首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Crystals of Azotobacter vinelandii ferredoxin I (FdI) have been soaked in solutions containing K3Fe(CN)6 in order to study the oxidation of the [3Fe-4S] and [4Fe-4S] clusters in the protein. Ferricyanide treatment results in partial loss of Fe and S from each cluster accompanied by alteration of Fe-S bonds. The effects of oxidation can be quantitated by crystallographic refinement when each [Fe-S] cluster is modeled as having a single, average structure with non-standard geometry. The oxidized clusters refined at 2.1-Å resolution display statistically significant deviations from geometric ideality. If interpreted in terms of atomic shifts these deviations indicate that each cluster first loses an inorganic S atom. In each case an Fe atom bonded to this S separates from the remaining atoms of the cluster such that the [3Fe-4S] and [4Fe-4S] clusters partially decompose into a single Fe plus 2Fe and 3Fe fragments. The extent of structural changes observed are essentially the same in crystals soaked at 3?:?1, 9?:?1 and 30?:?1 mole ratio of K3 Fe(CN)6?:?FdI, suggesting that the crystal lattice permits limited oxidation reactions to occur at a low mole ratio but restricts conformational changes from occurring that may be required for more extensive oxidative reactions at higher mole ratio. The results are relevant to understanding the transformations which may take place when [Fe-S] proteins are deliberately oxidized with ferricyanide.  相似文献   

2.
Amino acid sequence of [2Fe-2S] ferredoxin from Clostridium pasteurianum   总被引:4,自引:0,他引:4  
The complete amino acid sequence of the [2Fe-2S] ferredoxin from the saccharolytic anaerobe Clostridium pasteurianum has been determined by automated Edman degradation of the whole protein and of peptides obtained by tryptic and by staphylococcal protease digestion. The polypeptide chain consists of 102 amino acids, including 5 cysteine residues in positions 11, 14, 24, 56, and 60. The sequence has been analyzed for hydrophilicity and for secondary structure predictions. In its native state the protein is a dimer, each subunit containing one [2Fe-2S] cluster, and it has a molecular weight of 23,174, including the four iron and inorganic sulfur atoms. The extinction coefficient of the native protein is 19,400 M-1 cm-1 at 463 nm. The positions of the cysteine residues, four of which are most probably the ligands of the [2Fe-2S] cluster, on the polypeptide chain of this protein are very different from those found in other [2Fe-2S] proteins, and in other ferredoxins in general. In addition, whole sequence comparisons of the [2Fe-2S] ferredoxin from C. pasteurianum with a number of other ferredoxins did not reveal any significant homologies. The likely occurrence of several phylogenetically unrelated ferredoxin families is discussed in the light of these observations.  相似文献   

3.
The [2Fe-2S] ferredoxin from Clostridium pasteurianum had previously been shown to interact specifically with the nitrogenase MoFe protein, and electrostatic forces were found to be important contributors to the interaction. This phenomenon has now been analyzed in detail by using ferredoxin variants in which charge inversions or cancellations were introduced on all charged residues. The mutated forms of the ferredoxin were covalently cross-linked to the MoFe protein. The reaction products were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and their nitrogenase activity was measured. The latter displayed a consistent inverse correlation with the amount of cross-linked MoFe protein. The data allowed an unambiguous identification of the ferredoxin residues (glutamates 31, 34, 38, 39, 84, 85) that are involved in the interaction with the MoFe protein. Furthermore, whereas the wild-type ferredoxin yielded approximately equal amounts of cross-linked products with the alpha and beta subunits of the MoFe protein, some of its molecular variants displayed a differential decrease of reactivity towards one or the other of these subunits. The positions on the ferredoxin molecule of the residues interacting with the MoFe protein were determined using the recently elucidated crystal structure of the homologous [2Fe-2S] ferredoxin from Aquifex aeolicus.  相似文献   

