首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Different strategies have been used to express synthetic genes all encoding Clostridium pasteurianum 2[4Fe-4S] ferredoxin (Fd) in Escherichia coli. The polypeptide can be produced as the C-terminal addition to a hybrid Cro::Protein A fusion protein lacking the metallic centers. The incorporation of the [4Fe-4S] clusters into the cleaved apoFd cannot be carried out in the same conditions as those affording holoFd from purified C. pasteurianum apoFd. In contrast, fully functional Fds can be produced from non-fused synthetic genes under the dependence of strong promoters. The yields of recombinant Fd, although sufficient to purify significant quantities of protein, are limited by the very short half-life of the 2[4Fe-4S] Fd in E. coli, irrespective of the expression system used. These features are characteristic of 2[4Fe-4S] Fds when compared with the far more stable recombinant rubredoxin, and probably other small iron-sulfur proteins which have already been produced in high yields. The reasons for the high turnover of 2[4Fe-4S] Fds are discussed.  相似文献   

2.
Aquifex aeolicus is the only hyperthermophile that is known to contain a plant- and mammalian-type [2Fe-2S] ferredoxin (Aae Fd1). This unique protein contains two cysteines, in addition to the four that act as ligands of the [2Fe-2S] cluster, which form a disulfide bridge. We have investigated the stability of Aae Fd1 with (wild-type) and without (C87A variant) the disulfide bond, with respect to pH, thermal and chemical perturbation, and compared the results to those for the mesophilic [2Fe-2S] ferredoxin from spinach. Unfolding reactions of all three proteins are irreversible due to cluster decomposition in the unfolded state. Wild-type and C87A Aae Fd1 proteins are extremely stable: unfolding at 20 degrees C requires high concentrations of the chemical denaturant and long incubation times. Moreover, their thermal-unfolding midpoints are 40-50 degrees higher than that for spinach ferredoxin (pH 7). The stability of the Aae Fd1 protein is significantly lower at pH 2.5 than pH 7 and 10, suggesting that ionic interactions play a role in structural integrity. Interestingly, the iron-sulfur cluster in C87A Aae Fd1 rearranges into a transient species with absorption bands at 520 and 610 nm, presumably a linear three-iron cluster, in the high-pH unfolded state.  相似文献   

3.
The [2Fe-2S] ferredoxin ("Red paramagnetic protein", RPP) from C. pasteurianum has been found to be composed of two identical subunits of 10,000 +/- 2 000 daltons, each containing a [2Fe-2S] cluster. Resonance Raman (RR) spectra of RPP have been obtained at 23 degrees K, and compared to those of spinach ferredoxin (Sp Fd). Ten modes of the [2Fe-2S] chromophore were observed in the 100-450 cm-1 range. Assignments of non fundamental modes in the 500-900 cm-1 range allowed correlations between fundamental stretching modes of RPP and Sp Fd. Although assuming a [2Fe-2S] structure, the chromophore of RPP differs from that of Sp Fd by its conformation and by a slight weakening of Fe-S bonds, involving both the inorganic core and the cysteine ligands.  相似文献   

4.
5.
The soluble methane monooxygenase (sMMO) from Methylococcus capsulatus (Bath) is a multicomponent enzyme system required for the conversion of methane to methanol. It comprises a hydroxylase, a regulatory protein, and a reductase. The reductase contains two domains: an NADH-binding and FAD-containing flavin domain and a ferredoxin (Fd) domain carrying a [2Fe-2S] cofactor. Here, we report the solution structure of the reduced form of the 98-amino acid Fd domain (Blazyk, J. L., and Lippard, S. J. Unpublished results) determined by nuclear magnetic resonance (NMR) spectroscopy and restrained molecular dynamics calculations. The structure consists of six beta strands arranged into two beta sheets as well as three alpha helices. Two of these helices form a helix-proline-helix motif, unprecedented among [2Fe-2S] proteins. The [2Fe-2S] cluster is coordinated by the sulfur atoms of cysteine residues 42, 47, 50, and 82. The 10.9 kDa ferredoxin domain of the reductase protein transfers electrons to carboxylate-bridged diiron centers in the 251 kDa hydroxylase component of sMMO. The binding of the Fd domain with the hydroxylase was investigated by NMR spectroscopy. The hydroxylase binding surface on the ferredoxin protein has a polar center surrounded by patches of hydrophobic residues. This arrangement of amino acids differs from that by which previously studied [2Fe-2S] proteins interact with their electron-transfer partners. The critical residues on the Fd domain involved in this binding interaction map well onto the universally conserved residues of sMMO enzymes from different species. We propose that the [2Fe-2S] domains in these other sMMO systems have a fold very similar to the one found here for M. capsulatus (Bath) MMOR-Fd.  相似文献   

