首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The functional response of the predatory mite Phytoseiulus persimilis Athias-Henriot to eggs of its prey, the spider mite Tetranychus urticae Koch was examined on three plant species. Experiments were done to determine whether differences in the functional response on the three plant species were due to the morphological features of the crop directly on the predator or through an effect of the plant species on the prey. The results show that crop morphology is the only factor influencing the predatory ability of P. persimilis on the three plant species. Fewer eggs were eaten on Ceanothus thyrsiflorus var. 'Autumnal Blue', the plant species with hairy leaves, and greater numbers of prey consumed on Choisya ternata, a species with smooth leaves. However, similarly few eggs were eaten on the smooth, but waxy leaved Euonymus japonicus as on Ceanothus thyrsiflorus, demonstrating that morphological characters of leaves other than the possession of hairs and trichomes may affect the rates of predation. The implications of these results for the tritrophic interactions between plant, predator and prey, and the development of suitable biological control strategies are discussed.  相似文献   

2.
The influence of plant species on the population dynamics of the spider mite pest, Tetranychus urticae, and its predator, Phytoseiulus persimilis, was examined as a prerequisite to effective biological control on ornamental nursery stock. Experiments have been done to investigate how the development, fecundity and movement of T. urticae, and the movement of P. persimilis were affected by plant species. A novel experimental method, which incorporates plant structure, was used to investigate the functional response of P. persimilis. Development times for T. urticae were consistent with published data and did not differ with plant species in a biologically meaningful way. Plant species was shown to have a major influence on fecundity (P < 0.001) and movement of the pest mite (P < 0.01), but no influence on the movement of the predator. The movement of both pest and predator was shown to be related to the density of the adult pest mites on the plant (P < 0.001). Plant structure affected the functional response, particularly in relation to the ability of the predator to locate prey at low densities. The impact of these findings on the effective use of biological control on ornamental nursery stock is discussed.  相似文献   

3.
Simulation modelling studies on the biological control of Tetranychus urticae Koch in ornamental crops suggest that the dispersal of the predatory mite Phytoseiulus persimilis Athias-Henriot in the absence of food is important in determining its ability to locate sparsely distributed patches of prey (Skirvin et al., 2002). Experimental work to examine factors influencing dispersal of P. persimilis has shown that ground substrate affects the movement of the predator, and that the greater the number of connections between adjacent plants the greater the number of mites moving. In addition, P. persimilis are able to move across as many as 10 plant–plant connections within 24 h, although the majority of predators tracked moved less than this. Temperature has a significant impact on dispersal of P. persimilis, with more mites leaving release points as temperature increases up to 25 °C, but decreasing above this temperature. This work highlights the importance of understanding how the plant canopy and temperature influence the dispersal of predatory mites. The importance of these results for biological control in ornamental crops is discussed.  相似文献   

4.
The effect of plant architecture, in terms of leaf hairiness, and prey spatial arrangement, on predation rate of eggs of the spider mite, Tetranychus urticae Koch, by the predatory mite Phytoseiulus persimilis Athias-Henriot was examined on cut stems of chrysanthemums. Three levels of leaf hairiness (trichome density) were obtained using two different chrysanthemum cultivars and two ages within one of the cultivars. The number of prey consumed by P. persimilis was inversely related to trichome density. At low prey densities (less than ten eggs per stem), prey consumption did not differ in a biologically meaningful way between treatments. The effect of prey spatial arrangement on the predation rate of P. persimilis was also examined. Predation rates were higher in prey patches on leaves adjacent to the release point of P. persimilis, but significantly greater numbers of prey were consumed in higher density prey patches compared to low density patches. The predators exhibited non-random searching behaviour, spending more time on leaves closest to the release point. The implications of these findings for biological control and predator-prey dynamics are discussed.  相似文献   

5.
The effect of leaf hairs on searching efficiency of adult female Phytoseiulus persimilis was investigated. For this purpose we used the ornamental crop Gerbera jamesonii and determined the predator's searching efficiency on three cultivars that differ largely in the density of leaf hairs on the undersurface of the leaves. Walking speed of the mites was highest on the cultivar with the lowest leaf hair density. Walking activity, defined as the percentage of time spent walking, was not dependent on leaf hair density of the cultivars. At both prey densities tested, time until first predation increased with leaf hair density. The predation rate of adult female P. persimilis is affected by trichome density, particularly when prey density is low. At prey densities of 1.3 and 2.5 Tetranychus urticae eggs cm–2, predation rate was inversely related to leaf hair density. At a prey density of 8.0 eggs cm–2 no significant effect of leaf hair density on predation rate was found. These negative effects on searching efficiency and predation success at low prey density of P. persimilis suggest that biological control of T. urticae on gerbera may be hampered by leaf hairs. © Rapid Science Ltd. 1998  相似文献   