4.
J M Moulis  J Meyer 《Biochemistry》1982,21(19):4762-4771
The sulfur atoms of the two [4Fe-4S] clusters present in the ferredoxin from Clostridium pasteurianum have been replaced by selenium. The substitution is readily carried out by incubating the apoferredoxin with excess amounts of Fe3+, selenite, and dithiothreitol under anaerobic conditions. The UV-visible absorption spectrum of the Se-substituted ferredoxin, the core extrusion of its active sites, and analyses of its iron and selenium contents show that it contains two [4Fe-4Se] clusters. The Se-substituted ferredoxin is considerably less resistant to oxygen or to acidic and alkaline pH than the native ferredoxin: the half-lives of the former are 20-500 times shorter than those of the latter. The native ferredoxin and the Se-substituted ferredoxin display similar kinetic properties when used as electron donors to the hydrogenase from C. pasteurianum. It is of note, however, that the Km and Vmax values are lower for the 2[4Fe-4Se] ferredoxin than for the 2[4Fe-4S] ferredoxin. Reductive and oxidative titrations with dithionite and with thionine, respectively, show that both ferredoxins are two-electron carriers. The redox potentials of the ferredoxins have been measured by equilibrating them with the H2/H+ couple via hydrogenase: values of -423 and -417 mV have been found for the 2[4Fe-4S] ferredoxin and 2[4Fe-4Se] ferredoxin, respectively. Ferredoxins containing both chalcogenides in their [4Fe-4X] (X = S, Se) clusters have been prepared by reconstitution reactions involving mixtures of sulfide and selenide: the latter experiments show that sulfide and selenide are equally reactive in the incorporation of [4Fe-4X] (X = S, Se) sites into ferredoxin. The present report, together with former studies, establishes the general feasibility of the Se/S substitution in [2Fe-2S] and in [4Fe-4S] clusters of proteins and of synthetic analogues.  相似文献   

5.
The use of standard 2D NMR experiments in combination with 1D NOE experiments allowed the assignment of 51 of the 58 spin systems of oxidised [3Fe-4S] ferredoxin isolated from Desulfovibrio gigas. The NMR solution structure was determined using data from 1D NOE and 2D NOESY spectra, as distance constraints, and information from the X-ray structure for the spin systems not detected by NMR in torsion angle dynamics calculations to produce a family of 15 low target function structures. The quality of the NMR family, as judged by the backbone r.m.s.d. values, was good (0.80?Å), with the majority of φ/ψ angles falling within the allowed region of the Ramachandran plot. A comparison with the X-ray structure indicated that the overall global fold is very similar in solution and in the solid state. The determination of the solution structure of ferredoxin II (FdII) in the oxidised state (FdIIox) opens the way for the determination of the solution structure of the redox intermediate state of FdII (FdIIint), for which no X-ray structure is available.  相似文献   

6.
M Lutz  J M Moulis  J Meyer 《FEBS letters》1983,163(2):212-216
Low temperature resonance Raman spectra have been obtained for Clostridium pasteurianum and Bacillus stearothermophilus ferredoxins. Several heretofore undetected fundamental bands have been observed and these data have been used to discriminate the vibrational contribution of the [3Fe-3S] cluster to the spectrum of Azotobacter vinelandii ferredoxin I. The vibrational features of the [3Fe-3S] core distinguish it from other 3-iron clusters and imply structural differences among this class of iron-sulfur clusters.  相似文献   

7.
During the purification of site-directed mutant variants of Azotobacter vinelandii ferredoxin I (FdI), a pink protein, which was not observed in native FdI preparations, appeared to associate specifically with variants that had mutations in ligands to FdI [Fe-S] clusters. That protein, which we designate FdIV, has now been purified. NH(2)-terminal sequence analysis revealed that the protein is the product of a previously described gene, herein designated fdxD, that is in the A. vinelandii iscSUA operon that encodes proteins involved in iron-sulfur cluster assembly or repair. An apoprotein molecular mass of 12,434.03 +/- 0.21 Da was determined by mass spectrometry consistent with the known gene sequence. The monomeric protein was shown to contain a single [2Fe-2S](2+/+) cluster by UV/visible, CD, and EPR spectroscopies with a reduction potential of -344 mV versus the standard hydrogen electrode. When overexpressed in Escherichia coli, recombinant FdIV holoprotein was successfully assembled. However, the polypeptide of the recombinant protein was modified in some way such that the apoprotein molecular mass increased by 52 Da. Antibodies raised against FdIV and EPR spectroscopy were used to examine the relative levels of FdIV and FdI in various A. vinelandii strains leading to the conclusion that FdIV levels appear to be specifically increased under conditions where another protein, NADPH:ferredoxin reductase is also up-regulated. In that case, the fpr gene is known to be activated in response to oxidative stress. This suggests that the fdxD gene and other genes in the iron-sulfur cluster assembly or repair operon might be similarly up-regulated in response to oxidative stress.  相似文献   