6.
Crystals of a [2Fe-2S] ferredoxin (Fd) I with a relative molecular mass of 10,480 were obtained from the blue-green alga Aphanothece sacrum. Each asymmetric unit of the crystal contains four molecules. An electron density map calculated by the single isomorphous replacement method with the anomalous dispersion at 2.5 A resolution was refined by averaging the four molecules in the asymmetric unit. Positional and isotropic thermal parameters for the non-hydrogen atoms of the four molecules and 158 water molecules were refined to an R-factor (R = sigma[Fo-Fc[/sigma Fo) of 0.23 by the restrained least-squares method. The estimated root-mean-square (r.m.s.) error for the atomic positions is 0.3 A. The r.m.s. deviations of equivalent C alpha atoms of the asymmetric-unit molecules superposed by the least-squares method average 0.35 A. The Fd molecule has a structure like the beta-barrel in the molecule of the [2Fe-2S] Fd from Spirulina platensis. A [2Fe-2S] cluster is bonded covalently to the protein molecule by four Fe-S, in which three of the Fe-S bonds are in a loop segment from position 38 to 47. The hydrophobic core inside the beta-barrel is formed by seven conservative residues: Val15, Val18, Ile24, Leu51, Ile74, Ala79 and Ile87. The molecular surface around Tyr23, Tyr80 and the active center may interact with ferredoxin-NADP+ reductase. One of the two iron atoms of the [2Fe-2S] cluster should be more easily reduced than the other because of differences in the hydrogen-bonding scheme and the hydrophobicity around the atoms.  相似文献   

7.
Knowing the manner of protein-protein interactions is vital for understanding biological events. The plant-type [2Fe-2S] ferredoxin (Fd), a well-known small iron-sulfur protein with low redox potential, partitions electrons to a variety of Fd-dependent enzymes via specific protein-protein interactions. Here we have refined the crystal structure of a recombinant plant-type Fd I from the blue green alga Aphanothece sacrum (AsFd-I) at 1.46 Å resolution on the basis of the synchrotron radiation data. Incorporating the revised amino-acid sequence, our analysis corrects the 3D structure previously reported; we identified the short α-helix (67-71) near the active center, which is conserved in other plant-type [2Fe-2S] Fds. Although the 3D structures of the four molecules in the asymmetric unit are similar to each other, detailed comparison of the four structures revealed the segments whose conformations are variable. Structural comparison between the Fds from different sources showed that the distribution of the variable segments in AsFd-I is highly conserved in other Fds, suggesting the presence of intrinsically flexible regions in the plant-type [2Fe-2S] Fd. A few structures of the complexes with Fd-dependent enzymes clearly demonstrate that the protein-protein interactions are achieved through these variable regions in Fd. The results described here will provide a guide for interpreting the biochemical and mutational studies that aim at the manner of interactions with Fd-dependent enzymes.  相似文献   