6.
The dispersal behaviour of the predatory mite Phytoseiulus persimilis Athias-Henriot between bean plants was studied in a greenhouse. The aim of the study was to estimate the rate of predator emigration affected by different densities of Tetranychus urticae Koch and different numbers of between-plant connections (bridges). The results show that predators emigrate from a plant almost exclusively as a response to the local prey density whereas the loss rate (the per capita rate at which predators disappear from the system) also depends on the prey density on the surrounding plants, provided they are connected to the central plant by bridges. © Rapid Science Ltd. 1998  相似文献   

7.
In greenhouse agroecosystems, a guild of spider mite predators may consist of the oligophagous predatory mite Phytoseiulus persimilis Athias-Henriot, the polyphagous predatory mite Neoseiulus californicus McGregor (both Acari: Phytoseiidae) and the primarily herbivorous but facultatively predatory western flower thrips Frankliniella occidentalis Pergande (Thysanoptera: Thripidae). Diet-specialization and the predator body size relative to prey are crucial factors in predation on F. occidentalis by P. persimilis and N. californicus. Here, it was tested whether the relevance of these factors changes during predator ontogeny. First, the predator (protonymphs and adult females of P. persimilis and N. californicus): prey (F. occidentalis first instars) body size ratios were measured. Second, the aggressiveness of P. persimilis and N. californicus towards F. occidentalis was assessed. Third, survival, development and oviposition of P. persimilis and N. californicus with F. occidentalis prey was determined. The body size ranking was P. persimilis females > N. californicus females > P. persimilis protonymphs > N. californicus protonymphs. Neoseiulus californicus females were the most aggressive predators, followed by highly aggressive N. californicus protonymphs and moderately aggressive P. persimilis protonymphs. Phytoseiulus persimilis females did not attack thrips. Frankliniella occidentalis larvae are an alternative prey for juvenile N. californicus and P. persimilis, enabling them to reach adulthood. Females of N. californicus but not P. persimilis sustained egg production with thrips prey. Within the guild studied here, N. californicus females are the most harmful predators for F. occidentalis larvae, followed by N. californicus and P. persimilis juveniles. Phytoseiulus persimilis females are harmless to F. occidentalis.  相似文献   

8.
Although many predators and parasitoids are known to respond to odours produced by plants infested with their prey under laboratory conditions, there are actually few studies that show that this response leads to higher numbers of predators or parasitoids on the plants under natural conditions. Here we study the response of predatory mites (Phytoseiulus persimilis Athias-Henriot, Acari, Phytoseiidae) to odours from cucumber plants infested with two-spotted spider mites (Tetranychus urticae Koch, Acari, Tetranychidae) in greenhouse release experiments, where predators were released in the centre of a hexagon of cucumber plants. Forty to 57% of all predators released were recaptured on plants within 7 h. Of these, an average of 79.5% were found on infested plants, indicating that these attract about 4 times as many predators as do clean plants. Hence, the blind predatory mites were guided to the plants with prey by herbivore-induced odours produced by the plant, as was indicated by olfactometer experiments, where it was found that P. persimilis preferred odours from infested cucumber plants to odours from clean cucumber plants. The long-range searching behaviour of P. persimilis is discussed.  相似文献   

9.
Occasional pesticide application in integrated pest management to at least part of a crop requires that any biological control agents must re-invade previously sprayed areas in order that resurgent pests can be constrained. The ability of the phytoseiid predatory mite Phytoseiulus persimilis to feed on adult two-spotted spider mite (TSSM) Tetranychus urticae on excised leaf discs in both control conditions and in a treatment with a sub lethal residue of agricultural mineral oil (AMO) was assessed. The predator exhibited a Type II functional response with the asymptote significantly higher in the AMO conditions due to the fact that the prey grew slower and reached a smaller size in this treatment. In terms of prey volume eaten, the satiation level of the predator was unchanged by the AMO deposits. The numbers of eggs produced by adult P. persimilis females at densities of 4, 8 and 16 TSSM adult females/disc in the control were significantly higher than those in the AMO treatment, but were similar for the higher density levels, 32 and 64 prey per disc. Thus the functional response in terms of volume of prey eaten explained the numerical response in terms of predator eggs produced. The presence of AMO deposits when the prey were at high density had no effect on predator efficiency (volume eaten) but resulted in a lower intake than that in control conditions when there was a greater distance between prey.  相似文献   