8.
The [4Fe-4S](2+/+) cluster of Azotobacter vinelandii ferredoxin I (FdI) has an unusually low reduction potential (E(0')) relative to other structurally similar ferredoxins. Previous attempts to raise that E(0') by modification of surface charged residues were unsuccessful. In this study mutants were designed to alter the E(0') by substitution of polar residues for nonpolar residues near the cluster and by modification of backbone amides. Three FdI variants, P21G, I40N, and I40Q, were purified and characterized, and electrochemical E(0') measurements show that all had altered E(0') relative to native FdI. For P21G FdI and I40Q FdI, the E(0') increased by +42 and +53 mV, respectively validating the importance of dipole orientation in control of E(0'). Protein Dipole Langevin Dipole calculations based on models for those variants accurately predicted the direction of the change in E(0') while overestimating the magnitude. For I40N FdI, initial calculations based on the model predicted a +168 mV change in E(0') while a -33 mV change was observed. The x-ray structure of that variant, which was determined to 2.8 A, revealed a number of changes in backbone and side chain dipole orientation and in solvent accessibility, that were not predicted by the model and that were likely to influence E(0'). Subsequent Protein Dipole Langevin Dipole calculations (using the actual I40N x-ray structures) did quite accurately predict the observed change in E(0').  相似文献   

9.
The reduction potential (E(0)') of the [4Fe-4S](2+/+) cluster of Azotobacter vinelandii ferredoxin I (AvFdI) and related ferredoxins is approximately 200 mV more negative than the corresponding clusters of Peptostreptococcus asaccharolyticus ferredoxin and related ferredoxins. Previous studies have shown that these differences in E(0)' do not result from the presence or absence of negatively charged surface residues or in differences in the types of hydrophobic residues found close to the [4Fe-4S](2+/+) clusters. Recently, a third, quite distinct class of ferredoxins (represented by the structurally characterized Chromatium vinosum ferredoxin) was shown to have a [4Fe-4S](2+/+) cluster with a very negative E(0)' similar to that of AvFdI. The observation that the sequences and structures surrounding the very negative E(0)' clusters in quite dissimilar proteins were almost identical inspired the construction of three additional mutations in the region of the [4Fe-4S](2+/+) cluster of AvFdI. The three mutations, V19E, P47S, and L44S, that incorporated residues found in the higher E(0)' P. asaccharolyticus ferredoxin all led to increases in E(0)' for a total of 130 mV with a 94-mV increase in the case of L44S. The results are interpreted in terms of x-ray structures of the FdI variants and show that the major determinant for the large increase in L44S is the introduction of an OH-S bond between the introduced Ser side chain and the Sgamma atom of Cys ligand 42 and an accompanying movement of water.  相似文献   

10.
11.
The ferredoxin from Clostridium pasteurianum, which contains two [4Fe-4S] clusters, was investigated in its oxidized and reduced states by two-dimensional (2D) (1)H-(1)H nuclear Overhauser enhancement spectroscopy (NOESY). Comparison of the data from the oxidized ferredoxin with those published previously revealed the same NOE connectivities. No previous (1)H-(1)H NOESY study of the fully reduced ferredoxin has previously been published. However, it was possible to compare our results with those of a 2D exchange spectroscopy investigation of half-reduced C. pasteurianum ferredoxin. The present results with reduced C. pasteurianum ferredoxin confirm many of the (1)H peaks and NOE interactions reported earlier, revise others, and locate resonances previously undetected. When the ferredoxin was slightly exposed to oxygen, several of the hyperfine shifted resonances were irreversibly influenced. A resonance at 34 ppm in the (1)H NMR spectra of both redox states is indicative of oxygen exposure. These results indicate the importance of keeping the ferredoxin strictly anaerobic during purification and solvent exchange.  相似文献   

12.
We have used site-directed mutagenesis to obtain two variants of Azotobacter vinelandii ferredoxin I (AvFdI), whose x-ray structures are now available. In the C20A protein, a ligand to the [4Fe-4S] cluster was removed whereas in the C24A mutant a free cysteine next to that cluster was removed. Like native FdI, both mutants contain one [4Fe-4S] cluster and one [3Fe-4S] cluster. The structure of C24A is very similar to that of native FdI, while the structure of C20A is rearranged in the region of the [4Fe-4S] cluster to allow it to use the free Cys-24 as a replacement ligand. Here we compare the properties of the native, C20A, and C24A proteins. Although all three proteins are O2 stable in vitro, the C20A protein is much less stable toward proteolysis than the other two in vivo. Spectroscopic results show that all three proteins exhibit the same general redox behavior during O2-oxidation and dithionite reduction. Electrochemical data show that the [3Fe-4S] clusters in all three proteins have the same pH-dependent reduction potentials (-425 mV versus SHE, pH 7.8), whereas the [4Fe-4S] cluster potentials vary over a approximately 150 mV range from -600 mV (C24A) to -647 mV (native) to -746 mV (C20A). Despite this variation in potential both the C20A and C24A proteins appear to be functional in vivo. Native FdI reacts with three equivalents of Fe(CN)3-(6) to form a paramagnetic species previously proposed to be a cysteinyl-disulfide radical. Neither the C20A nor the C24A variant undergoes this reaction, strongly suggesting that it involves the free Cys-24.  相似文献   