8.
Iron-sulfur proteins are among the sensitive targets of the nitric oxide cytotoxicity. When Escherichia coli cells are exposed to nitric oxide, iron-sulfur clusters are modified forming protein-bound dinitrosyl iron complexes. Such modified protein dinitrosyl iron complexes are stable in vitro but are efficiently repaired in aerobically growing E. coli cells even without any new protein synthesis. Here we show that cysteine desulfurase encoded by the gene iscS of E. coli can directly convert the ferredoxin dinitrosyl iron complex to the ferredoxin [2Fe-2S] cluster in the presence of L-cysteine in vitro. A reassembly of the [2Fe-2S] cluster in the ferredoxin dinitrosyl iron complex does not require any addition of iron or other protein components. Furthermore, a complete removal of the dinitrosyl iron complex from ferredoxin prevents reassembly of the [2Fe-2S] cluster in the protein. The results suggest that cysteine desulfurase (IscS) together with L-cysteine can efficiently repair the nitric oxide-modified ferredoxin [2Fe-2S] cluster and that the iron center in the dinitrosyl iron complex may be recycled for the reassembly of iron-sulfur clusters in proteins.  相似文献   

9.
Amino acid sequence of [2Fe-2S] ferredoxin from Clostridium pasteurianum   总被引:4,自引:0,他引:4  
The complete amino acid sequence of the [2Fe-2S] ferredoxin from the saccharolytic anaerobe Clostridium pasteurianum has been determined by automated Edman degradation of the whole protein and of peptides obtained by tryptic and by staphylococcal protease digestion. The polypeptide chain consists of 102 amino acids, including 5 cysteine residues in positions 11, 14, 24, 56, and 60. The sequence has been analyzed for hydrophilicity and for secondary structure predictions. In its native state the protein is a dimer, each subunit containing one [2Fe-2S] cluster, and it has a molecular weight of 23,174, including the four iron and inorganic sulfur atoms. The extinction coefficient of the native protein is 19,400 M-1 cm-1 at 463 nm. The positions of the cysteine residues, four of which are most probably the ligands of the [2Fe-2S] cluster, on the polypeptide chain of this protein are very different from those found in other [2Fe-2S] proteins, and in other ferredoxins in general. In addition, whole sequence comparisons of the [2Fe-2S] ferredoxin from C. pasteurianum with a number of other ferredoxins did not reveal any significant homologies. The likely occurrence of several phylogenetically unrelated ferredoxin families is discussed in the light of these observations.  相似文献   

10.
11.
Zeng J  Huang X  Liu Y  Liu J  Qiu G 《Current microbiology》2007,55(6):518-523
The [2Fe-2S] cluster containing ferredoxin has attracted much attention in recent years. Genetic analyses show that it has an essential role in the maturation of various iron–sulfur (Fe-S) proteins and functions as a component of the complex machinery responsible for the biogenesis of Fe-S clusters. The gene of ferredoxin from A. ferrooxidans ATCC 23270 was cloned, successfully expressed in Escherichia coli, and purified by one-step affinity chromatography to homogeneity. The MALDI-TOF MS and spectra results of the recombinant protein confirmed that the iron–sulfur cluster was correctly inserted into the active site of the protein. Site-directed mutagenesis results revealed that Cys42, Cys48, Cys51, and Cys87 were ligating with the [Fe2S2] cluster of the protein.  相似文献   

12.
A [2Fe-2S] ferredoxin (Fd1) from the hyperthermophilic bacterium Aquifex aeolicus has been obtained by heterologous expression of the encoding gene in Escherichia coli. Sequence comparisons show that this protein belongs to the extended family of plant- and mammalian-type [2Fe-2S] ferredoxins but also indicate that it is not closely similar to either the plant-type or mammalian-type subfamilies. Instead, it appears to bear some similarity to novel members of this family, in particular the Isc-type ferredoxins involved in the assembly of iron-sulfur clusters in vivo. The two redox levels of the [2Fe-2S](2+/+) metal site of A. aeolicus ferredoxin have been studied by UV-visible, resonance Raman, EPR, variable temperature magnetic circular dichroism, and M?ssbauer spectroscopies. A full-spin Hamiltonian analysis is given for the M?ssbauer spectra. In aggregate, the spectroscopic data reveal differences with both the plant-type and mammalian-type ferredoxins, in keeping with the sequence comparisons. The midpoint potential of the [2Fe-2S](2+/+) couple, at -375 mV versus the normal hydrogen electrode, is more negative than those of mammalian-type ferredoxins and at the upper end of the range covered by plant-type ferredoxins. A. aeolicus ferredoxin contains two cysteines in addition to the four that are committed as ligands of the [2Fe-2S] cluster. These two residues have been shown by chemical modification and site-directed mutagenesis to form a disulfide bridge in the native protein. While that cystine unit plays a significant role in the exceptional thermostability of A. aeolicus ferredoxin (T(m) = 121 degrees C at pH 7 versus T(m) = 113 degrees C in a molecular variant where the disulfide bridge has been removed), it does not bear on the properties of the [2Fe-2S](2+/+) chromophore. This observation is consistent with the large distance (ca. 20 A) that is predicted to separate the iron-sulfur chromophore from the disulfide bridge.  相似文献   