10.
We studied developmental plasticity under food stress in three female-biased size dimorphic predatory mite species, Phytoseiulus persimilis, Neoseiulus californicus, and Amblyseius andersoni. All three species prey on two-spotted spider mites but differ in the degree of adaptation to this prey. Phytoseiulus persimilis is a specialized spider mite predator, N. californicus is a generalist with a preference for spider mites, and A. andersoni is a broad generalist. Immature predators were offered prey patches of varying density and their survival chances, dispersal tendencies, age and size at maturity measured. Amblyseius andersoni dispersed earlier from and had lower survival chances in low density prey patches than N. californicus and P. persimilis. Age at maturity was not affected by prey density in the generalist A. andersoni, whereas both the specialist P. persimilis and the generalist N. californicus accelerated development at low prey densities. Species-specific plasticity in age at maturity reflects opposite survival strategies when confronted with limited prey: to prematurely leave and search for other food (A. andersoni) or to stay and accelerate development (P. persimilis, N. californicus). In all species, size at maturity was more plastic in females than males, indicating that males incur higher fitness costs from deviations from optimal body size.  相似文献   

11.
Functional response curves were constructed for adult Ranatra dispar feeding on four different densities of notonectid prey at 15, 20, 25 and 30°C. Values for the attack-rate and handling time were estimated from Roger's random predator equation. The most generally applicable response was the type II, with the mean number of prey eaten increasing with increase in temperature. The attack-rate was linearly related to temperature while handling time decreased exponentially with increase in temperature, although values changed very little between 20 and 30°C. It is suggested that changes in metabolic activity and related ‘hunger’ effects on various components of predatory behaviour account for the observed number of prey eaten up to 25°C, however, an increase in the level of prey activity at 30°C may influence the observed number of prey caught (and eaten) at this higher temperature.  相似文献   

12.
The between-plant movement of the predatory mite Phytoseiulus persimilis was studied in a greenhouse. The aims were to determine the distance moved by P. persimilis and the response of the predator to the location of a plant infested with two-spotted spider mite, Tetranychus urticae. In addition, we tested whether the predator exhibits random movement between plants or whether its dispersal is oriented. We found that a high proportion of the predators released on a central plant were able to reach plants at the periphery provided the plants were connected to the central plant with 'bridges'. The results further showed that P. persimilis does not disperse randomly to the surrounding plants. The distribution of immigrants was influenced by the position of an infested plant in the neighbourhood, but light/shadow effects in the greenhouse may also influence the choice of direction. The likely implications of the findings for biological control are discussed. © Rapid Science Ltd. 1998  相似文献   

13.
Abstract  This paper tests the hypothesis that habitat differences affect the migratory ability of the Chilean predatory mite, Phytoseiulus persimilis , an introduced biological control agent of the spider mite, Tetranychus urticae . It is suggested that habitat resistance accounts for the species' inability to invade rainforests in south-eastern Queensland, Australia. Like its prey, P. persimilis migrates to distant plants on air currents. To test our hypothesis, populations of the Chilean predatory mite were established on potted bean plants in both remnant rainforest and adjacent open fields, and their migration monitored using sticky traps. Overall it was found that prey populations on leaves were similar in both habitats, but those of predators were about 20% lower in rainforest. However, the numbers of both predators and prey caught on sticky traps in rainforest were about 6% and 25%, respectively, of those caught in open fields, indicating a strongly reduced rate of aerial migration in the forest. The number of P. persimilis caught on the sticky traps increased with increasing populations of predators on foliage. Thus, dense vegetation inhibits the movement of air currents and inhibits colonisation by both predators and, to a lesser extent, spider mites. These results suggest that the inhibition of aerial migration is one reason for lower numbers of P. persimilis in forest habitats, both because its own vagility is restricted, and because its prey is less able to disperse.  相似文献   