13.
The ferredoxin from Clostridium pasteurianum, containing two Fe4S4 clusters, has been investigated through 1H-NMR spectroscopy in the reduced and partially oxidized states. The 1H-NMR spectrum of fully reduced ferredoxin, obtained by addition of stoichiometric amounts of dithionite, has been characterized. One- and two-dimensional NMR saturation transfer experiments on partially reduced samples have allowed the isotropically shifted signals of the reduced form to be correlated to those of the oxidized form, for which the complete assignment of the beta-CH2 cysteinyl residues is available. In addition, observation of the 1H-NMR signals of the intermediate species with characteristic chemical shift values for each cluster allowed us to assign all the Cys beta-CH2 signals to cluster I or cluster II and to calculate the difference in redox potential between them. Starting from these results, reanalysis of the 1H-NMR features of the two clusters in the oxidized form showed that they are strikingly similar, supporting the idea of a high degree of internal symmetry between them, in agreement with crystallographic results on an homologous ferredoxin. On the other hand, the 1H-NMR properties of the two clusters in the reduced form deviate considerably from each other, suggesting that reduction of the clusters brings about different structural changes and loss of internal symmetry. A theoretical approach is reported to account for the isotropic shifts and the temperature dependence of the NMR signals of the reduced protein.  相似文献   

14.
The effect of reducing one 4Fe-4S cluster in Clostridium pasteurianum 2 (4Fe-4S) ferredoxin on the reduction potential of the unreduced cluster has been investigated. While such an effect is suggested by both the x-ray structure of Peptococcus aerogenes 2 (4F-4S) ferredoxin and the polypeptide conformational change on reduction present in clostridial-type 2 (4Fe-4S) ferredoxins, present studies indicate that cluster-cluster cooperative interaction is not strong enough to be of functional importance in these proteins.  相似文献   

15.
The [2Fe-2S] ferredoxin ("Red paramagnetic protein", RPP) from C. pasteurianum has been found to be composed of two identical subunits of 10,000 +/- 2 000 daltons, each containing a [2Fe-2S] cluster. Resonance Raman (RR) spectra of RPP have been obtained at 23 degrees K, and compared to those of spinach ferredoxin (Sp Fd). Ten modes of the [2Fe-2S] chromophore were observed in the 100-450 cm-1 range. Assignments of non fundamental modes in the 500-900 cm-1 range allowed correlations between fundamental stretching modes of RPP and Sp Fd. Although assuming a [2Fe-2S] structure, the chromophore of RPP differs from that of Sp Fd by its conformation and by a slight weakening of Fe-S bonds, involving both the inorganic core and the cysteine ligands.  相似文献   

16.
 The oxidized Fe7S8 ferredoxin from Bacillus schlegelii, containing both [Fe3S4]+ and [Fe4S4]2+ clusters, has been investigated by 1H NMR spectroscopy. An extensive sequence-specific assignment of the hyperfine-shifted resonances has been obtained by making use of a computer-generated structural model. The pattern and the temperature dependence of the hyperfine shifts of the β-CH2 protons of the cysteines coordinating the [Fe3S4]+ cluster are rationalized in terms of magnetic interactions between the iron ions. The same approach holds for the hyperfine coupling with 57Fe. It is shown that the magnetic interactions are more asymmetric in Fe7S8 ferredoxins than in Fe3S4 ferredoxins. The NMR non-observability of the β-CH2 protons of coordinated cysteines in the one-electron-reduced form has been discussed. Received: 19 June 1996 / Accepted: 2 August 1996  相似文献   