13.
Two distinct ferredoxins, Fd I and Fd II, were isolated and purified to homogeneity from photoautotrophically grown Chlorobium tepidum, a moderately thermophilic green sulfur bacterium that assimilates carbon dioxide by the reductive tricarboxylic acid cycle. Both ferredoxins serve a crucial role as electron donors for reductive carboxylation, catalyzed by a key enzyme of this pathway, pyruvate synthase/pyruvate ferredoxin oxidoreductase. The reduction potentials of Fd I and Fd II were determined by cyclic voltammetry to be -514 and -584 mV, respectively, which are more electronegative than any previously studied Fds in which two [4Fe-4S] clusters display a single transition. Further spectroscopic studies indicated that the CD spectrum of oxidized Fd I closely resembled that of Fd II; however, both spectra appeared to be unique relative to ferredoxins studied previously. Double integration of the EPR signal of the two Fds yielded approximately approximately 2.0 spins per molecule, compatible with the idea that C. tepidum Fd I and Fd II accept 2 electrons upon reduction. These results suggest that the C. tepidum Fd I and Fd II polypeptides each contain two bound [4Fe-4S] clusters. C. tepidum Fd I and Fd II are novel 2[4Fe-4S] Fds, which were shown previously to function as biological electron donors or acceptors for C. tepidum pyruvate synthase/pyruvate ferredoxin oxidoreductase (Yoon, K.-S., Hille, R., Hemann, C. F., and Tabita, F. R. (1999) J. Biol. Chem. 274, 29772-29778). Kinetic measurements indicated that Fd I had approximately 2.3-fold higher affinity than Fd II. The results of amino acid sequence alignments, molecular modeling, oxidation-reduction potentials, and spectral properties strongly indicate that the C. tepidum Fds are chimeras of both clostridial-type and chromatium-type Fds, suggesting that the two Fds are likely intermediates in the evolutional development of 2[4Fe-4S] clusters compared with the well described clostridial and chromatium types.  相似文献   

14.
Rapid and quantitative reductive coupling of two [2Fe-2S]2+ clusters to form a single [4Fe-4S]2+ cluster on the homodimeric IscU Fe-S cluster scaffold protein has been demonstrated by UV-visible absorption, M?ssbauer, and resonance Raman spectroscopies, using dithionite as the electron donor. Partial reductive coupling was also observed using reduced Isc ferredoxin, which raises the possibility that Isc ferredoxin is the physiological reductant. The results suggest that reductive coupling of adjacent [2Fe-2S]2+ clusters assembled on IscU provides a general mechanism for the final step in the biosynthesis of [4Fe-4S]2+ clusters. The [4Fe-4S]2+ center on IscU can be reduced to a S = 1/2[4Fe-4S]+ cluster (g parallel = 2.06 and g perpendicular = 1.92), but the low midpoint potential (< -570 mV) and instability of the reduced cluster argue against any physiological relevance for the reduced cluster. On exposure to O2, the [4Fe-4S]2+ cluster on IscU degrades via a semistable [2Fe-2S]2+ cluster with properties analogous to those of the [2Fe-2S]2+ center in [2Fe-2S]2+ IscU. It is suggested that the ability of IscU to accommodate either [2Fe-2S]2+ or [4Fe-4S]2+ clusters in response to cellular redox status and/or oxygen levels may provide an effective way to populate appropriately cluster-loaded forms of IscU for maturation of different types of [Fe-S] proteins.  相似文献   