14.
Research on trophic cascades in terrestrial ecosystems has only recently revealed that root-associated organisms interact with organisms living on aboveground plant parts. Arbuscular mycorrhizal (AM) symbiosis is a ubiquitous phenomenon, yet studies on its effect on aboveground natural enemies of herbivores are scarce and mainly deal with plant-mediated rather than herbivore-mediated interactions. Here, we studied herbivore-mediated effects of AM symbiosis on an acarine predator. We measured life history characteristics and population growth rates of Phytoseiulus persimilis preying on two-spotted spider mites, Tetranychus urticae, which were feeding on bean plants colonized or not colonized by the AM fungus Glomus mosseae. All major life history characteristics of P. persimilis, foremost oviposition rate, minimum prey requirements needed to reach adulthood, and developmental time, were positively affected by AM colonization of the host plant of their prey, together resulting in enhanced population growth rates of the predators. Hence, we hypothesize that a bottom-up trophic cascade may counteract the apparent negative effects of mycorrhizal symbiosis when promoting herbivory by promoting the predation of herbivores due to improved prey quality. We argue that this pathway may be involved in stabilizing plant-mycorrhizal symbiosis in ecosystems over time.  相似文献   

15.
Current glasshouse biological control practice relies on regular prophylactic introductions of one or two 'best' species of natural enemy. Whilst this is effective for much of the time, occasional failures occur due to factors such as differences in response to seasonal changes in environmental conditions and/or host plant effects. This study looks at the predatory behaviour of a specialist coccinellid, Stethorus punctillum Weise, and a generalist mite, Amblyseius californicus McGregor (which predate on the two-spotted spider mite, Tetranychus urticae ) in order to assess how they responded to temperatures and relative humidities typical of glasshouse conditions on four edible crop plant species. Activity (distance covered, time spent walking, walking speed, angular velocity, and turning rate) was recorded at 20, 25 and 30 o C and at relative humidity (RH) levels of 33, 65 and 90%, on tomato, pepper, aubergine and cucumber leaves, and analysed using video-computer techniques. The results show that the activity of S. punctillum significantly increased at higher temperature levels. Host plant species also strongly influenced the performance of the predator, with it being most active on pepper and tomato and least active on aubergines. RH had no significant influence. The activity and predation by A. californicus increased at low humidity levels, especially in terms of time spent moving and number of prey killed. Temperature levels had no significant influence, but host plant species strongly influenced the performance of the predator, which was most active on pepper, and least active on aubergines. Further research was conducted with semi-field trials to investigate the efficacy in controlling TSSM with different combination of predators. When contrasting the commercially available predatory mite Phytoseiulus persimilis , used alone, compared with its use in a treatment with a combination of predator species, there was a stronger decrease in TSSM numbers on the crop plants in the latter treatment.  相似文献   

16.
Spider Mites Avoid Plants with Predators   总被引:1,自引:0,他引:1  
While searching for food, prey can use cues associated with their predators to select patches with a reduced predation risk. In many cases, odours indicate the presence of both food and predators. Spider mites are known to use odours to locate food and mates, but also to avoid interspecific competitors. We studied the response of the two-spotted spider mite, Tetranychus urticae, to cues associated with the presence of their predators, the phytoseiid Phytoseiulus persimilis. We found that the spider mites strongly avoid plants defended by this predator, but do not avoid plants with another predatory mite, Neoseiulus californicus. Since P. persimilis is commonly used in the greenhouse where our strain of T. urticae was collected and strains of this pest are known to adapt to greenhouse environments, we hypothesize that there has been selection on the pest to recognize its enemy. We further hypothesize that there has been no selection to recognize N. californicus, as it has not been used against two-spotted spider mites in the greenhouse where our spider mites were collected. We discuss the implications of avoidance of predation by spider mites and non-lethal effects of predators for biological control of this pest in greenhouses.  相似文献   

17.
Adult females of the predatory mite Phytoseiulus persimilis Athias-Henriot are strongly attracted to infochemicals released by plants infested with their prey, the two-spotted spider mite (Tetranychus urticae Koch), thereby effectively locating their prey. However, we found a consistently lower degree of attraction to these infochemicals for a population of P. persimilis, which is called non-responding population. Here we demonstrate that this low degree of attraction is a contagious phenomenon and that it cannot be explained by differences in abiotic conditions, physiological state and experience of predators or by genetic differences between predator populations. Female predators exposed to dead conspecifics of the non-responding population and their products showed a lower degree of attraction to plant odours and a higher mortality than predators exposed to products of a living conspecific of the non-responding population. This was true 6–7 days after contact with dead conspecifics and their products whereas 2 days after contact no effects were detected. The present results are discussed in view of our hypothesis that the change in foraging behaviour as well as the high mortality rate are symptoms of a contagious disease affecting the non-responding population.  相似文献   