17.
A gene encoding the exact sequence of Clostridium pasteurianum 2[4Fe-4S] ferredoxin and containing 11 unique restriction endonuclease cleavage sites has been synthesized and cloned in Escherichia coli. The synthetic gene is efficiently expressed in E. coli and its product has been purified and characterized. The N-terminal sequence is identical to that of the protein isolated from C. pasteurianum and the recombinant ferredoxin contains the exact amount of [4Fe-4S] clusters (2 per monomer) expected for homogeneous holoferredoxin. It displays reduction potential and kinetic parameters as electron donor to C. pasteurianum hydrogenase I identical to those determined for the native ferredoxin. All of these properties demonstrate that the 2[4Fe-4S] ferredoxin expressed in E. coli is identical to the parent clostridial protein.  相似文献   

18.
The structure of the nitrogenase iron protein from Azotobacter vinelandii in the all-ferrous [4Fe-4S](0) form has been determined to 2.25 A resolution by using the multiwavelength anomalous diffraction (MAD) phasing technique. The structure demonstrates that major conformational changes are not necessary either in the iron protein or in the cluster to accommodate cluster reduction to the [4Fe-4S](0) oxidation state. A survey of [4Fe-4S] clusters coordinated by four cysteine ligands in proteins of known structure reveals that the [4Fe-4S] cluster of the iron protein has the largest accessible surface area, suggesting that solvent exposure may be relevant to the ability of the iron protein to exist in three oxidation states.  相似文献   

19.
Azotobacter vinelandii (4Fe-4S)2 ferredoxin I (Fd I) is an electron transfer protein with Mr equals 14,500 and Eo equals -420 mv. It exhibits and EPR signal of g equals 2.01 in its isolated form. This resonance is almost identical with the signal that originates from a "super-oxidized" state of the 4Fe-4S cluster of potassium ferricyanide-treated Clostridium ferredoxin. A cluster that exhibits this EPR signal at g equals 2.01 is in the same formal oxidation state as the cluster in oxidized Chromatium High-Potential-Iron-Protein (HiPIP). On photoreduction of Fd I with spinach chloroplast fragments, the resonance at g equals 2.01 vanishes and no EPR signal is observed. This EPR behavior is analogous to that of reduced HiPIP, which also fails to exhibit an EPR spectrum. These characteristics suggest that a cluster in A. vinelandii Fd I functions between the same pair of states on reduction as does the cluster in HiPIP, but with a midpoint reduction potential of -420 mv in contrast to the value of +350 mv characteristic of HiPIP. Quantitative EPR and stoichoimetry studies showed that only one 4Fe-4S cluster in this (4Fe-4S)2 ferredoxin is reduced. Oxidation of Fd I with potassium ferricyanide results in the uptake of 1 electron/mol as determined by quantitative EPR spectroscopy. This indicates that a cluster in Fd I shows no electron paramagnetic resonance in the isolated form of the protein accepts an electron on oxidation, as indicated by the EPR spectrum, and becomes paramagnetic. The EPR behavior of this oxidizable cluster indicates that it also functions between the same pair of oxidation states as does the Fe-S cluster in HiPIP. The midpoint reduction potential of this cluster is approximately +340 mv. A. vinelandii Fd I is the first example of an iron-sulfur protein which contains both a high potential cluster (approximately +340 mv) and a low potential cluster (-420 mv). Both Fe-S clusters appear to function between the same pair of oxidation states as the single Fe-S cluster in Chromatium HiPIP, although the midpoint reduction potentials of the two clusters are approximately 760 mv different.  相似文献   

20.
The H2 uptake activity (units/mg protein) of Clostridium pasteurianum cells with methylene blue as the electron acceptor increases with cell density independent of the growth conditions. The H2 evolution activity (units/mg protein) of the same cells with reduced methyl viologen as the electron donor remains fairly constant under all growth conditions tested. Cells grown under N2-fixing conditions have the highest H2 uptake activity and were used for the purification of hydrogenase II (uptake hydrogenase). Attempts to separate hydrogenase II from hydrogenase I (bidirectional hydrogenase) by a previously published method were unreliable. We report here a new large-scale purification procedure which employs a rapid membrane filtration system to fractionate cell-free extracts. Hydrogenases I and II were easily filtered into the low-molecular-weight fraction (Mr less than 100 000), and from this, hydrogenase II was further purified to a homogeneous state. Hydrogenase II is a monomeric iron-sulfur protein of molecular weight 53 000 containing eight iron atoms and eight acid-labile sulfur atoms per molecule. Hydrogenase II catalyzes both H2 oxidation and H2 evolution at rates of 3000 and 5.9 μmol H2 consumed or evolved/min per mg protein, respectively. The purification procedure for hydrogenase II using the filtration system described greatly facilitates the large-scale purification of hydrogenase I and other enzymes from cell-free extracts of C. pasteurianum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号