15.
The 2.3 A resolution crystal structure of a [2Fe-2S] cluster containing ferredoxin from Aquifex aeolicus reveals a thioredoxin-like fold that is novel among iron-sulfur proteins. The [2Fe-2S] cluster is located near the surface of the protein, at a site corresponding to that of the active-site disulfide bridge in thioredoxin. The four cysteine ligands are located near the ends of two surface loops. Two of these ligands can be substituted by non-native cysteine residues introduced throughout a stretch of the polypeptide chain that forms a protruding loop extending away from the cluster. The presence of homologs of this ferredoxin as components of more complex anaerobic and aerobic electron transfer systems indicates that this is a versatile fold for biological redox processes.  相似文献   

16.
The chemical sequence of the [2Fe-2S] ferredoxin from the cyanobacterium AnabaenaPCC7119 (Fd7119) and its high-resolution X-ray structures in the oxidized and reduced states have been determined. The Fd7119 sequence is identical to that of the ferredoxin from the PCC7120 strain (Fd7120). X-ray diffraction data were collected at 100 K with an oxidized trigonal Fd7119 crystal, at 1.3 A resolution, and with an orthorhombic crystal, previously reduced with dithionite and flash frozen under anaerobic conditions, at 1.17 A resolution. The two molecular models were determined by molecular replacement with the [2Fe-2S] ferredoxin from the strain PCC7120 (Rypniewski, W. R., Breiter, D. R., Benning, M. M., Wesenberg, G., Oh, B.-H., Markley, J. L., Rayment, I., and Holden, H. M. (1991) Biochemistry 30, 4126-4131.) The final R-factors are 0. 140 (for the reduced crystal) and 0.138 (for the oxidized crystal). The [2Fe-2S] cluster appears as a significantly distorted lozenge in the reduced and oxidized redox states. The major conformational difference between the two redox forms concerns the peptide bond linking Cys46 and Ser47 which points its carbonyl oxygen away from the [2Fe-2S] cluster ("CO out") in the reduced molecule and toward it ("CO in") in the oxidized one. The "CO out" conformation could be the signature of the reduction of the iron atom Fe1, which is close to the molecular surface. Superposition of the three crystallographically independent molecules shows that the putative recognition site with the physiological partner (FNR) involves charged, hydrophobic residues and invariant water molecules.  相似文献   

17.
Overexpression in Escherichia coli of the fdx4 gene from Aquifex aeolicus has allowed isolation and characterization of the first hyperthermophilic [2Fe-2S](Scys)(4) protein, a homodimer of M = 2 x 12.4 kDa with one [2Fe-2S] cluster per subunit. This protein is undamaged by heating to 100 degrees C for at least three hours. The primary structure, in particular the characteristic distribution of the four cysteine ligands of the metal site, and the spectroscopic properties of the A. aeolicus protein relate it to well characterized [2Fe-2S] proteins from Clostridium pasteurianum and Azotobacter vinelandii. These proteins are also homologous to subunits or domains of hydrogenases and NADH-ubiquinone oxidoreductase (Complex I) of respiratory chains. The A. aeolicus [2Fe-2S] protein is thus representative of a presumably novel protein fold involved in a variety of functions in very diverse cellular backgrounds.  相似文献   

