize differences obtained by bathing both the granules and plasma membrane (as opposed to membranes alone) in various solutes.  相似文献   

17.
The influence of adrenocorticotropic hormone (ACTH) on the interrenal gland of Triturus carnifex was investigated by in vivo administration of synthetic ACTH. The effects were evaluated by examination of the ultrastructural morphological and morphometrical features of the tissues as well as the circulating serum levels of aldosterone, noradrenaline (NA), and adrenaline (A). In June and November, ACTH administration increased aldosterone release (from 281.50 +/- 1.60 pg/ml in carrier-injected newts to 597.02 +/- 3.35 pg/ml in June; from 187.45 +/- 1.34 pg/ml in carrier-injected animals to 651.00 +/- 3.61 pg/ml in November). The steroidogenic cells showed clear signs of stimulation, together with a reduction of lipid content in June and an increase of lipid content in November. Moreover, ACTH administration decreased the mean total number of secretory vesicles in the chromaffin cells in June (from 7.73 +/- 0.60 granules/microm2 in carrier-injected animals to 5.91 +/- 0.40 granules/microm2) and November (from 7.78 +/- 0.75 granules/microm2 in carrier-injected newts to 4.87 +/- 0.40 granules/microm2). In June, however, when T. carnifex chromaffin cells contain almost exclusively NA granules (NA: 7.42 +/- 0.86 granules/microm2; A: 0.32 +/- 0.13 granules/microm2), ACTH decreased NA content (5.52 +/- 0.32 granules/microm2) increasing NA release (from 639.82 +/- 3.30 pg/ml in carrier-injected to 880.55 +/- 4.52 pg/ml). In November, when both catecholamines, NA (3.92 +/- 0.34 granules/microm2) and A (3.84 +/- 0.33 granules/microm2), are present in the chromaffin cells, ACTH administration reduced A content (1.02 +/- 0.20 granules/microm2), enhancing adrenaline secretion (from 681.30 +/- 3.62 pg/ml in carrier-injected newts to 1,335.73 +/- 9.03 pg/ml). The results of this study indicate that ACTH influences the steroidogenic tissue, eliciting aldosterone release. The effects on the chromaffin tissue, increase of NA or A secretion, according to the period of chromaffin cell functional cycle, may be direct and/or mediated through the increase of aldosterone release. Finally, the lack of an increase of A content in the chromaffin cells, or A serum level, following ACTH administration in June might suggest an independence of PNMT enzyme on corticosteroids.  相似文献   

18.
The existence of paracrine control of steroidogenic activity by adrenochromaffin cells in Triturus carnifex was investigated by in vivo noradrenaline (NA) administration. The effects were evaluated by examination of the ultrastructural morphological and morphometrical features of the tissues as well as the serum levels of aldosterone, NA, and adrenaline (A). In March and July, NA administration increased aldosterone release (from 187.23 +/- 2.93 pg/ml to 878.31 +/- 6.13 pg/ml in March; from 314.60 +/- 1.34 pg/ml to 622.51 +/- 2.65 pg/ml in July) from steroidogenic cells. The cells showed clear signs of stimulation, as evidenced by a strong reduction of lipid content. Moreover, NA administration decreased the mean total number of secretory vesicles in the chromaffin cells in March (from 7.24 +/- 0.18 granules/micro2 to 5.57 +/- 1.88 granules/micro2) and July (from 7.74 +/- 0.74 granules/micro2 to 6.04 +/- 1.13 granules/micro2). In March, however, when T. carnifex chromaffin cells contain both catecholamines, NA (3.88 +/- 0.13 granules/micro2) and A (3.36 +/- 0.05 granules/micro2) in almost equal quantities, NA administration reduced A content (1.29 +/- 1.04 granules/micro2) in the chromaffin cells, enhancing adrenaline secretion (from 681.27 +/- 1.83 pg/ml to 1527.02 +/- 2.11 pg/ml). In July, when the chromaffin cells contain almost exclusively NA granules (NA: 7.42 +/- 0.86 granules/micro2; A: 0.32 +/- 0.13 granules/micro2), NA administration reduced the number of NA granules (5.45 +/- 1.10 granules/micro2), thereby increasing noradrenaline release from the chromaffin cells (from 640.19 +/- 1.65 pg/ml to 1217.0 +/- 1.14 pg/ml). The results of this study indicate that NA influences the steroidogenic cells, eliciting aldosterone release. Noradrenalin effects on the chromaffin cells, increase of NA or A secretion, according to the period of chromaffin cell functional cycle, may be direct and/or mediated through the steroidogenic cells. The existence of intra-adrenal paracrine interactions in T. carnifex is discussed.  相似文献   

19.
Previous reports showed that cleavage of vesicle-associatedmembrane protein-2 (VAMP-2) and synaptosomal-associated protein of 25 kDa (SNAP-25) by clostridial neurotoxins in permeabilized insulin-secreting -cells inhibited Ca2+-evoked insulinsecretion. In these reports, the solubleN-ethylmaleimide-sensitive factor attachment protein targetreceptor proteins might have formed complexes, which preclude fullaccessibility of the putative sites for neurotoxin cleavage. In thiswork, VAMP-2 and SNAP-25 were effectively cleaved before they formedtoxin-insensitive complexes by transient transfection of insulinoma HITor INS-1 cells with tetanus toxin (TeTx) or botulinum neurotoxin A(BoNT/A), as shown by immunoblotting and immunofluorescence microscopy. This resulted in an inhibition of Ca2+ (glucose orKCl)-evoked insulin release proportionate to the transfectionefficiency (40-50%) and an accumulation of insulin granules. Withthe use of patch-clamp capacitance measurements, Ca2+-evoked exocytosis by membrane depolarization to 10mV was abolished by TeTx (6% of control) but only moderately inhibitedby BoNT/A (30% of control). Depolarization to 0 mV to maximizeCa2+ influx partially overcame BoNT/A (50% of control) butnot TeTx inhibition. Of note, cAMP activation potentiatedCa2+-evoked secretion by 129% in control cells but only55% in BoNT/A-transfected cells and had negligible effects inTeTx-transfected cells. These results indicate that, whereas VAMP-2 isabsolutely necessary for insulin exocytosis, the effects of SNAP-25depletion on exocytosis, perhaps on insulin granule pool priming ormobilization steps, could be partially reversed by higher levels ofCa2+ or cAMP potentiation.

  相似文献   

20.
Upon activation, platelets release many active substances. Here, we have analyzed the mechanism governing Ca(2+)-induced secretion of von Willebrand factor stored in alpha-granules and 5-hydroxytryptamine in dense-core granules in permeabilized human platelets. Both secretions were dependent on ATP and cytosol. An essential factor for both granule secretions was purified from rat brain cytosol and identified to be protein kinase Calpha (PKCalpha) by partial amino acid sequencing. Purified PKCalpha efficiently stimulated both secretions in the presence of cytosol, whereas PKCalpha alone did not support the secretion of either type of granules, suggesting that PKCalpha is not a sufficient factor. Finally, in human platelet cytosol fractionated by a gel filtration column, the stimulatory activity for dense-core granule secretion paralleled with the concentration of PKC, suggesting that PKC could also be such a stimulatory factor in platelet cytosol. Thus, we identified PKCalpha as an essential, but not sufficient, cytosolic factor for the Ca(2+)-induced secretions of both alpha- and dense-core granules in platelets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号