18.
Arthropods use odours associated with the presence of their food, enemies and competitors when searching for patches. Responses to these odours therefore determine the spatial distribution of animals, and are decisive for the occurrence and strength of interactions among species. Therefore, a logical first step in studying food web interactions is the analysis of behaviour of individuals that are searching for patches of food. We followed this approach when studying interactions in an artificial food web occurring on greenhouse cucumber in the Netherlands. In an earlier paper we found that one of the predators of the food web, the predatory mite Phytoseiulus persimilis Athias-Henriot, used to control spider mites, discriminates between odours from plants with spider mites, Tetranychus urticae Koch, and plants with spider mites plus conspecific predators. The odours used for discrimination are produced by adult prey in response to the presence of predators, and probably serve as an alarm pheromone to warn related spider mites. Other predator species may also trigger production of this alarm pheromone, which P. persimilis could use in turn to avoid plants with heterospecific predators. We therefore studied the response of the latter to odours from plants with spider mites and 3 other predator species, i.e. the generalist predatory bug Orius laevigatus (Fieber), the polyphagous thrips Frankliniella occidentalis and the spider-mite predator Neoseiulus californicus (McGregor). Both olfactometer and greenhouse release experiments yielded no evidence that P. persimilis avoids plants with any of the 3 heterospecific predators. This suggests that these predators do not elicit production of alarm pheromones in spider mites, and we argue that this is caused by a lack of coevolutionary history. The consequences of the lack of avoidance of heterospecific predators for interactions in food webs and biological control are discussed.  相似文献   

19.
Environmental risks associated with the use of non-indigenous organisms for augmentative biological control have received growing attention. In Europe, the native pentatomid predator Picromerus bidens (Linnaeus) has been considered a potential alternative to the North American pentatomid Podisus maculiventris (Say) for the control of lepidopteran, coleopteran and hymenopteran defoliator pests. In the current study, prey consumption and developmental duration of the predatory stages of P. bidens and P. maculiventris were investigated at three temperatures (18, 23 and 27 degrees C) in the laboratory using caterpillars of Spodoptera littoralis as prey. Development time from second to fifth instar was longer for P. bidens than for P. maculiventris, taking on average 17-44 and 14-32 days, respectively, at the different temperatures. Total nymphal consumption of fourth instar S. littoralis caterpillars indicated a greater voracity of P. bidens as compared with P. maculiventris at both the low and high temperatures tested (18 and 27 degrees C). At 23 degrees C, however, the predation rate of P. maculiventris nymphs exceeded that of P. bidens nymphs. Effect of temperature on the functional response of P. bidens to densities of fourth instar Spodoptera exigua was assessed on potted green bean plants. Female adults of P. bidens exhibited a type II functional response at 18 and 23 degrees C but a type III response at 27 degrees C. Searching efficiency was not affected by temperature but handling time decreased from 4.2 to 1.4 h as temperature increased from 18 to 23 degrees C. However, the predator spent twice as much time handling prey at 27 degrees C (2.9 h) than at 23 degrees C. This study indicates high predation rates of P. bidens at a wide range of temperatures and suggests that the species may be a valuable asset for the biological control of defoliating caterpillars, provided that obstacles to its mass production can be overcome.  相似文献   

20.
The objective of this study was to determine whether differences in hairiness of tomato plants affect the functional and numerical response of the predator Neoseiulus californicus McGregor attacking the two-spotted spider mite, Tetranychus urticae Koch. Two tomato hybrids with different density of glandular hairs were used. The functional response was measured by offering eggs and adults of T urticae at densities ranging from 4 to 64 items per tomato leaflet (surface ca. 6.3 cm2); eggs were offered to predator protonymphs and deutonymphs, adult spider mites to adult predators. The number of spider mites eaten as a function of initial density was fitted to the disc equation. Predator densities were regressed against initial prey densities to analyze the numerical response. The number of eggs and adults of T. urticae eaten by N. californicus was extremely low in both hybrids. The nymphal stage of N. californicus and prey density had a significant effect on the number of T urticae eggs eaten by the predator, while hybrid had no effect. The functional response fitted reasonably well to the Holling model. The handling time (Th) and the attack rate (a) were very similar among the two hybrids. The numerical response indicated that the absolute density of predators increased with changes in spider mite densities but the relative predator/prey density decreased in both hybrids. Tomato hairiness prevented N. californicus from exhibiting a strong numerical response and the predator functional response was much lower than observed in other host plants and other phytoseiids. This result shows the need to consider plant attributes as an essential and interactive component of biological control practices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号