18.
Azotobacter vinelandii (4Fe-4S)2 ferredoxin I (Fd I) is an electron transfer protein with Mr equals 14,500 and Eo equals -420 mv. It exhibits and EPR signal of g equals 2.01 in its isolated form. This resonance is almost identical with the signal that originates from a "super-oxidized" state of the 4Fe-4S cluster of potassium ferricyanide-treated Clostridium ferredoxin. A cluster that exhibits this EPR signal at g equals 2.01 is in the same formal oxidation state as the cluster in oxidized Chromatium High-Potential-Iron-Protein (HiPIP). On photoreduction of Fd I with spinach chloroplast fragments, the resonance at g equals 2.01 vanishes and no EPR signal is observed. This EPR behavior is analogous to that of reduced HiPIP, which also fails to exhibit an EPR spectrum. These characteristics suggest that a cluster in A. vinelandii Fd I functions between the same pair of states on reduction as does the cluster in HiPIP, but with a midpoint reduction potential of -420 mv in contrast to the value of +350 mv characteristic of HiPIP. Quantitative EPR and stoichoimetry studies showed that only one 4Fe-4S cluster in this (4Fe-4S)2 ferredoxin is reduced. Oxidation of Fd I with potassium ferricyanide results in the uptake of 1 electron/mol as determined by quantitative EPR spectroscopy. This indicates that a cluster in Fd I shows no electron paramagnetic resonance in the isolated form of the protein accepts an electron on oxidation, as indicated by the EPR spectrum, and becomes paramagnetic. The EPR behavior of this oxidizable cluster indicates that it also functions between the same pair of oxidation states as does the Fe-S cluster in HiPIP. The midpoint reduction potential of this cluster is approximately +340 mv. A. vinelandii Fd I is the first example of an iron-sulfur protein which contains both a high potential cluster (approximately +340 mv) and a low potential cluster (-420 mv). Both Fe-S clusters appear to function between the same pair of oxidation states as the single Fe-S cluster in Chromatium HiPIP, although the midpoint reduction potentials of the two clusters are approximately 760 mv different.  相似文献   

19.
Members of the monothiol glutaredoxin family and members of the BolA-like protein family have recently emerged as specific interacting partners involved in iron-sulfur protein maturation and redox regulation pathways. It is known that human mitochondrial BOLA1 and BOLA3 form [2Fe-2S] cluster-bridged dimeric heterocomplexes with the monothiol glutaredoxin GRX5. The structure and cluster coordination of the two [2Fe-2S] heterocomplexes as well as their molecular function are, however, not defined yet. Experimentally-driven structural models of the two [2Fe-2S] cluster-bridged dimeric heterocomplexes, the relative stability of the two complexes and the redox properties of the [2Fe-2S] cluster bound to these complexes are here presented on the basis of UV/vis, CD, EPR and NMR spectroscopies and computational protein-protein docking. While the BOLA1-GRX5 complex coordinates a reduced, Rieske-type [2Fe-2S]1+ cluster, an oxidized, ferredoxin-like [2Fe-2S]2+ cluster is present in the BOLA3-GRX5 complex. The [2Fe-2S] BOLA1-GRX5 complex is preferentially formed over the [2Fe-2S] BOLA3-GRX5 complex, as a result of a higher cluster binding affinity. All these observed differences provide the first indications discriminating the molecular function of the two [2Fe-2S] heterocomplexes.  相似文献   

20.
Diffraction data of two crystal forms (forms I and II) of [4Fe-4S] ferredoxin from Bacillus thermoproteolyticus have been collected to 0.92 A and 1.00 A resolutions, respectively, at 100 K using synchrotron radiation. Anisotropic temperature factors were introduced for all non-hydrogen atoms in the refinement with SHELX-97, in which stereochemical restraints were applied to the protein chain but not to the [4Fe-4S] cluster. The final crystallographic R-factors are 9.8 % for 7.0-0.92 A resolution data of the form I and 11.2 % for the 13.3-1.0 A resolution data of the form II. Many hydrogen atoms as well as multiple conformations for several side-chains have been identified. The present refinement has revised the conformations of several peptide bonds and side-chains assigned previously at 2.3 A resolution; the largest correction was that the main-chain of Pro1 and the side-chain of Lys2 were changed by rotating the C(alpha)-C bond of Lys2. Although the overall structures in the two crystal forms are very similar, conformational differences are observed in the two residues at the middle (Glu29 and Asp30) and the C-terminal residues, which have large temperature factors. The [4Fe-4S] cluster is a distorted cube with non-planar rhombic faces. Slight but significant compression of the four Fe-S bonds along one direction is observed in both crystal forms, and results in the D(2d) symmetry of the cluster. The compressed direction of the cluster relative to the protein is conserved in the two crystal forms and consistent with that in one of the clusters in Clostridium acidurici ferredoxin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号